diff options
Diffstat (limited to 'newlib/libm/machine/spu/headers/divd2.h')
-rw-r--r-- | newlib/libm/machine/spu/headers/divd2.h | 232 |
1 files changed, 0 insertions, 232 deletions
diff --git a/newlib/libm/machine/spu/headers/divd2.h b/newlib/libm/machine/spu/headers/divd2.h deleted file mode 100644 index 7bcf366eb..000000000 --- a/newlib/libm/machine/spu/headers/divd2.h +++ /dev/null @@ -1,232 +0,0 @@ -/* -------------------------------------------------------------- */ -/* (C)Copyright 2001,2008, */ -/* International Business Machines Corporation, */ -/* Sony Computer Entertainment, Incorporated, */ -/* Toshiba Corporation, */ -/* */ -/* All Rights Reserved. */ -/* */ -/* Redistribution and use in source and binary forms, with or */ -/* without modification, are permitted provided that the */ -/* following conditions are met: */ -/* */ -/* - Redistributions of source code must retain the above copyright*/ -/* notice, this list of conditions and the following disclaimer. */ -/* */ -/* - Redistributions in binary form must reproduce the above */ -/* copyright notice, this list of conditions and the following */ -/* disclaimer in the documentation and/or other materials */ -/* provided with the distribution. */ -/* */ -/* - Neither the name of IBM Corporation nor the names of its */ -/* contributors may be used to endorse or promote products */ -/* derived from this software without specific prior written */ -/* permission. */ -/* */ -/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND */ -/* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, */ -/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ -/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ -/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR */ -/* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, */ -/* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT */ -/* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; */ -/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */ -/* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN */ -/* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR */ -/* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, */ -/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ -/* -------------------------------------------------------------- */ -/* PROLOG END TAG zYx */ -#ifdef __SPU__ - -#ifndef _DIVD2_H_ -#define _DIVD2_H_ 1 - -#include <spu_intrinsics.h> - -/* - * FUNCTION - * vector double _divd2(vector double a, vector double b) - * - * DESCRIPTION - * _divd2 divides the vector dividend a by the vector divisor b and - * returns the resulting vector quotient. Maximum error 0.5 ULPS for - * normalized results, 1ulp for denorm results, over entire double - * range including denorms, compared to true result in round-to-nearest - * rounding mode. Handles Inf or NaN operands and results correctly. - */ -static __inline vector double _divd2(vector double a, vector double b) -{ - - - /* Variables - */ - vec_float4 inv_bf, mant_bf; - vec_double2 mant_a, mant_b, inv_b, q0, q1, q2, mult; - vec_int4 exp, tmp; - vec_uint4 exp_a, exp_b, exp_q1, overflow, nounderflow, normal, utmp, - sign_a, sign_b, a_frac, b_frac, a_frac_0, b_frac_0, a_exp_0, b_exp_0, - a_exp_ones, b_exp_ones, a_nan, b_nan, a_inf, b_inf, a_zero, b_zero, - res_nan, sign_res; - - /* Constants - */ - vec_float4 onef = spu_splats(1.0f); - vec_double2 one = spu_splats(1.0); - vec_uint4 exp_mask = (vec_uint4) { 0x7FF00000, 0, 0x7FF00000, 0 }; - vec_uint4 sign_mask = (vec_uint4) { 0x80000000, 0, 0x80000000, 0}; - vec_uint4 sign_exp_mask = (vec_uint4) { 0xFFF00000, 0, 0xFFF00000,0}; - vec_uint4 frac_mask =(vec_uint4) { 0x000FFFFF, 0xFFFFFFFF, 0x000FFFFF, 0xFFFFFFFF }; - vec_uchar16 swap32 = (vec_uchar16) ((vec_uint4) { 0x04050607, 0x00010203, 0x0C0D0E0F, 0x08090A0B} ); - vec_uint4 zero = (vec_uint4) { 0, 0, 0, 0 }; - vec_int4 e1022 = (vec_int4) { 0x000003FE, 0, 0x000003FE, 0 }; - vec_int4 emax = (vec_int4) { 0x000007FE, 0, 0x000007FE, 0 }; - vec_int4 e1 = (vec_int4) { 0x00000001, 0, 0x00000001, 0 }; - - vec_uint4 nan = (vec_uint4) { 0x7FF80000, 0, 0x7FF80000, 0}; - - /* Extract exponents and underflow denorm arguments to signed zero. - */ - exp_a = spu_and((vec_uint4)a, exp_mask); - exp_b = spu_and((vec_uint4)b, exp_mask); - - sign_a = spu_and((vec_uint4)a, sign_mask); - sign_b = spu_and((vec_uint4)b, sign_mask); - - a_exp_0 = spu_cmpeq (exp_a, 0); - utmp = spu_shuffle (a_exp_0, a_exp_0, swap32); - a_exp_0 = spu_and (a_exp_0, utmp); - b_exp_0 = spu_cmpeq (exp_b, 0); - utmp = spu_shuffle (b_exp_0, b_exp_0, swap32); - b_exp_0 = spu_and (b_exp_0, utmp); - - a = spu_sel(a, (vec_double2)sign_a, (vec_ullong2)a_exp_0); - b = spu_sel(b, (vec_double2)sign_b, (vec_ullong2)b_exp_0); - - /* Force the divisor and dividend into the range [1.0,2.0). - (Unless they're zero.) - */ - mant_a = spu_sel(a, one, (vec_ullong2)sign_exp_mask); - mant_b = spu_sel(b, one, (vec_ullong2)sign_exp_mask); - - /* Approximate the single reciprocal of b by using - * the single precision reciprocal estimate followed by one - * single precision iteration of Newton-Raphson. - */ - mant_bf = spu_roundtf(mant_b); - inv_bf = spu_re(mant_bf); - inv_bf = spu_madd(spu_nmsub(mant_bf, inv_bf, onef), inv_bf, inv_bf); - - /* Perform 2 more Newton-Raphson iterations in double precision. - */ - inv_b = spu_extend(inv_bf); - inv_b = spu_madd(spu_nmsub(mant_b, inv_b, one), inv_b, inv_b); - q0 = spu_mul(mant_a, inv_b); - q1 = spu_madd(spu_nmsub(mant_b, q0, mant_a), inv_b, q0); - - /* Compute the quotient's expected exponent. If the exponent - * is out of range, then force the resulting exponent to 0. - * (1023 with the bias). We correct for the out of range - * values by computing a multiplier (mult) that will force the - * result to the correct out of range value and set the - * correct exception flag (UNF, OVF, or neither). - */ - exp_q1 = spu_and((vec_uint4)q1, exp_mask); - exp = spu_sub((vec_int4)exp_a, (vec_int4)exp_b); - exp = spu_rlmaska(exp, -20); // shift right to allow enough bits for working - tmp = spu_rlmaska((vec_int4)exp_q1, -20); - exp = spu_add(exp, tmp); // biased exponent of result (right justified) - - /* The default multiplier is 1.0. If an underflow is detected (the computed - * exponent is less than or equal to a biased 0), force the multiplier to 0.0. - * If exp<=0 set mult = 2**(unbiased exp + 1022) and unbiased exp = -1022 - * = biased 1, the smallest normalized exponent. If exp<-51 set - * mult = 2**(-1074) to ensure underflowing result. Otherwise mult=1. - */ - normal = spu_cmpgt(exp, 0); - nounderflow = spu_cmpgt(exp, -52); - tmp = spu_add(exp, e1022); - mult = (vec_double2)spu_sl(tmp, 20); - mult = spu_sel(mult, one, (vec_ullong2)normal); - mult = spu_sel((vec_double2)e1, mult, (vec_ullong2)nounderflow); - exp = spu_sel(e1, exp, normal); // unbiased -1022 is biased 1 - - /* Force the multiplier to positive infinity (exp_mask) and the biased - * exponent to 1022, if the computed biased exponent is > emax. - */ - overflow = spu_cmpgt(exp, (vec_int4)emax); - exp = spu_sel(exp, (vec_int4)e1022, overflow); - mult = spu_sel(mult, (vec_double2)exp_mask, (vec_ullong2)overflow); - - /* Determine if a, b are Inf, NaN, or zero. - * Since these are rare, it would improve speed if these could be detected - * quickly and a branch used to avoid slowing down the main path. However - * most of the work seems to be in the detection. - */ - a_exp_ones = spu_cmpeq (exp_a, exp_mask); - utmp = spu_shuffle (a_exp_ones, a_exp_ones, swap32); - a_exp_ones = spu_and (a_exp_ones, utmp); - - a_frac = spu_and ((vec_uint4)a, frac_mask); - a_frac_0 = spu_cmpeq (a_frac, 0); - utmp = spu_shuffle (a_frac_0, a_frac_0, swap32); - a_frac_0 = spu_and (a_frac_0, utmp); - - a_zero = spu_and (a_exp_0, a_frac_0); - a_inf = spu_and (a_exp_ones, a_frac_0); - a_nan = spu_andc (a_exp_ones, a_frac_0); - - b_exp_ones = spu_cmpeq (exp_b, exp_mask); - utmp = spu_shuffle (b_exp_ones, b_exp_ones, swap32); - b_exp_ones = spu_and (b_exp_ones, utmp); - - b_frac = spu_and ((vec_uint4)b, frac_mask); - b_frac_0 = spu_cmpeq (b_frac, 0); - utmp = spu_shuffle (b_frac_0, b_frac_0, swap32); - b_frac_0 = spu_and (b_frac_0, utmp); - - b_zero = spu_and (b_exp_0, b_frac_0); - b_inf = spu_and (b_exp_ones, b_frac_0); - b_nan = spu_andc (b_exp_ones, b_frac_0); - - /* Handle exception cases */ - - /* Result is 0 for 0/x, x!=0, or x/Inf, x!=Inf. - * Set mult=0 for 0/0 or Inf/Inf now, since it will be replaced - * with NaN later. - */ - utmp = spu_or (a_zero, b_inf); - mult = spu_sel(mult, (vec_double2)zero, (vec_ullong2)utmp); - - /* Result is Inf for x/0, x!=0. Set mult=Inf for 0/0 now, since it - * will be replaced with NaN later. - */ - mult = spu_sel(mult, (vec_double2)exp_mask, (vec_ullong2)b_zero); - - /* Result is NaN if either operand is, or Inf/Inf, or 0/0. - */ - res_nan = spu_or (a_nan, b_nan); - utmp = spu_and (a_inf, b_inf); - res_nan = spu_or (res_nan, utmp); - utmp = spu_and (a_zero, b_zero); - res_nan = spu_or (res_nan, utmp); - mult = spu_sel(mult, (vec_double2)nan, (vec_ullong2)res_nan); - - /* Insert sign of result into mult. - */ - sign_res = spu_xor (sign_a, sign_b); - mult = spu_or (mult, (vec_double2)sign_res); - - /* Insert the sign and exponent into the result and perform the - * final multiplication. - */ - exp = spu_sl(exp, 20); - q2 = spu_sel(q1, (vec_double2)exp, (vec_ullong2)exp_mask); - q2 = spu_mul(q2, mult); - - return (q2); -} - -#endif /* _DIVD2_H_ */ -#endif /* __SPU__ */ |