1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
|
/* Copyright 2011
* Kaz Kylheku <kaz@kylheku.com>
* Vancouver, Canada
* All rights reserved.
*
* BSD License:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <wchar.h>
#include <assert.h>
#include <dirent.h>
#include <setjmp.h>
#include <dirent.h>
#include <limits.h>
#include "config.h"
#include "lib.h"
#include "unwind.h"
#include "regex.h"
#include "txr.h"
#if WCHAR_MAX > 65535
#define FULL_UNICODE
#endif
typedef union nfa_state nfa_state_t;
typedef struct nfa {
nfa_state_t *start;
nfa_state_t *accept;
} nfa_t;
typedef enum regm_result {
REGM_INCOMPLETE, REGM_FAIL, REGM_MATCH
} regm_result_t;
typedef union regex_machine regex_machine_t;
typedef unsigned int bitcell_t;
#define BITCELL_ALL1 UINT_MAX
#define CHAR_SET_SIZE (256 / (sizeof (bitcell_t) * CHAR_BIT))
#define CHAR_SET_INDEX(CH) ((CH) / (sizeof (bitcell_t) * CHAR_BIT))
#define CHAR_SET_BIT(CH) ((CH) % (sizeof (bitcell_t) * CHAR_BIT))
#define CHAR_SET_L0(CH) ((CH) & 0xFF)
#define CHAR_SET_L1(CH) (((CH) >> 8) & 0xF)
#define CHAR_SET_L2(CH) (((CH) >> 12) & 0xF)
#ifdef FULL_UNICODE
#define CHAR_SET_L3(CH) (((CH) >> 16) & 0x1F)
#endif
#ifdef FULL_UNICODE
#define CHAR_SET_L2_LO(CH) ((CH) & (~(wchar_t) 0xFFFF))
#define CHAR_SET_L2_HI(CH) ((CH) | ((wchar_t) 0xFFFF))
#endif
#define CHAR_SET_L1_LO(CH) ((CH) & (~(wchar_t) 0xFFF))
#define CHAR_SET_L1_HI(CH) ((CH) | ((wchar_t) 0xFFF))
#define CHAR_SET_L0_LO(CH) ((CH) & (~(wchar_t) 0xFF))
#define CHAR_SET_L0_HI(CH) ((CH) | ((wchar_t) 0xFF))
typedef enum {
CHSET_SMALL, CHSET_DISPLACED, CHSET_LARGE,
#ifdef FULL_UNICODE
CHSET_XLARGE
#endif
} chset_type_t;
typedef bitcell_t cset_L0_t[CHAR_SET_SIZE];
typedef cset_L0_t *cset_L1_t[16];
typedef cset_L1_t *cset_L2_t[16];
#ifdef FULL_UNICODE
typedef cset_L2_t *cset_L3_t[17];
#endif
struct any_char_set {
unsigned type : 3;
unsigned comp : 1;
};
struct small_char_set {
unsigned type : 3;
unsigned comp : 1;
cset_L0_t bitcell;
};
struct displaced_char_set {
unsigned type : 3;
unsigned comp : 1;
cset_L0_t bitcell;
wchar_t base;
};
struct large_char_set {
unsigned type : 3;
unsigned comp : 1;
cset_L2_t dir;
};
#ifdef FULL_UNICODE
struct xlarge_char_set {
unsigned type : 3;
unsigned comp : 1;
cset_L3_t dir;
};
#endif
typedef union char_set {
struct any_char_set any;
struct small_char_set s;
struct displaced_char_set d;
struct large_char_set l;
#ifdef FULL_UNICODE
struct xlarge_char_set xl;
#endif
} char_set_t;
#define NFA_SET_SIZE 512
typedef enum {
nfa_accept, nfa_empty, nfa_wild, nfa_single, nfa_set
} nfa_kind_t;
struct nfa_state_accept {
nfa_kind_t kind;
unsigned visited;
};
struct nfa_state_empty {
nfa_kind_t kind;
unsigned visited;
nfa_state_t *trans0;
nfa_state_t *trans1;
};
struct nfa_state_single {
nfa_kind_t kind;
unsigned visited;
nfa_state_t *trans;
wchar_t ch;
};
struct nfa_state_set {
nfa_kind_t kind;
unsigned visited;
nfa_state_t *trans;
char_set_t *set;
};
union nfa_state {
struct nfa_state_accept a;
struct nfa_state_empty e;
struct nfa_state_single o;
struct nfa_state_set s;
};
struct nfa_machine {
int is_nfa; /* common member */
cnum last_accept_pos; /* common member */
cnum count; /* common member */
unsigned visited;
nfa_state_t **move, **clos, **stack;
int nmove, nclos;
nfa_t nfa;
};
struct dv_machine {
int is_nfa; /* common member */
cnum last_accept_pos; /* common member */
cnum count; /* common member */
val deriv;
val regex;
};
union regex_machine {
struct nfa_machine n;
struct dv_machine d;
};
int opt_derivative_regex = 0;
static int L0_full(cset_L0_t *L0)
{
int i;
for (i = 0; i < (int) CHAR_SET_SIZE; i++)
if ((*L0)[i] != ((bitcell_t) -1))
return 0;
return 1;
}
static void L0_fill_range(cset_L0_t *L0, wchar_t ch0, wchar_t ch1)
{
int i;
int bt0 = CHAR_SET_BIT(ch0);
int bc0 = CHAR_SET_INDEX(ch0);
bitcell_t mask0 = ~(((bitcell_t) 1 << bt0) - 1);
int bt1 = CHAR_SET_BIT(ch1);
int bc1 = CHAR_SET_INDEX(ch1);
bitcell_t mask1 = (((bitcell_t) 1 << (bt1 + 1) % 32) - 1);
if (bc1 == bc0) {
(*L0)[bc0] |= (mask0 & mask1);
} else {
(*L0)[bc0] |= mask0;
(*L0)[bc1] |= mask1;
for (i = bc0 + 1; i < bc1; i++)
(*L0)[i] = ((bitcell_t) -1);
}
}
static int L0_contains(cset_L0_t *L0, wchar_t ch)
{
return ((*L0)[CHAR_SET_INDEX(ch)] & (1 << CHAR_SET_BIT(ch))) != 0;
}
static int L1_full(cset_L1_t *L1)
{
int i;
for (i = 0; i < 16; i++)
if ((*L1)[i] != (cset_L0_t *) -1)
return 0;
return 1;
}
static void L1_fill_range(cset_L1_t *L1, wchar_t ch0, wchar_t ch1)
{
int i1, i10, i11;
i10 = CHAR_SET_L1(ch0);
i11 = CHAR_SET_L1(ch1);
for (i1 = i10; i1 <= i11; i1++) {
wchar_t c0 = 0, c1 = 0;
cset_L0_t *L0;
if (i1 > i10 && i1 < i11) {
free((*L1)[i1]);
(*L1)[i1] = (cset_L0_t *) -1;
continue;
} else if (i10 == i11) {
c0 = ch0;
c1 = ch1;
} else if (i1 == i10) {
c0 = ch0;
c1 = CHAR_SET_L0_HI(ch0);
} else if (i1 == i11) {
c0 = CHAR_SET_L0_LO(ch1);
c1 = ch1;
}
if ((L0 = (*L1)[i1]) == (cset_L0_t *) -1)
continue;
if (L0 == 0) {
static cset_L0_t blank;
L0 = (*L1)[i1] = (cset_L0_t *) chk_malloc(sizeof *L0);
memcpy(L0, &blank, sizeof *L0);
}
L0_fill_range(L0, CHAR_SET_L0(c0), CHAR_SET_L0(c1));
if (L0_full(L0)) {
free(L0);
(*L1)[i1] = (cset_L0_t *) -1;
}
}
}
static int L1_contains(cset_L1_t *L1, wchar_t ch)
{
int i1 = CHAR_SET_L1(ch);
cset_L0_t *L0 = (*L1)[i1];
if (L0 == 0)
return 0;
else if (L0 == (cset_L0_t *) -1)
return 1;
else
return L0_contains(L0, CHAR_SET_L0(ch));
}
static void L1_free(cset_L1_t *L1)
{
int i1;
if (L1 == (cset_L1_t *) -1)
return;
for (i1 = 0; i1 < 16; i1++)
if ((*L1)[i1] != (cset_L0_t *) -1)
free((*L1)[i1]);
}
#ifdef FULL_UNICODE
static int L2_full(cset_L2_t *L2)
{
int i;
for (i = 0; i < 16; i++)
if ((*L2)[i] != (cset_L1_t *) -1)
return 0;
return 1;
}
#endif
static void L2_fill_range(cset_L2_t *L2, wchar_t ch0, wchar_t ch1)
{
int i2, i20, i21;
i20 = CHAR_SET_L2(ch0);
i21 = CHAR_SET_L2(ch1);
for (i2 = i20; i2 <= i21; i2++) {
wchar_t c0 = 0, c1 = 0;
cset_L1_t *L1;
if (i2 > i20 && i2 < i21) {
free((*L2)[i2]);
(*L2)[i2] = (cset_L1_t *) -1;
continue;
} else if (i20 == i21) {
c0 = ch0;
c1 = ch1;
} else if (i2 == i20) {
c0 = ch0;
c1 = CHAR_SET_L1_HI(ch0);
} else if (i2 == i21) {
c0 = CHAR_SET_L1_LO(ch1);
c1 = ch1;
}
if ((L1 = (*L2)[i2]) == (cset_L1_t *) -1)
continue;
if (L1 == 0) {
static cset_L1_t blank;
L1 = (*L2)[i2] = (cset_L1_t *) chk_malloc(sizeof *L1);
memcpy(L1, &blank, sizeof *L1);
}
L1_fill_range(L1, c0, c1);
if (L1_full(L1)) {
free(L1);
(*L2)[i2] = (cset_L1_t *) -1;
}
}
}
static int L2_contains(cset_L2_t *L2, wchar_t ch)
{
int i2 = CHAR_SET_L2(ch);
cset_L1_t *L1 = (*L2)[i2];
if (L1 == 0)
return 0;
else if (L1 == (cset_L1_t *) -1)
return 1;
else
return L1_contains(L1, ch);
}
static void L2_free(cset_L2_t *L2)
{
int i2;
for (i2 = 0; i2 < 16; i2++) {
cset_L1_t *L1 = (*L2)[i2];
if (L1 != 0 && L1 != (cset_L1_t *) -1) {
L1_free((*L2)[i2]);
free((*L2)[i2]);
}
}
}
#ifdef FULL_UNICODE
static void L3_fill_range(cset_L3_t *L3, wchar_t ch0, wchar_t ch1)
{
int i3, i30, i31;
i30 = CHAR_SET_L3(ch0);
i31 = CHAR_SET_L3(ch1);
for (i3 = i30; i3 <= i31; i3++) {
wchar_t c0 = 0, c1 = 0;
cset_L2_t *L2;
if (i3 > i30 && i3 < i31) {
free((*L3)[i3]);
(*L3)[i3] = (cset_L2_t *) -1;
continue;
} else if (i30 == i31) {
c0 = ch0;
c1 = ch1;
} else if (i3 == i30) {
c0 = ch0;
c1 = CHAR_SET_L2_HI(ch0);
} else if (i3 == i31) {
c0 = CHAR_SET_L2_LO(ch1);
c1 = ch1;
}
if ((L2 = (*L3)[i3]) == (cset_L2_t *) -1)
continue;
if (L2 == 0) {
static cset_L2_t blank;
L2 = (*L3)[i3] = (cset_L2_t *) chk_malloc(sizeof *L2);
memcpy(L2, &blank, sizeof *L2);
}
L2_fill_range(L2, c0, c1);
if (L2_full(L2)) {
free(L2);
(*L3)[i3] = (cset_L2_t *) -1;
}
}
}
static int L3_contains(cset_L3_t *L3, wchar_t ch)
{
int i3 = CHAR_SET_L3(ch);
cset_L2_t *L2 = (*L3)[i3];
if (L2 == 0)
return 0;
else if (L2 == (cset_L2_t *) -1)
return 1;
else
return L2_contains(L2, ch);
}
static void L3_free(cset_L3_t *L3)
{
int i3;
for (i3 = 0; i3 < 17; i3++) {
cset_L2_t *L2 = (*L3)[i3];
if (L2 != 0 && L2 != (cset_L2_t *) -1) {
L2_free((*L3)[i3]);
free((*L3)[i3]);
}
}
}
#endif
static char_set_t *char_set_create(chset_type_t type, wchar_t base)
{
static char_set_t blank;
char_set_t *cs = (char_set_t *) chk_malloc(sizeof *cs);
*cs = blank;
cs->any.type = type;
if (type == CHSET_DISPLACED)
cs->d.base = base;
return cs;
}
static void char_set_destroy(char_set_t *set)
{
switch (set->any.type) {
case CHSET_DISPLACED:
case CHSET_SMALL:
free(set);
break;
case CHSET_LARGE:
L2_free(&set->l.dir);
free(set);
break;
#ifdef FULL_UNICODE
case CHSET_XLARGE:
L3_free(&set->xl.dir);
free(set);
break;
#endif
}
}
static void char_set_compl(char_set_t *set)
{
set->any.comp = 1;
}
static void char_set_add(char_set_t *set, wchar_t ch)
{
switch (set->any.type) {
case CHSET_DISPLACED:
assert (ch >= set->d.base && ch < set->d.base + 256);
ch -= set->d.base;
/* fallthrough */
case CHSET_SMALL:
assert (ch < 256);
set->s.bitcell[CHAR_SET_INDEX(ch)] |= (1 << CHAR_SET_BIT(ch));
break;
case CHSET_LARGE:
assert (ch < 0x10000);
L2_fill_range(&set->l.dir, ch, ch);
break;
#ifdef FULL_UNICODE
case CHSET_XLARGE:
assert (ch < 0x110000);
L3_fill_range(&set->xl.dir, ch, ch);
break;
#endif
}
}
static void char_set_add_range(char_set_t *set, wchar_t ch0, wchar_t ch1)
{
if (ch0 >= ch1)
return;
switch (set->any.type) {
case CHSET_DISPLACED:
assert (ch0 >= set->d.base && ch1 < set->d.base + 256);
ch0 -= set->d.base;
ch1 -= set->d.base;
/* fallthrough */
case CHSET_SMALL:
assert (ch1 < 256);
L0_fill_range(&set->s.bitcell, ch0, ch1);
break;
case CHSET_LARGE:
assert (ch1 < 0x10000);
L2_fill_range(&set->l.dir, ch0, ch1);
break;
#ifdef FULL_UNICODE
case CHSET_XLARGE:
assert (ch1 < 0x110000);
L3_fill_range(&set->xl.dir, ch0, ch1);
break;
#endif
}
}
static int char_set_contains(char_set_t *set, wchar_t ch)
{
int result = 0;
switch (set->any.type) {
case CHSET_DISPLACED:
if (ch < set->d.base)
break;
ch -= set->d.base;
/* fallthrough */
case CHSET_SMALL:
if (ch >= 256)
break;
result = L0_contains(&set->s.bitcell, ch);
break;
case CHSET_LARGE:
if (ch >= 0x10000)
break;
result = L2_contains(&set->l.dir, ch);
break;
#ifdef FULL_UNICODE
case CHSET_XLARGE:
if (ch >= 0x110000)
break;
result = L3_contains(&set->xl.dir, ch);
break;
#endif
}
return set->any.comp ? !result : result;
}
static char_set_t *char_set_compile(val args, val comp)
{
val iter;
wchar_t min = WCHAR_MAX;
wchar_t max = 0;
chset_type_t cst;
for (iter = args; iter; iter = rest(iter)) {
val item = first(iter);
if (consp(item)) {
val from = car(item);
val to = cdr(item);
assert (typeof(from) == chr_s && typeof(to) == chr_s);
if (c_chr(from) < min)
min = c_chr(from);
if (c_chr(from) > max)
max = c_chr(from);
if (c_chr(to) < min)
min = c_chr(to);
if (c_chr(to) > max)
max = c_chr(to);
} else if (typeof(item) == chr_s) {
if (c_chr(item) < min)
min = c_chr(item);
if (c_chr(item) > max)
max = c_chr(item);
} else {
assert(0 && "bad regex set");
}
}
if (max < 0x100)
cst = CHSET_SMALL;
else if (max - min < 0x100)
cst = CHSET_DISPLACED;
else if (max < 0x10000)
cst = CHSET_LARGE;
else
#ifdef FULL_UNICODE
cst = CHSET_XLARGE;
#else
cst = CHSET_LARGE;
#endif
{
char_set_t *set = char_set_create(cst, min);
for (iter = args; iter; iter = rest(iter)) {
val item = first(iter);
if (consp(item)) {
val from = car(item);
val to = cdr(item);
assert (typeof(from) == chr_s && typeof(to) == chr_s);
char_set_add_range(set, c_chr(from), c_chr(to));
} else if (typeof(item) == chr_s) {
char_set_add(set, c_chr(item));
} else {
assert(0 && "bad regex set");
}
}
if (comp)
char_set_compl(set);
return set;
}
}
static void char_set_cobj_destroy(val chset)
{
char_set_t *set = (char_set_t *) chset->co.handle;
char_set_destroy(set);
chset->co.handle = 0;
}
static struct cobj_ops char_set_obj_ops = {
cobj_equal_op,
cobj_print_op,
char_set_cobj_destroy,
cobj_mark_op,
cobj_hash_op
};
static nfa_state_t *nfa_state_accept(void)
{
nfa_state_t *st = (nfa_state_t *) chk_malloc(sizeof *st);
st->a.kind = nfa_accept;
st->a.visited = 0;
return st;
}
static nfa_state_t *nfa_state_empty(nfa_state_t *t0, nfa_state_t *t1)
{
nfa_state_t *st = (nfa_state_t *) chk_malloc(sizeof *st);
st->e.kind = nfa_empty;
st->e.visited = 0;
st->e.trans0 = t0;
st->e.trans1 = t1;
return st;
}
static nfa_state_t *nfa_state_single(nfa_state_t *t, wchar_t ch)
{
nfa_state_t *st = (nfa_state_t *) chk_malloc(sizeof *st);
st->o.kind = nfa_single;
st->o.visited = 0;
st->o.trans = t;
st->o.ch = ch;
return st;
}
static nfa_state_t *nfa_state_wild(nfa_state_t *t)
{
nfa_state_t *st = (nfa_state_t *) chk_malloc(sizeof *st);
st->o.kind = nfa_wild;
st->o.visited = 0;
st->o.trans = t;
st->o.ch = 0;
return st;
}
static void nfa_state_free(nfa_state_t *st)
{
if (st->a.kind == nfa_set)
char_set_destroy(st->s.set);
free(st);
}
static void nfa_state_shallow_free(nfa_state_t *st)
{
free(st);
}
static nfa_state_t *nfa_state_set(nfa_state_t *t, char_set_t *cs)
{
nfa_state_t *st = (nfa_state_t *) chk_malloc(sizeof *st);
st->s.kind = nfa_set;
st->s.visited = 0;
st->s.trans = t;
st->s.set = cs;
return st;
}
/*
* An acceptance state is converted to an empty transition
* state with specified transitions. It thereby loses
* its acceptance state status. This is used during
* compilation to hook new output paths into an inner NFA,
* either back to itself, or to a new state in the
* surrounding new NFA.
*/
static void nfa_state_empty_convert(nfa_state_t *acc, nfa_state_t *t0,
nfa_state_t *t1)
{
assert (acc->a.kind == nfa_accept);
acc->e.kind = nfa_empty;
acc->e.trans0 = t0;
acc->e.trans1 = t1;
}
/*
* Acceptance state takes on the kind of st, and all associated
* data. I.e. we merge the identity of accept,
* with the contents of st, such that the new state has
* all of the outgoing arrows of st, and
* all of the incoming arrows of acc.
* This is easily done with an assignment, provided
* that st doesn't have any incoming arrows.
* We ensure that start states don't have any incoming
* arrows in the compiler, by ensuring that repetition
* operators terminate their backwards arrows on an
* existing start state, and allocate a new start
* state in front of it.
*/
static void nfa_state_merge(nfa_state_t *acc, nfa_state_t *st)
{
assert (acc->a.kind == nfa_accept);
*acc = *st;
}
static nfa_t nfa_make(nfa_state_t *s, nfa_state_t *acc)
{
nfa_t ret;
ret.start = s;
ret.accept = acc;
return ret;
}
/*
* Combine two NFA's representing regexps that are catenated.
* The acceptance state of the predecessor is merged with the start state of
* the successor.
*/
static nfa_t nfa_combine(nfa_t pred, nfa_t succ)
{
nfa_t ret;
ret.start = pred.start;
ret.accept = succ.accept;
nfa_state_merge(pred.accept, succ.start);
nfa_state_shallow_free(succ.start); /* No longer needed. */
return ret;
}
static nfa_t nfa_compile_set(val args, val comp)
{
char_set_t *set = char_set_compile(args, comp);
nfa_state_t *acc = nfa_state_accept();
nfa_state_t *s = nfa_state_set(acc, set);
return nfa_make(s, acc);
}
static nfa_t nfa_compile_regex(val regex);
/*
* Helper to nfa_compile_regex for compiling the argument list of
* a compound regex.
*/
static nfa_t nfa_compile_list(val exp_list)
{
nfa_t nfa_first = nfa_compile_regex(first(exp_list));
if (rest(exp_list)) {
nfa_t nfa_rest = nfa_compile_list(rest(exp_list));
return nfa_combine(nfa_first, nfa_rest);
} else {
return nfa_first;
}
}
/*
* Input is the items from a regex form,
* not including the regex symbol.
* I.e. (rest '(regex ...)) not '(regex ...).
*/
static nfa_t nfa_compile_regex(val exp)
{
if (nullp(exp)) {
nfa_state_t *acc = nfa_state_accept();
nfa_state_t *s = nfa_state_empty(acc, 0);
return nfa_make(s, acc);
} else if (typeof(exp) == chr_s) {
nfa_state_t *acc = nfa_state_accept();
nfa_state_t *s = nfa_state_single(acc, c_chr(exp));
return nfa_make(s, acc);
} else if (exp == wild_s) {
nfa_state_t *acc = nfa_state_accept();
nfa_state_t *s = nfa_state_wild(acc);
return nfa_make(s, acc);
} else {
val sym = first(exp), args = rest(exp);
if (sym == set_s) {
return nfa_compile_set(args, nil);
} else if (sym == cset_s) {
return nfa_compile_set(args, t);
} else if (sym == compound_s) {
return nfa_compile_list(args);
} else if (sym == zeroplus_s) {
nfa_t nfa_arg = nfa_compile_regex(first(args));
nfa_state_t *acc = nfa_state_accept();
/* New start state has empty transitions going through
the inner NFA, or skipping it right to the new acceptance state. */
nfa_state_t *s = nfa_state_empty(nfa_arg.start, acc);
/* Convert acceptance state of inner NFA to one which has
an empty transition back to the start state, and
an empty transition to the new acceptance state. */
nfa_state_empty_convert(nfa_arg.accept, nfa_arg.start, acc);
return nfa_make(s, acc);
} else if (sym == oneplus_s) {
/* One-plus case differs from zero-plus in that the new start state
does not have an empty transition to the acceptance state.
So the inner NFA must be traversed once. */
nfa_t nfa_arg = nfa_compile_regex(first(args));
nfa_state_t *acc = nfa_state_accept();
nfa_state_t *s = nfa_state_empty(nfa_arg.start, 0); /* <-- diff */
nfa_state_empty_convert(nfa_arg.accept, nfa_arg.start, acc);
return nfa_make(s, acc);
} else if (sym == optional_s) {
/* In this case, we can keep the acceptance state of the inner
NFA as the acceptance state of the new NFA. We simply add
a new start state which can short-circuit to it via an empty
transition. */
nfa_t nfa_arg = nfa_compile_regex(first(args));
nfa_state_t *s = nfa_state_empty(nfa_arg.start, nfa_arg.accept);
return nfa_make(s, nfa_arg.accept);
} else if (sym == or_s) {
/* Simple: make a new start and acceptance state, which form
the ends of a spindle that goes through two branches. */
nfa_t nfa_first = nfa_compile_regex(first(args));
nfa_t nfa_second = nfa_compile_regex(second(args));
nfa_state_t *acc = nfa_state_accept();
/* New state s has empty transitions into each inner NFA. */
nfa_state_t *s = nfa_state_empty(nfa_first.start, nfa_second.start);
/* Acceptance state of each inner NFA converted to empty
transition to new combined acceptance state. */
nfa_state_empty_convert(nfa_first.accept, acc, 0);
nfa_state_empty_convert(nfa_second.accept, acc, 0);
return nfa_make(s, acc);
} else {
internal_error("bad operator in regex");
}
}
}
static int nfa_all_states(nfa_state_t **inout, int num, unsigned visited)
{
int i;
for (i = 0; i < num; i++)
inout[i]->a.visited = visited;
for (i = 0; i < num; i++) {
nfa_state_t *s = inout[i];
if (num >= NFA_SET_SIZE)
internal_error("NFA set size exceeded");
switch (s->a.kind) {
case nfa_accept:
break;
case nfa_empty:
{
nfa_state_t *e0 = s->e.trans0;
nfa_state_t *e1 = s->e.trans1;
if (e0 && e0->a.visited != visited) {
e0->a.visited = visited;
inout[num++] = e0;
}
if (e1 && e1->a.visited != visited) {
e1->a.visited = visited;
inout[num++] = e1;
}
}
break;
case nfa_wild:
case nfa_single:
case nfa_set:
if (s->o.trans->a.visited != visited) {
s->o.trans->a.visited = visited;
inout[num++] = s->o.trans;
}
break;
}
}
if (num > NFA_SET_SIZE)
internal_error("NFA set size exceeded");
return num;
}
static void nfa_free(nfa_t nfa)
{
nfa_state_t **all = (nfa_state_t **) chk_malloc(NFA_SET_SIZE * sizeof *all);
int nstates, i;
all[0] = nfa.start;
all[1] = nfa.accept;
nstates = nfa_all_states(all, 2, nfa.start->a.visited);
for (i = 0; i < nstates; i++)
nfa_state_free(all[i]);
free(all);
}
/*
* Compute the epsilon-closure of the NFA states stored in the set in, whose
* size is given by nin. The results are stored in the set out, the size of
* which is returned. The stack parameter provides storage used by the
* algorithm, so it doesn't have to be allocated and freed repeatedly.
* The visited parameter is a stamp used for marking states which are added
* to the epsilon-closure set, so that sets are not added twice.
* If any of the states added to the closure are acceptance states,
* the accept parameter is used to store the flag 1.
*
* An epsilon-closure is the set of all input states, plus all additional
* states which are reachable from that set with empty (epsilon) transitions.
* (Transitions that don't do not consume and match an input character).
*/
static int nfa_closure(nfa_state_t **stack, nfa_state_t **in, int nin,
nfa_state_t **out, unsigned visited, int *accept)
{
int i, nout = 0;
int stackp = 0;
/* First, add all states in the input state to the closure,
push them on the stack, and mark them as visited. */
for (i = 0; i < nin; i++) {
if (stackp >= NFA_SET_SIZE)
internal_error("NFA set size exceeded");
in[i]->a.visited = visited;
stack[stackp++] = in[i];
out[nout++] = in[i];
if (in[i]->a.kind == nfa_accept)
*accept = 1;
}
while (stackp) {
nfa_state_t *top = stack[--stackp];
if (nout >= NFA_SET_SIZE)
internal_error("NFA set size exceeded");
/* Only states of type nfa_empty are interesting.
Each such state at most two epsilon transitions. */
if (top->a.kind == nfa_empty) {
nfa_state_t *e0 = top->e.trans0;
nfa_state_t *e1 = top->e.trans1;
if (e0 && e0->a.visited != visited) {
e0->a.visited = visited;
stack[stackp++] = e0;
out[nout++] = e0;
if (e0->a.kind == nfa_accept)
*accept = 1;
}
if (e1 && e1->a.visited != visited) {
e1->a.visited = visited;
stack[stackp++] = e1;
out[nout++] = e1;
if (e1->a.kind == nfa_accept)
*accept = 1;
}
}
}
if (nout > NFA_SET_SIZE)
internal_error("NFA set size exceeded");
return nout;
}
/*
* Compute the move set from a given set of NFA states. The move
* set is the set of states which are reachable from the set of
* input states on the consumpion of the input character given by ch.
*/
static int nfa_move(nfa_state_t **in, int nin, nfa_state_t **out, wchar_t ch)
{
int i, nmove;
for (nmove = 0, i = 0; i < nin; i++) {
nfa_state_t *s = in[i];
switch (s->a.kind) {
case nfa_wild:
/* Unconditional match; don't have to look at ch. */
break;
case nfa_single:
if (s->o.ch == ch) /* Character match. */
break;
continue; /* no match */
case nfa_set:
if (char_set_contains(s->s.set, ch)) /* Set match. */
break;
continue; /* no match */
default:
/* Epsilon-transition and acceptance states have no character moves. */
continue;
}
/* The state matches the character, so add it to the move set.
C trick: all character-transitioning state types have the
pointer to the next state in the same position,
among a common set of leading struct members in the union. */
if (nmove >= NFA_SET_SIZE)
internal_error("NFA set size exceeded");
out[nmove++] = s->o.trans;
}
return nmove;
}
/*
* Match regex against the string in. The match is
* anchored to the front of the string; to search
* within the string, a .* must be added to the front
* of the regex.
*
* Returns the length of the prefix of the string
* which matches the regex. Or, if you will,
* the position of the first mismatching
* character.
*
* If the regex does not match at all, zero is
* returned.
*
* Matching stops when a state is reached from which
* there are no transitions on the next input character,
* or when the string runs out of characters.
* The most recently visited acceptance state then
* determines the match length (defaulting to zero
* if no acceptance states were encountered).
*/
static cnum nfa_run(nfa_t nfa, const wchar_t *str)
{
const wchar_t *last_accept_pos = 0, *ptr = str;
unsigned visited = nfa.start->a.visited + 1;
nfa_state_t **move = (nfa_state_t **) chk_malloc(NFA_SET_SIZE * sizeof *move);
nfa_state_t **clos = (nfa_state_t **) chk_malloc(NFA_SET_SIZE * sizeof *clos);
nfa_state_t **stack = (nfa_state_t **) chk_malloc(NFA_SET_SIZE * sizeof *stack);
int nmove = 1, nclos;
int accept = 0;
move[0] = nfa.start;
nclos = nfa_closure(stack, move, nmove, clos, visited++, &accept);
if (accept)
last_accept_pos = ptr;
for (; *ptr != 0; ptr++) {
wchar_t ch = *ptr;
accept = 0;
nmove = nfa_move(clos, nclos, move, ch);
nclos = nfa_closure(stack, move, nmove, clos, visited++, &accept);
if (accept)
last_accept_pos = ptr + 1;
if (nclos == 0) /* dead end; no match */
break;
}
nfa.start->a.visited = visited;
free(stack);
free(clos);
free(move);
return last_accept_pos ? last_accept_pos - str : -1;
}
static cnum regex_machine_match_span(regex_machine_t *regm)
{
return regm->n.last_accept_pos;
}
static void regex_destroy(val regex)
{
nfa_t *pnfa = (nfa_t *) regex->co.handle;
nfa_free(*pnfa);
free(pnfa);
regex->co.handle = 0;
}
static struct cobj_ops regex_obj_ops = {
cobj_equal_op,
cobj_print_op,
regex_destroy,
cobj_mark_op,
cobj_hash_op
};
static val reg_nullable(val);
/*
* ``Compile'' raw regular expression to a form that is easier to simulate by
* the derivative method. Here we currently replace character set regexps with
* character set objects, and also transform the nongreedy syntax into the more
* complex expression it represents.
*/
static val dv_compile_regex(val exp)
{
if (atom(exp)) {
return exp;
} else {
val sym = first(exp);
val args = rest(exp);
if (sym == set_s || sym == cset_s) {
char_set_t *set = char_set_compile(args, eq(sym, cset_s));
return cobj((mem_t *) set, chset_s, &char_set_obj_ops);
} else if (sym == compound_s) {
list_collect_decl (out, iter);
list_collect (iter, compound_s);
for (; args; args = cdr(args))
list_collect (iter, dv_compile_regex(first(args)));
return out;
} else if (sym == zeroplus_s || sym == oneplus_s ||
sym == optional_s || sym == compl_s) {
return cons(sym, cons(dv_compile_regex(first(args)), nil));
} else if (sym == or_s || sym == and_s) {
val xfirst = dv_compile_regex(first(args));
val xsecond = dv_compile_regex(second(args));
return cons(sym, cons(xfirst, cons(xsecond, nil)));
} else if (sym == nongreedy_s) {
val xfirst = dv_compile_regex(first(args));
val xsecond = dv_compile_regex(second(args));
val zplus = cons(zeroplus_s, cons(xfirst, nil));
if (xsecond == nil) {
return zplus;
} else {
val any = list(zeroplus_s, wild_s, nao);
val notempty = list(oneplus_s, wild_s, nao);
return list(compound_s,
list(and_s,
zplus,
list(compl_s,
list(compound_s,
any,
if3(reg_nullable(xsecond),
list(and_s, xsecond, notempty, nao),
xsecond),
any, nao),
nao),
nao),
xsecond, nao);
}
} else {
internal_error("bad operator in regex");
}
}
}
/*
* Helper to reg_nullable for recursing over
* contents of a compound expression.
*/
static val reg_nullable_list(val exp_list)
{
if (rest(exp_list)) {
return if2(reg_nullable(first(exp_list)) &&
reg_nullable_list(rest(exp_list)),
t);
} else {
return reg_nullable(first(exp_list));
}
}
/*
* Determine whether the given regular expression is nullable: that is
* to say, can the regular expression match the empty string?
*/
static val reg_nullable(val exp)
{
if (exp == nil) {
return t;
} else if (atom(exp)) {
return nil;
} else {
val sym = first(exp), args = rest(exp);
if (sym == set_s || sym == cset_s) {
return nil;
} else if (sym == compound_s) {
return reg_nullable_list(args);
} else if (sym == oneplus_s || sym == compiled_regex_s) {
return reg_nullable(first(args));
} else if (sym == zeroplus_s || sym == optional_s) {
return t;
} else if (sym == compl_s) {
return if3(reg_nullable(first(args)), nil, t);
} else if (sym == or_s) {
return if2((reg_nullable(first(args)) || reg_nullable(second(args))), t);
} else if (sym == and_s) {
return if2((reg_nullable(first(args)) && reg_nullable(second(args))), t);
} else {
internal_error("bad operator in regex");
}
}
}
static val flatten_or(val or_expr)
{
if (atom(or_expr) || car(or_expr) != or_s) {
return cons(or_expr, nil);
} else {
val left = second(or_expr);
val right = third(or_expr);
return nappend2(flatten_or(left), flatten_or(right));
}
}
static val unflatten_or(val exlist)
{
val f = first(exlist);
val r = rest(exlist);
if (r) {
return cons(or_s, cons(f, cons(unflatten_or(r), nil)));
} else {
return f;
}
}
static val unique_first(val exlist)
{
val f = first(exlist);
val r = rest(exlist);
if (!memqual(f, r))
return cons(first(exlist), nil);
return nil;
}
static val reduce_or(val or_expr)
{
val left = second(or_expr);
val right = third(or_expr);
/*
* Do optimization only if this is an or of two or expressions.
*/
if (consp(left) && first(left) == or_s &&
consp(right) && first(right) == or_s)
{
val exlist = flatten_or(or_expr);
val repeats_removed = mapcon(func_n1(unique_first), exlist);
return unflatten_or(repeats_removed);
} else {
return or_expr;
}
}
static val reg_derivative(val, val);
static val reg_derivative_list(val exp_list, val ch)
{
if (rest(exp_list)) {
if (reg_nullable(first(exp_list))) {
val d_first = reg_derivative(first(exp_list), ch);
val d_rest = reg_derivative_list(rest(exp_list), ch);
if (d_rest == t && d_first == t)
return t;
if (d_rest == t)
return if3(d_first == nil,
cons(compound_s, rest(exp_list)),
cons(compound_s, cons(d_first, rest(exp_list))));
if (d_first == t)
return d_rest;
return list(or_s,
if3(d_first == nil,
cons(compound_s, rest(exp_list)),
cons(compound_s, cons(d_first, rest(exp_list)))),
d_rest,
nao);
} else {
val d_first = reg_derivative(first(exp_list), ch);
if (d_first == t)
return t;
else if (d_first == nil)
return cons(compound_s, rest(exp_list));
else
return cons(compound_s,
cons(d_first, rest(exp_list)));
}
} else {
return reg_derivative(first(exp_list), ch);
}
}
/*
* Determine derivative of regex with respect to character.
*/
static val reg_derivative(val exp, val ch)
{
if (exp == nil || exp == t) {
return t;
} else if (chrp(exp)) {
return if3(eq(exp, ch), nil, t);
} else if (typeof(exp) == chset_s) {
char_set_t *set = (char_set_t *) exp->co.handle;
return if3(char_set_contains(set, c_chr(ch)), nil, t);
} else if (exp == wild_s) {
return nil;
} else {
val sym = first(exp);
val args = rest(exp);
if (sym == set_s || sym == cset_s) {
internal_error("uncompiled regex passed to reg_derivative");
} else if (sym == compiled_regex_s) {
return reg_derivative(first(args), ch);
} else if (sym == compound_s) {
return reg_derivative_list(args, ch);
} else if (sym == optional_s) {
return reg_derivative(first(args), ch);
} else if (sym == oneplus_s) {
val arg = first(args);
val d_arg = reg_derivative(arg, ch);
if (d_arg == t)
return t;
if (d_arg == nil)
return cons(zeroplus_s, cons(arg, nil));
return cons(compound_s, cons(d_arg,
cons(cons(zeroplus_s,
cons(arg, nil)), nil)));
} else if (sym == zeroplus_s) {
val arg = first(args);
val d_arg = reg_derivative(arg, ch);
if (d_arg == t)
return t;
if (d_arg == nil)
return exp;
return cons(compound_s, cons(d_arg, cons(exp, nil)));
} else if (sym == compl_s) {
return cons(sym, cons(reg_derivative(first(args), ch), nil));
} else if (sym == or_s) {
val d_arg1 = reg_derivative(first(args), ch);
val d_arg2 = reg_derivative(second(args), ch);
if (d_arg1 == t)
return d_arg2;
if (d_arg2 == t)
return d_arg1;
return reduce_or(cons(or_s, cons(d_arg1, cons(d_arg2, nil))));
} else if (sym == and_s) {
val d_arg1 = reg_derivative(first(args), ch);
val d_arg2 = nil;
if (d_arg1 == t)
return t;
d_arg2 = reg_derivative(second(args), ch);
if (d_arg2 == t)
return t;
return cons(and_s, cons(d_arg1, cons(d_arg2, nil)));
} else {
internal_error("bad operator in regex");
}
}
}
static cnum dv_run(val regex, const wchar_t *str)
{
const wchar_t *last_accept_pos = 0, *ptr = str;
for (; *ptr != 0; ptr++) {
wchar_t ch = *ptr;
val nullable = reg_nullable(regex);
val deriv = reg_derivative(regex, chr(ch));
if (nullable)
last_accept_pos = ptr;
if (deriv == t)
return last_accept_pos ? last_accept_pos - str : -1;
}
if (reg_nullable(regex))
return ptr - str;
return last_accept_pos ? last_accept_pos - str : -1;
}
static val regex_requires_dv(val exp)
{
if (atom(exp)) {
return nil;
} else {
val sym = first(exp);
val args = rest(exp);
if (sym == set_s || sym == cset_s) {
return nil;
} else if (sym == compound_s) {
return some_satisfy(args, func_n1(regex_requires_dv), nil);
} else if (sym == zeroplus_s || sym == oneplus_s ||
sym == optional_s) {
return regex_requires_dv(first(args));
} else if (sym == compl_s) {
return t;
} else if (sym == or_s) {
return if2(regex_requires_dv(first(args)) ||
regex_requires_dv(second(args)), t);
} else if (sym == and_s || sym == nongreedy_s) {
return t;
} else {
internal_error("bad operator in regex");
}
}
}
val regex_compile(val regex_sexp)
{
if (opt_derivative_regex || regex_requires_dv(regex_sexp)) {
return cons(compiled_regex_s, cons(dv_compile_regex(regex_sexp), nil));
} else {
nfa_t *pnfa = (nfa_t *) chk_malloc(sizeof *pnfa);
*pnfa = nfa_compile_regex(regex_sexp);
return cobj((mem_t *) pnfa, regex_s, ®ex_obj_ops);
}
}
val regexp(val obj)
{
if (consp(obj))
return if2(eq(car(obj), compiled_regex_s), t);
return (is_ptr(obj) && obj->co.type == COBJ && obj->co.cls == regex_s)
? t : nil;
}
static nfa_t *regex_nfa(val reg)
{
assert (reg->co.type == COBJ && reg->co.cls == regex_s);
return (nfa_t *) reg->co.handle;
}
static cnum regex_run(val compiled_regex, const wchar_t *str)
{
if (consp(compiled_regex))
return dv_run(compiled_regex, str);
return nfa_run(*regex_nfa(compiled_regex), str);
}
/*
* Regex machine: represents the logic of the regex_run function as state
* machine object which can be fed one character at a time.
*/
static void regex_machine_reset(regex_machine_t *regm)
{
int accept = 0;
regm->n.last_accept_pos = -1;
regm->n.count = 0;
if (regm->n.is_nfa) {
regm->n.visited = regm->n.nfa.start->a.visited + 1;
regm->n.nmove = 1;
regm->n.move[0] = regm->n.nfa.start;
regm->n.nclos = nfa_closure(regm->n.stack, regm->n.move, regm->n.nmove,
regm->n.clos, regm->n.visited++, &accept);
} else {
regm->d.deriv = regm->d.regex;
accept = (reg_nullable(regm->d.regex) != nil);
}
if (accept)
regm->n.last_accept_pos = regm->n.count;
}
static void regex_machine_init(regex_machine_t *regm, val regex)
{
if (consp(regex)) {
regm->n.is_nfa = 0;
regm->d.regex = regex;
} else {
regm->n.is_nfa = 1;
regm->n.nfa = *regex_nfa(regex);
regm->n.move = (nfa_state_t **)
chk_malloc(NFA_SET_SIZE * sizeof *regm->n.move);
regm->n.clos = (nfa_state_t **)
chk_malloc(NFA_SET_SIZE * sizeof *regm->n.clos);
regm->n.stack = (nfa_state_t **)
chk_malloc(NFA_SET_SIZE * sizeof *regm->n.stack);
}
regex_machine_reset(regm);
}
static void regex_machine_cleanup(regex_machine_t *regm)
{
if (regm->n.is_nfa) {
free(regm->n.stack);
free(regm->n.clos);
free(regm->n.move);
regm->n.stack = 0;
regm->n.clos = 0;
regm->n.move = 0;
regm->n.nfa.start = 0;
regm->n.nfa.accept = 0;
}
}
static regm_result_t regex_machine_feed(regex_machine_t *regm, wchar_t ch)
{
int accept = 0;
if (regm->n.is_nfa) {
if (ch != 0) {
regm->n.count++;
regm->n.nmove = nfa_move(regm->n.clos, regm->n.nclos, regm->n.move, ch);
regm->n.nclos = nfa_closure(regm->n.stack, regm->n.move,
regm->n.nmove, regm->n.clos,
regm->n.visited++, &accept);
if (accept)
regm->n.last_accept_pos = regm->n.count;
}
regm->n.nfa.start->a.visited = regm->n.visited;
if (ch && regm->n.nclos != 0) {
if (accept)
return REGM_MATCH;
return REGM_INCOMPLETE;
}
} else {
val accept = nil;
if (ch != 0) {
regm->d.count++;
regm->d.deriv = reg_derivative(regm->d.deriv, chr(ch));
if ((accept = reg_nullable(regm->d.deriv)))
regm->d.last_accept_pos = regm->d.count;
}
if (ch && regm->d.deriv != t) {
if (accept)
return REGM_MATCH;
return REGM_INCOMPLETE;
}
}
/* Reached if the null character is
consumed, or NFA/derivation hit a transition dead end. */
if (regm->n.last_accept_pos == regm->n.count)
return REGM_MATCH;
if (regm->n.last_accept_pos == -1)
return REGM_FAIL;
return REGM_INCOMPLETE;
}
val search_regex(val haystack, val needle_regex, val start,
val from_end)
{
if (length_str_lt(haystack, start)) {
return nil;
} else {
if (from_end) {
cnum i;
cnum s = c_num(start);
const wchar_t *h = c_str(haystack);
for (i = c_num(length_str(haystack)) - 1; i >= s; i--) {
cnum span = regex_run(needle_regex, h + i);
if (span >= 0)
return cons(num(i), num(span));
}
} else {
regex_machine_t regm;
val i, pos = start, retval;
regm_result_t last_res = REGM_INCOMPLETE;
regex_machine_init(®m, needle_regex);
again:
for (i = pos; length_str_gt(haystack, i); i = plus(i, one)) {
last_res = regex_machine_feed(®m, c_chr(chr_str(haystack, i)));
if (last_res == REGM_FAIL) {
regex_machine_reset(®m);
pos = plus(pos, one);
goto again;
}
}
last_res = regex_machine_feed(®m, 0);
switch (last_res) {
case REGM_INCOMPLETE:
case REGM_MATCH:
retval = cons(pos, num(regex_machine_match_span(®m)));
regex_machine_cleanup(®m);
return retval;
case REGM_FAIL:
regex_machine_cleanup(®m);
return nil;
}
}
return nil;
}
}
val match_regex(val str, val reg, val pos)
{
regex_machine_t regm;
val i, retval;
regm_result_t last_res = REGM_INCOMPLETE;
regex_machine_init(®m, reg);
for (i = pos; length_str_gt(str, i); i = plus(i, one)) {
last_res = regex_machine_feed(®m, c_chr(chr_str(str, i)));
if (last_res == REGM_FAIL)
break;
}
last_res = regex_machine_feed(®m, 0);
switch (last_res) {
case REGM_INCOMPLETE:
case REGM_MATCH:
retval = plus(pos, num(regex_machine_match_span(®m)));
regex_machine_cleanup(®m);
return retval;
case REGM_FAIL:
regex_machine_cleanup(®m);
return nil;
}
return nil;
}
|