1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
28538
28539
28540
28541
28542
28543
28544
28545
28546
28547
28548
28549
28550
28551
28552
28553
28554
28555
28556
28557
28558
28559
28560
28561
28562
28563
28564
28565
28566
28567
28568
28569
28570
28571
28572
28573
28574
28575
28576
28577
28578
28579
28580
28581
28582
28583
28584
28585
28586
28587
28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
28614
28615
28616
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633
28634
28635
28636
28637
28638
28639
28640
28641
28642
28643
28644
28645
28646
28647
28648
28649
28650
28651
28652
28653
28654
28655
28656
28657
28658
28659
28660
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
28688
28689
28690
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
28744
28745
28746
28747
28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761
28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
28791
28792
28793
28794
28795
28796
28797
28798
28799
28800
28801
28802
28803
28804
28805
28806
28807
28808
28809
28810
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
28866
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
28882
28883
28884
28885
28886
28887
28888
28889
28890
28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
28923
28924
28925
28926
28927
28928
28929
28930
28931
28932
28933
28934
28935
28936
28937
28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
28953
28954
28955
28956
28957
28958
28959
28960
28961
28962
28963
28964
28965
28966
28967
28968
28969
28970
28971
28972
28973
28974
28975
28976
28977
28978
28979
28980
28981
28982
28983
28984
28985
28986
28987
28988
28989
28990
28991
28992
28993
28994
28995
28996
28997
28998
28999
29000
29001
29002
29003
29004
29005
29006
29007
29008
29009
29010
29011
29012
29013
29014
29015
29016
29017
29018
29019
29020
29021
29022
29023
29024
29025
29026
29027
29028
29029
29030
29031
29032
29033
29034
29035
29036
29037
29038
29039
29040
29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
29056
29057
29058
29059
29060
29061
29062
29063
29064
29065
29066
29067
29068
29069
29070
29071
29072
29073
29074
29075
29076
29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
29096
29097
29098
29099
29100
29101
29102
29103
29104
29105
29106
29107
29108
29109
29110
29111
29112
29113
29114
29115
29116
29117
29118
29119
29120
29121
29122
29123
29124
29125
29126
29127
29128
29129
29130
29131
29132
29133
29134
29135
29136
29137
29138
29139
29140
29141
29142
29143
29144
29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
29155
29156
29157
29158
29159
29160
29161
29162
29163
29164
29165
29166
29167
29168
29169
29170
29171
29172
29173
29174
29175
29176
29177
29178
29179
29180
29181
29182
29183
29184
29185
29186
29187
29188
29189
29190
29191
29192
29193
29194
29195
29196
29197
29198
29199
29200
29201
29202
29203
29204
29205
29206
29207
29208
29209
29210
29211
29212
29213
29214
29215
29216
29217
29218
29219
29220
29221
29222
29223
29224
29225
29226
29227
29228
29229
29230
29231
29232
29233
29234
29235
29236
29237
29238
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250
29251
29252
29253
29254
29255
29256
29257
29258
29259
29260
29261
29262
29263
29264
29265
29266
29267
29268
29269
29270
29271
29272
29273
29274
29275
29276
29277
29278
29279
29280
29281
29282
29283
29284
29285
29286
29287
29288
29289
29290
29291
29292
29293
29294
29295
29296
29297
29298
29299
29300
29301
29302
29303
29304
29305
29306
29307
29308
29309
29310
29311
29312
29313
29314
29315
29316
29317
29318
29319
29320
29321
29322
29323
29324
29325
29326
29327
29328
29329
29330
29331
29332
29333
29334
29335
29336
29337
29338
29339
29340
29341
29342
29343
29344
29345
29346
29347
29348
29349
29350
29351
29352
29353
29354
29355
29356
29357
29358
29359
29360
29361
29362
29363
29364
29365
29366
29367
29368
29369
29370
29371
29372
29373
29374
29375
29376
29377
29378
29379
29380
29381
29382
29383
29384
29385
29386
29387
29388
29389
29390
29391
29392
29393
29394
29395
29396
29397
29398
29399
29400
29401
29402
29403
29404
29405
29406
29407
29408
29409
29410
29411
29412
29413
29414
29415
29416
29417
29418
29419
29420
29421
29422
29423
29424
29425
29426
29427
29428
29429
29430
29431
29432
29433
29434
29435
29436
29437
29438
29439
29440
29441
29442
29443
29444
29445
29446
29447
29448
29449
29450
29451
29452
29453
29454
29455
29456
29457
29458
29459
29460
29461
29462
29463
29464
29465
29466
29467
29468
29469
29470
29471
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
29504
29505
29506
29507
29508
29509
29510
29511
29512
29513
29514
29515
29516
29517
29518
29519
29520
29521
29522
29523
29524
29525
29526
29527
29528
29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540
29541
29542
29543
29544
29545
29546
29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560
29561
29562
29563
29564
29565
29566
29567
29568
29569
29570
29571
29572
29573
29574
29575
29576
29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602
29603
29604
29605
29606
29607
29608
29609
29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
29641
29642
29643
29644
29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
29675
29676
29677
29678
29679
29680
29681
29682
29683
29684
29685
29686
29687
29688
29689
29690
29691
29692
29693
29694
29695
29696
29697
29698
29699
29700
29701
29702
29703
29704
29705
29706
29707
29708
29709
29710
29711
29712
29713
29714
29715
29716
29717
29718
29719
29720
29721
29722
29723
29724
29725
29726
29727
29728
29729
29730
29731
29732
29733
29734
29735
29736
29737
29738
29739
29740
29741
29742
29743
29744
29745
29746
29747
29748
29749
29750
29751
29752
29753
29754
29755
29756
29757
29758
29759
29760
29761
29762
29763
29764
29765
29766
29767
29768
29769
29770
29771
29772
29773
29774
29775
29776
29777
29778
29779
29780
29781
29782
29783
29784
29785
29786
29787
29788
29789
29790
29791
29792
29793
29794
29795
29796
29797
29798
29799
29800
29801
29802
29803
29804
29805
29806
29807
29808
29809
29810
29811
29812
29813
29814
29815
29816
29817
29818
29819
29820
29821
29822
29823
29824
29825
29826
29827
29828
29829
29830
29831
29832
29833
29834
29835
29836
29837
29838
29839
29840
29841
29842
29843
29844
29845
29846
29847
29848
29849
29850
29851
29852
29853
29854
29855
29856
29857
29858
29859
29860
29861
29862
29863
29864
29865
29866
29867
29868
29869
29870
29871
29872
29873
29874
29875
29876
29877
29878
29879
29880
29881
29882
29883
29884
29885
29886
29887
29888
29889
29890
29891
29892
29893
29894
29895
29896
29897
29898
29899
29900
29901
29902
29903
29904
29905
29906
29907
29908
29909
29910
29911
29912
29913
29914
29915
29916
29917
29918
29919
29920
29921
29922
29923
29924
29925
29926
29927
29928
29929
29930
29931
29932
29933
29934
29935
29936
29937
29938
29939
29940
29941
29942
29943
29944
29945
29946
29947
29948
29949
29950
29951
29952
29953
29954
29955
29956
29957
29958
29959
29960
29961
29962
29963
29964
29965
29966
29967
29968
29969
29970
29971
29972
29973
29974
29975
29976
29977
29978
29979
29980
29981
29982
29983
29984
29985
29986
29987
29988
29989
29990
29991
29992
29993
29994
29995
29996
29997
29998
29999
30000
30001
30002
30003
30004
30005
30006
30007
30008
30009
30010
30011
30012
30013
30014
30015
30016
30017
30018
30019
30020
30021
30022
30023
30024
30025
30026
30027
30028
30029
30030
30031
30032
30033
30034
30035
30036
30037
30038
30039
30040
30041
30042
30043
30044
30045
30046
30047
30048
30049
30050
30051
30052
30053
30054
30055
30056
30057
30058
30059
30060
30061
30062
30063
30064
30065
30066
30067
30068
30069
30070
30071
30072
30073
30074
30075
30076
30077
30078
30079
30080
30081
30082
30083
30084
30085
30086
30087
30088
30089
30090
30091
30092
30093
30094
30095
30096
30097
30098
30099
30100
30101
30102
30103
30104
30105
30106
30107
30108
30109
30110
30111
30112
30113
30114
30115
30116
30117
30118
30119
30120
30121
30122
30123
30124
30125
30126
30127
30128
30129
30130
30131
30132
30133
30134
30135
30136
30137
30138
30139
30140
30141
30142
30143
30144
30145
30146
30147
30148
30149
30150
30151
30152
30153
30154
30155
30156
30157
30158
30159
30160
30161
30162
30163
30164
30165
30166
30167
30168
30169
30170
30171
30172
30173
30174
30175
30176
30177
30178
30179
30180
30181
30182
30183
30184
30185
30186
30187
30188
30189
30190
30191
30192
30193
30194
30195
30196
30197
30198
30199
30200
30201
30202
30203
30204
30205
30206
30207
30208
30209
30210
30211
30212
30213
30214
30215
30216
30217
30218
30219
30220
30221
30222
30223
30224
30225
30226
30227
30228
30229
30230
30231
30232
30233
30234
30235
30236
30237
30238
30239
30240
30241
30242
30243
30244
30245
30246
30247
30248
30249
30250
30251
30252
30253
30254
30255
30256
30257
30258
30259
30260
30261
30262
30263
30264
30265
30266
30267
30268
30269
30270
30271
30272
30273
30274
30275
30276
30277
30278
30279
30280
30281
30282
30283
30284
30285
30286
30287
30288
30289
30290
30291
30292
30293
30294
30295
30296
30297
30298
30299
30300
30301
30302
30303
30304
30305
30306
30307
30308
30309
30310
30311
30312
30313
30314
30315
30316
30317
30318
30319
30320
30321
30322
30323
30324
30325
30326
30327
30328
30329
30330
30331
30332
30333
30334
30335
30336
30337
30338
30339
30340
30341
30342
30343
30344
30345
30346
30347
30348
30349
30350
30351
30352
30353
30354
30355
30356
30357
30358
30359
30360
30361
30362
30363
30364
30365
30366
30367
30368
30369
30370
30371
30372
30373
30374
30375
30376
30377
30378
30379
30380
30381
30382
30383
30384
30385
30386
30387
30388
30389
30390
30391
30392
30393
30394
30395
30396
30397
30398
30399
30400
30401
30402
30403
30404
30405
30406
30407
30408
30409
30410
30411
30412
30413
30414
30415
30416
30417
30418
30419
30420
30421
30422
30423
30424
30425
30426
30427
30428
30429
30430
30431
30432
30433
30434
30435
30436
30437
30438
30439
30440
30441
30442
30443
30444
30445
30446
30447
30448
30449
30450
30451
30452
30453
30454
30455
30456
30457
30458
30459
30460
30461
30462
30463
30464
30465
30466
30467
30468
30469
30470
30471
30472
30473
30474
30475
30476
30477
30478
30479
30480
30481
30482
30483
30484
30485
30486
30487
30488
30489
30490
30491
30492
30493
30494
30495
30496
30497
30498
30499
30500
30501
30502
30503
30504
30505
30506
30507
30508
30509
30510
30511
30512
30513
30514
30515
30516
30517
30518
30519
30520
30521
30522
30523
30524
30525
30526
30527
30528
30529
30530
30531
30532
30533
30534
30535
30536
30537
30538
30539
30540
30541
30542
30543
30544
30545
30546
30547
30548
30549
30550
30551
30552
30553
30554
30555
30556
30557
30558
30559
30560
30561
30562
30563
30564
30565
30566
30567
30568
30569
30570
30571
30572
30573
30574
30575
30576
30577
30578
30579
30580
30581
30582
30583
30584
30585
30586
30587
30588
30589
30590
30591
30592
30593
30594
30595
30596
30597
30598
30599
30600
30601
30602
30603
30604
30605
30606
30607
30608
30609
30610
30611
30612
30613
30614
30615
30616
30617
30618
30619
30620
30621
30622
30623
30624
30625
30626
30627
30628
30629
30630
30631
30632
30633
30634
30635
30636
30637
30638
30639
30640
30641
30642
30643
30644
30645
30646
30647
30648
30649
30650
30651
30652
30653
30654
30655
30656
30657
30658
30659
30660
30661
30662
30663
30664
30665
30666
30667
30668
30669
30670
30671
30672
30673
30674
30675
30676
30677
30678
30679
30680
30681
30682
30683
30684
30685
30686
30687
30688
30689
30690
30691
30692
30693
30694
30695
30696
30697
30698
30699
30700
30701
30702
30703
30704
30705
30706
30707
30708
30709
30710
30711
30712
30713
30714
30715
30716
30717
30718
30719
30720
30721
30722
30723
30724
30725
30726
30727
30728
30729
30730
30731
30732
30733
30734
30735
30736
30737
30738
30739
30740
30741
30742
30743
30744
30745
30746
30747
30748
30749
30750
30751
30752
30753
30754
30755
30756
30757
30758
30759
30760
30761
30762
30763
30764
30765
30766
30767
30768
30769
30770
30771
30772
30773
30774
30775
30776
30777
30778
30779
30780
30781
30782
30783
30784
30785
30786
30787
30788
30789
30790
30791
30792
30793
30794
30795
30796
30797
30798
30799
30800
30801
30802
30803
30804
30805
30806
30807
30808
30809
30810
30811
30812
30813
30814
30815
30816
30817
30818
30819
30820
30821
30822
30823
30824
30825
30826
30827
30828
30829
30830
30831
30832
30833
30834
30835
30836
30837
30838
30839
30840
30841
30842
30843
30844
30845
30846
30847
30848
30849
30850
30851
30852
30853
30854
30855
30856
30857
30858
30859
30860
30861
30862
30863
30864
30865
30866
30867
30868
30869
30870
30871
30872
30873
30874
30875
30876
30877
30878
30879
30880
30881
30882
30883
30884
30885
30886
30887
30888
30889
30890
30891
30892
30893
30894
30895
30896
30897
30898
30899
30900
30901
30902
30903
30904
30905
30906
30907
30908
30909
30910
30911
30912
30913
30914
30915
30916
30917
30918
30919
30920
30921
30922
30923
30924
30925
30926
30927
30928
30929
30930
30931
30932
30933
30934
30935
30936
30937
30938
30939
30940
30941
30942
30943
30944
30945
30946
30947
30948
30949
30950
30951
30952
30953
30954
30955
30956
30957
30958
30959
30960
30961
30962
30963
30964
30965
30966
30967
30968
30969
30970
30971
30972
30973
30974
30975
30976
30977
30978
30979
30980
30981
30982
30983
30984
30985
30986
30987
30988
30989
30990
30991
30992
30993
30994
30995
30996
30997
30998
30999
31000
31001
31002
31003
31004
31005
31006
31007
31008
31009
31010
31011
31012
31013
31014
31015
31016
31017
31018
31019
31020
31021
31022
31023
31024
31025
31026
31027
31028
31029
31030
31031
31032
31033
31034
31035
31036
31037
31038
31039
31040
31041
31042
31043
31044
31045
31046
31047
31048
31049
31050
31051
31052
31053
31054
31055
31056
31057
31058
31059
31060
31061
31062
31063
31064
31065
31066
31067
31068
31069
31070
31071
31072
31073
31074
31075
31076
31077
31078
31079
31080
31081
31082
31083
31084
31085
31086
31087
31088
31089
31090
31091
31092
31093
31094
31095
31096
31097
31098
31099
31100
31101
31102
31103
31104
31105
31106
31107
31108
31109
31110
31111
31112
31113
31114
31115
31116
31117
31118
31119
31120
31121
31122
31123
31124
31125
31126
31127
31128
31129
31130
31131
31132
31133
31134
31135
31136
31137
31138
31139
31140
31141
31142
31143
31144
31145
31146
31147
31148
31149
31150
31151
31152
31153
31154
31155
31156
31157
31158
31159
31160
31161
31162
31163
31164
31165
31166
31167
31168
31169
31170
31171
31172
31173
31174
31175
31176
31177
31178
31179
31180
31181
31182
31183
31184
31185
31186
31187
31188
31189
31190
31191
31192
31193
31194
31195
31196
31197
31198
31199
31200
31201
31202
31203
31204
31205
31206
31207
31208
31209
31210
31211
31212
31213
31214
31215
31216
31217
31218
31219
31220
31221
31222
31223
31224
31225
31226
31227
31228
31229
31230
31231
31232
31233
31234
31235
31236
31237
31238
31239
31240
31241
31242
31243
31244
31245
31246
31247
31248
31249
31250
31251
31252
31253
31254
31255
31256
31257
31258
31259
31260
31261
31262
31263
31264
31265
31266
31267
31268
31269
31270
31271
31272
31273
31274
31275
31276
31277
31278
31279
31280
31281
31282
31283
31284
31285
31286
31287
31288
31289
31290
31291
31292
31293
31294
31295
31296
31297
31298
31299
31300
31301
31302
31303
31304
31305
31306
31307
31308
31309
31310
31311
31312
31313
31314
31315
31316
31317
31318
31319
31320
31321
31322
31323
31324
31325
31326
31327
31328
31329
31330
31331
31332
31333
31334
31335
31336
31337
31338
31339
31340
31341
31342
31343
31344
31345
31346
31347
31348
31349
31350
31351
31352
31353
31354
31355
31356
31357
31358
31359
31360
31361
31362
31363
31364
31365
31366
31367
31368
31369
31370
31371
31372
31373
31374
31375
31376
31377
31378
31379
31380
31381
31382
31383
31384
31385
31386
31387
31388
31389
31390
31391
31392
31393
31394
31395
31396
31397
31398
31399
31400
31401
31402
31403
31404
31405
31406
31407
31408
31409
31410
31411
31412
31413
31414
31415
31416
31417
31418
31419
31420
31421
31422
31423
31424
31425
31426
31427
31428
31429
31430
31431
31432
31433
31434
31435
31436
31437
31438
31439
31440
31441
31442
31443
31444
31445
31446
31447
31448
31449
31450
31451
31452
31453
31454
31455
31456
31457
31458
31459
31460
31461
31462
31463
31464
31465
31466
31467
31468
31469
31470
31471
31472
31473
31474
31475
31476
31477
31478
31479
31480
31481
31482
31483
31484
31485
31486
31487
31488
31489
31490
31491
31492
31493
31494
31495
31496
31497
31498
31499
31500
31501
31502
31503
31504
31505
31506
31507
31508
31509
31510
31511
31512
31513
31514
31515
31516
31517
31518
31519
31520
31521
31522
31523
31524
31525
31526
31527
31528
31529
31530
31531
31532
31533
31534
31535
31536
31537
31538
31539
31540
31541
31542
31543
31544
31545
31546
31547
31548
31549
31550
31551
31552
31553
31554
31555
31556
31557
31558
31559
31560
31561
31562
31563
31564
31565
31566
31567
31568
31569
31570
31571
31572
31573
31574
31575
31576
31577
31578
31579
31580
31581
31582
31583
31584
31585
31586
31587
31588
31589
31590
31591
31592
31593
31594
31595
31596
31597
31598
31599
31600
31601
31602
31603
31604
31605
31606
31607
31608
31609
31610
31611
31612
31613
31614
31615
31616
31617
31618
31619
31620
31621
31622
31623
31624
31625
31626
31627
31628
31629
31630
31631
31632
31633
31634
31635
31636
31637
31638
31639
31640
31641
31642
31643
31644
31645
31646
31647
31648
31649
31650
31651
31652
31653
31654
31655
31656
31657
31658
31659
31660
31661
31662
31663
31664
31665
31666
31667
31668
31669
31670
31671
31672
31673
31674
31675
31676
31677
31678
31679
31680
31681
31682
31683
31684
31685
31686
31687
31688
31689
31690
31691
31692
31693
31694
31695
31696
31697
31698
31699
31700
31701
31702
31703
31704
31705
31706
31707
31708
31709
31710
31711
31712
31713
31714
31715
31716
31717
31718
31719
31720
31721
31722
31723
31724
31725
31726
31727
31728
31729
31730
31731
31732
31733
31734
31735
31736
31737
31738
31739
31740
31741
31742
31743
31744
31745
31746
31747
31748
31749
31750
31751
31752
31753
31754
31755
31756
31757
31758
31759
31760
31761
31762
31763
31764
31765
31766
31767
31768
31769
31770
31771
31772
31773
31774
31775
31776
31777
31778
31779
31780
31781
31782
31783
31784
31785
31786
31787
31788
31789
31790
31791
31792
31793
31794
31795
31796
31797
31798
31799
31800
31801
31802
31803
31804
31805
31806
31807
31808
31809
31810
31811
31812
31813
31814
31815
31816
31817
31818
31819
31820
31821
31822
31823
31824
31825
31826
31827
31828
31829
31830
31831
31832
31833
31834
31835
31836
31837
31838
31839
31840
31841
31842
31843
31844
31845
31846
31847
31848
31849
31850
31851
31852
31853
31854
31855
31856
31857
31858
31859
31860
31861
31862
31863
31864
31865
31866
31867
31868
31869
31870
31871
31872
31873
31874
31875
31876
31877
31878
31879
31880
31881
31882
31883
31884
31885
31886
31887
31888
31889
31890
31891
31892
31893
31894
31895
31896
31897
31898
31899
31900
31901
31902
31903
31904
31905
31906
31907
31908
31909
31910
31911
31912
31913
31914
31915
31916
31917
31918
31919
31920
31921
31922
31923
31924
31925
31926
31927
31928
31929
31930
31931
31932
31933
31934
31935
31936
31937
31938
31939
31940
31941
31942
31943
31944
31945
31946
31947
31948
31949
31950
31951
31952
31953
31954
31955
31956
31957
31958
31959
31960
31961
31962
31963
31964
31965
31966
31967
31968
31969
31970
31971
31972
31973
31974
31975
31976
31977
31978
31979
31980
31981
31982
31983
31984
31985
31986
31987
31988
31989
31990
31991
31992
31993
31994
31995
31996
31997
31998
31999
32000
32001
32002
32003
32004
32005
32006
32007
32008
32009
32010
32011
32012
32013
32014
32015
32016
32017
32018
32019
32020
32021
32022
32023
32024
32025
32026
32027
32028
32029
32030
32031
32032
32033
32034
32035
32036
32037
32038
32039
32040
32041
32042
32043
32044
32045
32046
32047
32048
32049
32050
32051
32052
32053
32054
32055
32056
32057
32058
32059
32060
32061
32062
32063
32064
32065
32066
32067
32068
32069
32070
32071
32072
32073
32074
32075
32076
32077
32078
32079
32080
32081
32082
32083
32084
32085
32086
32087
32088
32089
32090
32091
32092
32093
32094
32095
32096
32097
32098
32099
32100
32101
32102
32103
32104
32105
32106
32107
32108
32109
32110
32111
32112
32113
32114
32115
32116
32117
32118
32119
32120
32121
32122
32123
32124
32125
32126
32127
32128
32129
32130
32131
32132
32133
32134
32135
32136
32137
32138
32139
32140
32141
32142
32143
32144
32145
32146
32147
32148
32149
32150
32151
32152
32153
32154
32155
32156
32157
32158
32159
32160
32161
32162
32163
32164
32165
32166
32167
32168
32169
32170
32171
32172
32173
32174
32175
32176
32177
32178
32179
32180
32181
32182
32183
32184
32185
32186
32187
32188
32189
32190
32191
32192
32193
32194
32195
32196
32197
32198
32199
32200
32201
32202
32203
32204
32205
32206
32207
32208
32209
32210
32211
32212
32213
32214
32215
32216
32217
32218
32219
32220
32221
32222
32223
32224
32225
32226
32227
32228
32229
32230
32231
32232
32233
32234
32235
32236
32237
32238
32239
32240
32241
32242
32243
32244
32245
32246
32247
32248
32249
32250
32251
32252
32253
32254
32255
32256
32257
32258
32259
32260
32261
32262
32263
32264
32265
32266
32267
32268
32269
32270
32271
32272
32273
32274
32275
32276
32277
32278
32279
32280
32281
32282
32283
32284
32285
32286
32287
32288
32289
32290
32291
32292
32293
32294
32295
32296
32297
32298
32299
32300
32301
32302
32303
32304
32305
32306
32307
32308
32309
32310
32311
32312
32313
32314
32315
32316
32317
32318
32319
32320
32321
32322
32323
32324
32325
32326
32327
32328
32329
32330
32331
32332
32333
32334
32335
32336
32337
32338
32339
32340
32341
32342
32343
32344
32345
32346
32347
32348
32349
32350
32351
32352
32353
32354
32355
32356
32357
32358
32359
32360
32361
32362
32363
32364
32365
32366
32367
32368
32369
32370
32371
32372
32373
32374
32375
32376
32377
32378
32379
32380
32381
32382
32383
32384
32385
32386
32387
32388
32389
32390
32391
32392
32393
32394
32395
32396
32397
32398
32399
32400
32401
32402
32403
32404
32405
32406
32407
32408
32409
32410
32411
32412
32413
32414
32415
32416
32417
32418
32419
32420
32421
32422
32423
32424
32425
32426
32427
32428
32429
32430
32431
32432
32433
32434
32435
32436
32437
32438
32439
32440
32441
32442
32443
32444
32445
32446
32447
32448
32449
32450
32451
32452
32453
32454
32455
32456
32457
32458
32459
32460
32461
32462
32463
32464
32465
32466
32467
32468
32469
32470
32471
32472
32473
32474
32475
32476
32477
32478
32479
32480
32481
32482
32483
32484
32485
32486
32487
32488
32489
32490
32491
32492
32493
32494
32495
32496
32497
32498
32499
32500
32501
32502
32503
32504
32505
32506
32507
32508
32509
32510
32511
32512
32513
32514
32515
32516
32517
32518
32519
32520
32521
32522
32523
32524
32525
32526
32527
32528
32529
32530
32531
32532
32533
32534
32535
32536
32537
32538
32539
32540
32541
32542
32543
32544
32545
32546
32547
32548
32549
32550
32551
32552
32553
32554
32555
32556
32557
32558
32559
32560
32561
32562
32563
32564
32565
32566
32567
32568
32569
32570
32571
32572
32573
32574
32575
32576
32577
32578
32579
32580
32581
32582
32583
32584
32585
32586
32587
32588
32589
32590
32591
32592
32593
32594
32595
32596
32597
32598
32599
32600
32601
32602
32603
32604
32605
32606
32607
32608
32609
32610
32611
32612
32613
32614
32615
32616
32617
32618
32619
32620
32621
32622
32623
32624
32625
32626
32627
32628
32629
32630
32631
32632
32633
32634
32635
32636
32637
32638
32639
32640
32641
32642
32643
32644
32645
32646
32647
32648
32649
32650
32651
32652
32653
32654
32655
32656
32657
32658
32659
32660
32661
32662
32663
32664
32665
32666
32667
32668
32669
32670
32671
32672
32673
32674
32675
32676
32677
32678
32679
32680
32681
32682
32683
32684
32685
32686
32687
32688
32689
32690
32691
32692
32693
32694
32695
32696
32697
32698
32699
32700
32701
32702
32703
32704
32705
32706
32707
32708
32709
32710
32711
32712
32713
32714
32715
32716
32717
32718
32719
32720
32721
32722
32723
32724
32725
32726
32727
32728
32729
32730
32731
32732
32733
32734
32735
32736
32737
32738
32739
32740
32741
32742
32743
32744
32745
32746
32747
32748
32749
32750
32751
32752
32753
32754
32755
32756
32757
32758
32759
32760
32761
32762
32763
32764
32765
32766
32767
32768
32769
32770
32771
32772
32773
32774
32775
32776
32777
32778
32779
32780
32781
32782
32783
32784
32785
32786
32787
32788
32789
32790
32791
32792
32793
32794
32795
32796
32797
32798
32799
32800
32801
32802
32803
32804
32805
32806
32807
32808
32809
32810
32811
32812
32813
32814
32815
32816
32817
32818
32819
32820
32821
32822
32823
32824
32825
32826
32827
32828
32829
32830
32831
32832
32833
32834
32835
32836
32837
32838
32839
32840
32841
32842
32843
32844
32845
32846
32847
32848
32849
32850
32851
32852
32853
32854
32855
32856
32857
32858
32859
32860
32861
32862
32863
32864
32865
32866
32867
32868
32869
32870
32871
32872
32873
32874
32875
32876
32877
32878
32879
32880
32881
32882
32883
32884
32885
32886
32887
32888
32889
32890
32891
32892
32893
32894
32895
32896
32897
32898
32899
32900
32901
32902
32903
32904
32905
32906
32907
32908
32909
32910
32911
32912
32913
32914
32915
32916
32917
32918
32919
32920
32921
32922
32923
32924
32925
32926
32927
32928
32929
32930
32931
32932
32933
32934
32935
32936
32937
32938
32939
32940
32941
32942
32943
32944
32945
32946
32947
32948
32949
32950
32951
32952
32953
32954
32955
32956
32957
32958
32959
32960
32961
32962
32963
32964
32965
32966
32967
32968
32969
32970
32971
32972
32973
32974
32975
32976
32977
32978
32979
32980
32981
32982
32983
32984
32985
32986
32987
32988
32989
32990
32991
32992
32993
32994
32995
32996
32997
32998
32999
33000
33001
33002
33003
33004
33005
33006
33007
33008
33009
33010
33011
33012
33013
33014
33015
33016
33017
33018
33019
33020
33021
33022
33023
33024
33025
33026
33027
33028
33029
33030
33031
33032
33033
33034
33035
33036
33037
33038
33039
33040
33041
33042
33043
33044
33045
33046
33047
33048
33049
33050
33051
33052
33053
33054
33055
33056
33057
33058
33059
33060
33061
33062
33063
33064
33065
33066
33067
33068
33069
33070
33071
33072
33073
33074
33075
33076
33077
33078
33079
33080
33081
33082
33083
33084
33085
33086
33087
33088
33089
33090
33091
33092
33093
33094
33095
33096
33097
33098
33099
33100
33101
33102
33103
33104
33105
33106
33107
33108
33109
33110
33111
33112
33113
33114
33115
33116
33117
33118
33119
33120
33121
33122
33123
33124
33125
33126
33127
33128
33129
33130
33131
33132
33133
33134
33135
33136
33137
33138
33139
33140
33141
33142
33143
33144
33145
33146
33147
33148
33149
33150
33151
33152
33153
33154
33155
33156
33157
33158
33159
33160
33161
33162
33163
33164
33165
33166
33167
33168
33169
33170
33171
33172
33173
33174
33175
33176
33177
33178
33179
33180
33181
33182
33183
33184
33185
33186
33187
33188
33189
33190
33191
33192
33193
33194
33195
33196
33197
33198
33199
33200
33201
33202
33203
33204
33205
33206
33207
33208
33209
33210
33211
33212
33213
33214
33215
33216
33217
33218
33219
33220
33221
33222
33223
33224
33225
33226
33227
33228
33229
33230
33231
33232
33233
33234
33235
33236
33237
33238
33239
33240
33241
33242
33243
33244
33245
33246
33247
33248
33249
33250
33251
33252
33253
33254
33255
33256
33257
33258
33259
33260
33261
33262
33263
33264
33265
33266
33267
33268
33269
33270
33271
33272
33273
33274
33275
33276
33277
33278
33279
33280
33281
33282
33283
33284
33285
33286
33287
33288
33289
33290
33291
33292
33293
33294
33295
33296
33297
33298
33299
33300
33301
33302
33303
33304
33305
33306
33307
33308
33309
33310
33311
33312
33313
33314
33315
33316
33317
33318
33319
33320
33321
33322
33323
33324
33325
33326
33327
33328
33329
33330
33331
33332
33333
33334
33335
33336
33337
33338
33339
33340
33341
33342
33343
33344
33345
33346
33347
33348
33349
33350
33351
33352
33353
33354
33355
33356
33357
33358
33359
33360
33361
33362
33363
33364
33365
33366
33367
33368
33369
33370
33371
33372
33373
33374
33375
33376
33377
33378
33379
33380
33381
33382
33383
33384
33385
33386
33387
33388
33389
33390
33391
33392
33393
33394
33395
33396
33397
33398
33399
33400
33401
33402
33403
33404
33405
33406
33407
33408
33409
33410
33411
33412
33413
33414
33415
33416
33417
33418
33419
33420
33421
33422
33423
33424
33425
33426
33427
33428
33429
33430
33431
33432
33433
33434
33435
33436
33437
33438
33439
33440
33441
33442
33443
33444
33445
33446
33447
33448
33449
33450
33451
33452
33453
33454
33455
33456
33457
33458
33459
33460
33461
33462
33463
33464
33465
33466
33467
33468
33469
33470
33471
33472
33473
33474
33475
33476
33477
33478
33479
33480
33481
33482
33483
33484
33485
33486
33487
33488
33489
33490
33491
33492
33493
33494
33495
33496
33497
33498
33499
33500
33501
33502
33503
33504
33505
33506
33507
33508
33509
33510
33511
33512
33513
33514
33515
33516
33517
33518
33519
33520
33521
33522
33523
33524
33525
33526
33527
33528
33529
33530
33531
33532
33533
33534
33535
33536
33537
33538
33539
33540
33541
33542
33543
33544
33545
33546
33547
33548
33549
33550
33551
33552
33553
33554
33555
33556
33557
33558
33559
33560
33561
33562
33563
33564
33565
33566
33567
33568
33569
33570
33571
33572
33573
33574
33575
33576
33577
33578
33579
33580
33581
33582
33583
33584
33585
33586
33587
33588
33589
33590
33591
33592
33593
33594
33595
33596
33597
33598
33599
33600
33601
33602
33603
33604
33605
33606
33607
33608
33609
33610
33611
33612
33613
33614
33615
33616
33617
33618
33619
33620
33621
33622
33623
33624
33625
33626
33627
33628
33629
33630
33631
33632
33633
33634
33635
33636
33637
33638
33639
33640
33641
33642
33643
33644
33645
33646
33647
33648
33649
33650
33651
33652
33653
33654
33655
33656
33657
33658
33659
33660
33661
33662
33663
33664
33665
33666
33667
33668
33669
33670
33671
33672
33673
33674
33675
33676
33677
33678
33679
33680
33681
33682
33683
33684
33685
33686
33687
33688
33689
33690
33691
33692
33693
33694
33695
33696
33697
33698
33699
33700
33701
33702
33703
33704
33705
33706
33707
33708
33709
33710
33711
33712
33713
33714
33715
33716
33717
33718
33719
33720
33721
33722
33723
33724
33725
33726
33727
33728
33729
33730
33731
33732
33733
33734
33735
33736
33737
33738
33739
33740
33741
33742
33743
33744
33745
33746
33747
33748
33749
33750
33751
33752
33753
33754
33755
33756
33757
33758
33759
33760
33761
33762
33763
33764
33765
33766
33767
33768
33769
33770
33771
33772
33773
33774
33775
33776
33777
33778
33779
33780
33781
33782
33783
33784
33785
33786
33787
33788
33789
33790
33791
33792
33793
33794
33795
33796
33797
33798
33799
33800
33801
33802
33803
33804
33805
33806
33807
33808
33809
33810
33811
33812
33813
33814
33815
33816
33817
33818
33819
33820
33821
33822
33823
33824
33825
33826
33827
33828
33829
33830
33831
33832
33833
33834
33835
33836
33837
33838
33839
33840
33841
33842
33843
33844
33845
33846
33847
33848
33849
33850
33851
33852
33853
33854
33855
33856
33857
33858
33859
33860
33861
33862
33863
33864
33865
33866
33867
33868
33869
33870
33871
33872
33873
33874
33875
33876
33877
33878
33879
33880
33881
33882
33883
33884
33885
33886
33887
33888
33889
33890
33891
33892
33893
33894
33895
33896
33897
33898
33899
33900
33901
33902
33903
33904
33905
33906
33907
33908
33909
33910
33911
33912
33913
33914
33915
33916
33917
33918
33919
33920
33921
33922
33923
33924
33925
33926
33927
33928
33929
33930
33931
33932
33933
33934
33935
33936
33937
33938
33939
33940
33941
33942
33943
33944
33945
33946
33947
33948
33949
33950
33951
33952
33953
33954
33955
33956
33957
33958
33959
33960
33961
33962
33963
33964
33965
33966
33967
33968
33969
33970
33971
33972
33973
33974
33975
33976
33977
33978
33979
33980
33981
33982
33983
33984
33985
33986
33987
33988
33989
33990
33991
33992
33993
33994
33995
33996
33997
33998
33999
34000
34001
34002
34003
34004
34005
34006
34007
34008
34009
34010
34011
34012
34013
34014
34015
34016
34017
34018
34019
34020
34021
34022
34023
34024
34025
34026
34027
34028
34029
34030
34031
34032
34033
34034
34035
34036
34037
34038
34039
34040
34041
34042
34043
34044
34045
34046
34047
34048
34049
34050
34051
34052
34053
34054
34055
34056
34057
34058
34059
34060
34061
34062
34063
34064
34065
34066
34067
34068
34069
34070
34071
34072
34073
34074
34075
34076
34077
34078
34079
34080
34081
34082
34083
34084
34085
34086
34087
34088
34089
34090
34091
34092
34093
34094
34095
34096
34097
34098
34099
34100
34101
34102
34103
34104
34105
34106
34107
34108
34109
34110
34111
34112
34113
34114
34115
34116
34117
34118
34119
34120
34121
34122
34123
34124
34125
34126
34127
34128
34129
34130
34131
34132
34133
34134
34135
34136
34137
34138
34139
34140
34141
34142
34143
34144
34145
34146
34147
34148
34149
34150
34151
34152
34153
34154
34155
34156
34157
34158
34159
34160
34161
34162
34163
34164
34165
34166
34167
34168
34169
34170
34171
34172
34173
34174
34175
34176
34177
34178
34179
34180
34181
34182
34183
34184
34185
34186
34187
34188
34189
34190
34191
34192
34193
34194
34195
34196
34197
34198
34199
34200
34201
34202
34203
34204
34205
34206
34207
34208
34209
34210
34211
34212
34213
34214
34215
34216
34217
34218
34219
34220
34221
34222
34223
34224
34225
34226
34227
34228
34229
34230
34231
34232
34233
34234
34235
34236
34237
34238
34239
34240
34241
34242
34243
34244
34245
34246
34247
34248
34249
34250
34251
34252
34253
34254
34255
34256
34257
34258
34259
34260
34261
34262
34263
34264
34265
34266
34267
34268
34269
34270
34271
34272
34273
34274
34275
34276
34277
34278
34279
34280
34281
34282
34283
34284
34285
34286
34287
34288
34289
34290
34291
34292
34293
34294
34295
34296
34297
34298
34299
34300
34301
34302
34303
34304
34305
34306
34307
34308
34309
34310
34311
34312
34313
34314
34315
34316
34317
34318
34319
34320
34321
34322
34323
34324
34325
34326
34327
34328
34329
34330
34331
34332
34333
34334
34335
34336
34337
34338
34339
34340
34341
34342
34343
34344
34345
34346
34347
34348
34349
34350
34351
34352
34353
34354
34355
34356
34357
34358
34359
34360
34361
34362
34363
34364
34365
34366
34367
34368
34369
34370
34371
34372
34373
34374
34375
34376
34377
34378
34379
34380
34381
34382
34383
34384
34385
34386
34387
34388
34389
34390
34391
34392
34393
34394
34395
34396
34397
34398
34399
34400
34401
34402
34403
34404
34405
34406
34407
34408
34409
34410
34411
34412
34413
34414
34415
34416
34417
34418
34419
34420
34421
34422
34423
34424
34425
34426
34427
34428
34429
34430
34431
34432
34433
34434
34435
34436
34437
34438
34439
34440
34441
34442
34443
34444
34445
34446
34447
34448
34449
34450
34451
34452
34453
34454
34455
34456
34457
34458
34459
34460
34461
34462
34463
34464
34465
34466
34467
34468
34469
34470
34471
34472
34473
34474
34475
34476
34477
34478
34479
34480
34481
34482
34483
34484
34485
34486
34487
34488
34489
34490
34491
34492
34493
34494
34495
34496
34497
34498
34499
34500
34501
34502
34503
34504
34505
34506
34507
34508
34509
34510
34511
34512
34513
34514
34515
34516
34517
34518
34519
34520
34521
34522
34523
34524
34525
34526
34527
34528
34529
34530
34531
34532
34533
34534
34535
34536
34537
34538
34539
34540
34541
34542
34543
34544
34545
34546
34547
34548
34549
34550
34551
34552
34553
34554
34555
34556
34557
34558
34559
34560
34561
34562
34563
34564
34565
34566
34567
34568
34569
34570
34571
34572
34573
34574
34575
34576
34577
34578
34579
34580
34581
34582
34583
34584
34585
34586
34587
34588
34589
34590
34591
34592
34593
34594
34595
34596
34597
34598
34599
34600
34601
34602
34603
34604
34605
34606
34607
34608
34609
34610
34611
34612
34613
34614
34615
34616
34617
34618
34619
34620
34621
34622
34623
34624
34625
34626
34627
34628
34629
34630
34631
34632
34633
34634
34635
34636
34637
34638
34639
34640
34641
34642
34643
34644
34645
34646
34647
34648
34649
34650
34651
34652
34653
34654
34655
34656
34657
34658
34659
34660
34661
34662
34663
34664
34665
34666
34667
34668
34669
34670
34671
34672
34673
34674
34675
34676
34677
34678
34679
34680
34681
34682
34683
34684
34685
34686
34687
34688
34689
34690
34691
34692
34693
34694
34695
34696
34697
34698
34699
34700
34701
34702
34703
34704
34705
34706
34707
34708
34709
34710
34711
34712
34713
34714
34715
34716
34717
34718
34719
34720
34721
34722
34723
34724
34725
34726
34727
34728
34729
34730
34731
34732
34733
34734
34735
34736
34737
34738
34739
34740
34741
34742
34743
34744
34745
34746
34747
34748
34749
34750
34751
34752
34753
34754
34755
34756
34757
34758
34759
34760
34761
34762
34763
34764
34765
34766
34767
34768
34769
34770
34771
34772
34773
34774
34775
34776
34777
34778
34779
34780
34781
34782
34783
34784
34785
34786
34787
34788
34789
34790
34791
34792
34793
34794
34795
34796
34797
34798
34799
34800
34801
34802
34803
34804
34805
34806
34807
34808
34809
34810
34811
34812
34813
34814
34815
34816
34817
34818
34819
34820
34821
34822
34823
34824
34825
34826
34827
34828
34829
34830
34831
34832
34833
34834
34835
34836
34837
34838
34839
34840
34841
34842
34843
34844
34845
34846
34847
34848
34849
34850
34851
34852
34853
34854
34855
34856
34857
34858
34859
34860
34861
34862
34863
34864
34865
34866
34867
34868
34869
34870
34871
34872
34873
34874
34875
34876
34877
34878
34879
34880
34881
34882
34883
34884
34885
34886
34887
34888
34889
34890
34891
34892
34893
34894
34895
34896
34897
34898
34899
34900
34901
34902
34903
34904
34905
34906
34907
34908
34909
34910
34911
34912
34913
34914
34915
34916
34917
34918
34919
34920
34921
34922
34923
34924
34925
34926
34927
34928
34929
34930
34931
34932
34933
34934
34935
34936
34937
34938
34939
34940
34941
34942
34943
34944
34945
34946
34947
34948
34949
34950
34951
34952
34953
34954
34955
34956
34957
34958
34959
34960
34961
34962
34963
34964
34965
34966
34967
34968
34969
34970
34971
34972
34973
34974
34975
34976
34977
34978
34979
34980
34981
34982
34983
34984
34985
34986
34987
34988
34989
34990
34991
34992
34993
34994
34995
34996
34997
34998
34999
35000
35001
35002
35003
35004
35005
35006
35007
35008
35009
35010
35011
35012
35013
35014
35015
35016
35017
35018
35019
35020
35021
35022
35023
35024
35025
35026
35027
35028
35029
35030
35031
35032
35033
35034
35035
35036
35037
35038
35039
35040
35041
35042
35043
35044
35045
35046
35047
35048
35049
35050
35051
35052
35053
35054
35055
35056
35057
35058
35059
35060
35061
35062
35063
35064
35065
35066
35067
35068
35069
35070
35071
35072
35073
35074
35075
35076
35077
35078
35079
35080
35081
35082
35083
35084
35085
35086
35087
35088
35089
35090
35091
35092
35093
35094
35095
35096
35097
35098
35099
35100
35101
35102
35103
35104
35105
35106
35107
35108
35109
35110
35111
35112
35113
35114
35115
35116
35117
35118
35119
35120
35121
35122
35123
35124
35125
35126
35127
35128
35129
35130
35131
35132
35133
35134
35135
35136
35137
35138
35139
35140
35141
35142
35143
35144
35145
35146
35147
35148
35149
35150
35151
35152
35153
35154
35155
35156
35157
35158
35159
35160
35161
35162
35163
35164
35165
35166
35167
35168
35169
35170
35171
35172
35173
35174
35175
35176
35177
35178
35179
35180
35181
35182
35183
35184
35185
35186
35187
35188
35189
35190
35191
35192
35193
35194
35195
35196
35197
35198
35199
35200
35201
35202
35203
35204
35205
35206
35207
35208
35209
35210
35211
35212
35213
35214
35215
35216
35217
35218
35219
35220
35221
35222
35223
35224
35225
35226
35227
35228
35229
35230
35231
35232
35233
35234
35235
35236
35237
35238
35239
35240
35241
35242
35243
35244
35245
35246
35247
35248
35249
35250
35251
35252
35253
35254
35255
35256
35257
35258
35259
35260
35261
35262
35263
35264
35265
35266
35267
35268
35269
35270
35271
35272
35273
35274
35275
35276
35277
35278
35279
35280
35281
35282
35283
35284
35285
35286
35287
35288
35289
35290
35291
35292
35293
35294
35295
35296
35297
35298
35299
35300
35301
35302
35303
35304
35305
35306
35307
35308
35309
35310
35311
35312
35313
35314
35315
35316
35317
35318
35319
35320
35321
35322
35323
35324
35325
35326
35327
35328
35329
35330
35331
35332
35333
35334
35335
35336
35337
35338
35339
35340
35341
35342
35343
35344
35345
35346
35347
35348
35349
35350
35351
35352
35353
35354
35355
35356
35357
35358
35359
35360
35361
35362
35363
35364
35365
35366
35367
35368
35369
35370
35371
35372
35373
35374
35375
35376
35377
35378
35379
35380
35381
35382
35383
35384
35385
35386
35387
35388
35389
35390
35391
35392
35393
35394
35395
35396
35397
35398
35399
35400
35401
35402
35403
35404
35405
35406
35407
35408
35409
35410
35411
35412
35413
35414
35415
35416
35417
35418
35419
35420
35421
35422
35423
35424
35425
35426
35427
35428
35429
35430
35431
35432
35433
35434
35435
35436
35437
35438
35439
35440
35441
35442
35443
35444
35445
35446
35447
35448
35449
35450
35451
35452
35453
35454
35455
35456
35457
35458
35459
35460
35461
35462
35463
35464
35465
35466
35467
35468
35469
35470
35471
35472
35473
35474
35475
35476
35477
35478
35479
35480
35481
35482
35483
35484
35485
35486
35487
35488
35489
35490
35491
35492
35493
35494
35495
35496
35497
35498
35499
35500
35501
35502
35503
35504
35505
35506
35507
35508
35509
35510
35511
35512
35513
35514
35515
35516
35517
35518
35519
35520
35521
35522
35523
35524
35525
35526
35527
35528
35529
35530
35531
35532
35533
35534
35535
35536
35537
35538
35539
35540
35541
35542
35543
35544
35545
35546
35547
35548
35549
35550
35551
35552
35553
35554
35555
35556
35557
35558
35559
35560
35561
35562
35563
35564
35565
35566
35567
35568
35569
35570
35571
35572
35573
35574
35575
35576
35577
35578
35579
35580
35581
35582
35583
35584
35585
35586
35587
35588
35589
35590
35591
35592
35593
35594
35595
35596
35597
35598
35599
35600
35601
35602
35603
35604
35605
35606
35607
35608
35609
35610
35611
35612
35613
35614
35615
35616
35617
35618
35619
35620
35621
35622
35623
35624
35625
35626
35627
35628
35629
35630
35631
35632
35633
35634
35635
35636
35637
35638
35639
35640
35641
35642
35643
35644
35645
35646
35647
35648
35649
35650
35651
35652
35653
35654
35655
35656
35657
35658
35659
35660
35661
35662
35663
35664
35665
35666
35667
35668
35669
35670
35671
35672
35673
35674
35675
35676
35677
35678
35679
35680
35681
35682
35683
35684
35685
35686
35687
35688
35689
35690
35691
35692
35693
35694
35695
35696
35697
35698
35699
35700
35701
35702
35703
35704
35705
35706
35707
35708
35709
35710
35711
35712
35713
35714
35715
35716
35717
35718
35719
35720
35721
35722
35723
35724
35725
35726
35727
35728
35729
35730
35731
35732
35733
35734
35735
35736
35737
35738
35739
35740
35741
35742
35743
35744
35745
35746
35747
35748
35749
35750
35751
35752
35753
35754
35755
35756
35757
35758
35759
35760
35761
35762
35763
35764
35765
35766
35767
35768
35769
35770
35771
35772
35773
35774
35775
35776
35777
35778
35779
35780
35781
35782
35783
35784
35785
35786
35787
35788
35789
35790
35791
35792
35793
35794
35795
35796
35797
35798
35799
35800
35801
35802
35803
35804
35805
35806
35807
35808
35809
35810
35811
35812
35813
35814
35815
35816
35817
35818
35819
35820
35821
35822
35823
35824
35825
35826
35827
35828
35829
35830
35831
35832
35833
35834
35835
35836
35837
35838
35839
35840
35841
35842
35843
35844
35845
35846
35847
35848
35849
35850
35851
35852
35853
35854
35855
35856
35857
35858
35859
35860
35861
35862
35863
35864
35865
35866
35867
35868
35869
35870
35871
35872
35873
35874
35875
35876
35877
35878
35879
35880
35881
35882
35883
35884
35885
35886
35887
35888
35889
35890
35891
35892
35893
35894
35895
35896
35897
35898
35899
35900
35901
35902
35903
35904
35905
35906
35907
35908
35909
35910
35911
35912
35913
35914
35915
35916
35917
35918
35919
35920
35921
35922
35923
35924
35925
35926
35927
35928
35929
35930
35931
35932
35933
35934
35935
35936
35937
35938
35939
35940
35941
35942
35943
35944
35945
35946
35947
35948
35949
35950
35951
35952
35953
35954
35955
35956
35957
35958
35959
35960
35961
35962
35963
35964
35965
35966
35967
35968
35969
35970
35971
35972
35973
35974
35975
35976
35977
35978
35979
35980
35981
35982
35983
35984
35985
35986
35987
35988
35989
35990
35991
35992
35993
35994
35995
35996
35997
35998
35999
36000
36001
36002
36003
36004
36005
36006
36007
36008
36009
36010
36011
36012
36013
36014
36015
36016
36017
36018
36019
36020
36021
36022
36023
36024
36025
36026
36027
36028
36029
36030
36031
36032
36033
36034
36035
36036
36037
36038
36039
36040
36041
36042
36043
36044
36045
36046
36047
36048
36049
36050
36051
36052
36053
36054
36055
36056
36057
36058
36059
36060
36061
36062
36063
36064
36065
36066
36067
36068
36069
36070
36071
36072
36073
36074
36075
36076
36077
36078
36079
36080
36081
36082
36083
36084
36085
36086
36087
36088
36089
36090
36091
36092
36093
36094
36095
36096
36097
36098
36099
36100
36101
36102
36103
36104
36105
36106
36107
36108
36109
36110
36111
36112
36113
36114
36115
36116
36117
36118
36119
36120
36121
36122
36123
36124
36125
36126
36127
36128
36129
36130
36131
36132
36133
36134
36135
36136
36137
36138
36139
36140
36141
36142
36143
36144
36145
36146
36147
36148
36149
36150
36151
36152
36153
36154
36155
36156
36157
36158
36159
36160
36161
36162
36163
36164
36165
36166
36167
36168
36169
36170
36171
36172
36173
36174
36175
36176
36177
36178
36179
36180
36181
36182
36183
36184
36185
36186
36187
36188
36189
36190
36191
36192
36193
36194
36195
36196
36197
36198
36199
36200
36201
36202
36203
36204
36205
36206
36207
36208
36209
36210
36211
36212
36213
36214
36215
36216
36217
36218
36219
36220
36221
36222
36223
36224
36225
36226
36227
36228
36229
36230
36231
36232
36233
36234
36235
36236
36237
36238
36239
36240
36241
36242
36243
36244
36245
36246
36247
36248
36249
36250
36251
36252
36253
36254
36255
36256
36257
36258
36259
36260
36261
36262
36263
36264
36265
36266
36267
36268
36269
36270
36271
36272
36273
36274
36275
36276
36277
36278
36279
36280
36281
36282
36283
36284
36285
36286
36287
36288
36289
36290
36291
36292
36293
36294
36295
36296
36297
36298
36299
36300
36301
36302
36303
36304
36305
36306
36307
36308
36309
36310
36311
36312
36313
36314
36315
36316
36317
36318
36319
36320
36321
36322
36323
36324
36325
36326
36327
36328
36329
36330
36331
36332
36333
36334
36335
36336
36337
36338
36339
36340
36341
36342
36343
36344
36345
36346
36347
36348
36349
36350
36351
36352
36353
36354
36355
36356
36357
36358
36359
36360
36361
36362
36363
36364
36365
36366
36367
36368
36369
36370
36371
36372
36373
36374
36375
36376
36377
36378
36379
36380
36381
36382
36383
36384
36385
36386
36387
36388
36389
36390
36391
36392
36393
36394
36395
36396
36397
36398
36399
36400
36401
36402
36403
36404
36405
36406
36407
36408
36409
36410
36411
36412
36413
36414
36415
36416
36417
36418
36419
36420
36421
36422
36423
36424
36425
36426
36427
36428
36429
36430
36431
36432
36433
36434
36435
36436
36437
36438
36439
36440
36441
36442
36443
36444
36445
36446
36447
36448
36449
36450
36451
36452
36453
36454
36455
36456
36457
36458
36459
36460
36461
36462
36463
36464
36465
36466
36467
36468
36469
36470
36471
36472
36473
36474
36475
36476
36477
36478
36479
36480
36481
36482
36483
36484
36485
36486
36487
36488
36489
36490
36491
36492
36493
36494
36495
36496
36497
36498
36499
36500
36501
36502
36503
36504
36505
36506
36507
36508
36509
36510
36511
36512
36513
36514
36515
36516
36517
36518
36519
36520
36521
36522
36523
36524
36525
36526
36527
36528
36529
36530
36531
36532
36533
36534
36535
36536
36537
36538
36539
36540
36541
36542
36543
36544
36545
36546
36547
36548
36549
36550
36551
36552
36553
36554
36555
36556
36557
36558
36559
36560
36561
36562
36563
36564
36565
36566
36567
36568
36569
36570
36571
36572
36573
36574
36575
36576
36577
36578
36579
36580
36581
36582
36583
36584
36585
36586
36587
36588
36589
36590
36591
36592
36593
36594
36595
36596
36597
36598
36599
36600
36601
36602
36603
36604
36605
36606
36607
36608
36609
36610
36611
36612
36613
36614
36615
36616
36617
36618
36619
36620
36621
36622
36623
36624
36625
36626
36627
36628
36629
36630
36631
36632
36633
36634
36635
36636
36637
36638
36639
36640
36641
36642
36643
36644
36645
36646
36647
36648
36649
36650
36651
36652
36653
36654
36655
36656
36657
36658
36659
36660
36661
36662
36663
36664
36665
36666
36667
36668
36669
36670
36671
36672
36673
36674
36675
36676
36677
36678
36679
36680
36681
36682
36683
36684
36685
36686
36687
36688
36689
36690
36691
36692
36693
36694
36695
36696
36697
36698
36699
36700
36701
36702
36703
36704
36705
36706
36707
36708
36709
36710
36711
36712
36713
36714
36715
36716
36717
36718
36719
36720
36721
36722
36723
36724
36725
36726
36727
36728
36729
36730
36731
36732
36733
36734
36735
36736
36737
36738
36739
36740
36741
36742
36743
36744
36745
36746
36747
36748
36749
36750
36751
36752
36753
36754
36755
36756
36757
36758
36759
36760
36761
36762
36763
36764
36765
36766
36767
36768
36769
36770
36771
36772
36773
36774
36775
36776
36777
36778
36779
36780
36781
36782
36783
36784
36785
36786
36787
36788
36789
36790
36791
36792
36793
36794
36795
36796
36797
36798
36799
36800
36801
36802
36803
36804
36805
36806
36807
36808
36809
36810
36811
36812
36813
36814
36815
36816
36817
36818
36819
36820
36821
36822
36823
36824
36825
36826
36827
36828
36829
36830
36831
36832
36833
36834
36835
36836
36837
36838
36839
36840
36841
36842
36843
36844
36845
36846
36847
36848
36849
36850
36851
36852
36853
36854
36855
36856
36857
36858
36859
36860
36861
36862
36863
36864
36865
36866
36867
36868
36869
36870
36871
36872
36873
36874
36875
36876
36877
36878
36879
36880
36881
36882
36883
36884
36885
36886
36887
36888
36889
36890
36891
36892
36893
36894
36895
36896
36897
36898
36899
36900
36901
36902
36903
36904
36905
36906
36907
36908
36909
36910
36911
36912
36913
36914
36915
36916
36917
36918
36919
36920
36921
36922
36923
36924
36925
36926
36927
36928
36929
36930
36931
36932
36933
36934
36935
36936
36937
36938
36939
36940
36941
36942
36943
36944
36945
36946
36947
36948
36949
36950
36951
36952
36953
36954
36955
36956
36957
36958
36959
36960
36961
36962
36963
36964
36965
36966
36967
36968
36969
36970
36971
36972
36973
36974
36975
36976
36977
36978
36979
36980
36981
36982
36983
36984
36985
36986
36987
36988
36989
36990
36991
36992
36993
36994
36995
36996
36997
36998
36999
37000
37001
37002
37003
37004
37005
37006
37007
37008
37009
37010
37011
37012
37013
37014
37015
37016
37017
37018
37019
37020
37021
37022
37023
37024
37025
37026
37027
37028
37029
37030
37031
37032
37033
37034
37035
37036
37037
37038
37039
37040
37041
37042
37043
37044
37045
37046
37047
37048
37049
37050
37051
37052
37053
37054
37055
37056
37057
37058
37059
37060
37061
37062
37063
37064
37065
37066
37067
37068
37069
37070
37071
37072
37073
37074
37075
37076
37077
37078
37079
37080
37081
37082
37083
37084
37085
37086
37087
37088
37089
37090
37091
37092
37093
37094
37095
37096
37097
37098
37099
37100
37101
37102
37103
37104
37105
37106
37107
37108
37109
37110
37111
37112
37113
37114
37115
37116
37117
37118
37119
37120
37121
37122
37123
37124
37125
37126
37127
37128
37129
37130
37131
37132
37133
37134
37135
37136
37137
37138
37139
37140
37141
37142
37143
37144
37145
37146
37147
37148
37149
37150
37151
37152
37153
37154
37155
37156
37157
37158
37159
37160
37161
37162
37163
37164
37165
37166
37167
37168
37169
37170
37171
37172
37173
37174
37175
37176
37177
37178
37179
37180
37181
37182
37183
37184
37185
37186
37187
37188
37189
37190
37191
37192
37193
37194
37195
37196
37197
37198
37199
37200
37201
37202
37203
37204
37205
37206
37207
37208
37209
37210
37211
37212
37213
37214
37215
37216
37217
37218
37219
37220
37221
37222
37223
37224
37225
37226
37227
37228
37229
37230
37231
37232
37233
37234
37235
37236
37237
37238
37239
37240
37241
37242
37243
37244
37245
37246
37247
37248
37249
37250
37251
37252
37253
37254
37255
37256
37257
37258
37259
37260
37261
37262
37263
37264
37265
37266
37267
37268
37269
37270
37271
37272
37273
37274
37275
37276
37277
37278
37279
37280
37281
37282
37283
37284
37285
37286
37287
37288
37289
37290
37291
37292
37293
37294
37295
37296
37297
37298
37299
37300
37301
37302
37303
37304
37305
37306
37307
37308
37309
37310
37311
37312
37313
37314
37315
37316
37317
37318
37319
37320
37321
37322
37323
37324
37325
37326
37327
37328
37329
37330
37331
37332
37333
37334
37335
37336
37337
37338
37339
37340
37341
37342
37343
37344
37345
37346
37347
37348
37349
37350
37351
37352
37353
37354
37355
37356
37357
37358
37359
37360
37361
37362
37363
37364
37365
37366
37367
37368
37369
37370
37371
37372
37373
37374
37375
37376
37377
37378
37379
37380
37381
37382
37383
37384
37385
37386
37387
37388
37389
37390
37391
37392
37393
37394
37395
37396
37397
37398
37399
37400
37401
37402
37403
37404
37405
37406
37407
37408
37409
37410
37411
37412
37413
37414
37415
37416
37417
37418
37419
37420
37421
37422
37423
37424
37425
37426
37427
37428
37429
37430
37431
37432
37433
37434
37435
37436
37437
37438
37439
37440
37441
37442
37443
37444
37445
37446
37447
37448
37449
37450
37451
37452
37453
37454
37455
37456
37457
37458
37459
37460
37461
37462
37463
37464
37465
37466
37467
37468
37469
37470
37471
37472
37473
37474
37475
37476
37477
37478
37479
37480
37481
37482
37483
37484
37485
37486
37487
37488
37489
37490
37491
37492
37493
37494
37495
37496
37497
37498
37499
37500
37501
37502
37503
37504
37505
37506
37507
37508
37509
37510
37511
37512
37513
37514
37515
37516
37517
37518
37519
37520
37521
37522
37523
37524
37525
37526
37527
37528
37529
37530
37531
37532
37533
37534
37535
37536
37537
37538
37539
37540
37541
37542
37543
37544
37545
37546
37547
37548
37549
37550
37551
37552
37553
37554
37555
37556
37557
37558
37559
37560
37561
37562
37563
37564
37565
37566
37567
37568
37569
37570
37571
37572
37573
37574
37575
37576
37577
37578
37579
37580
37581
37582
37583
37584
37585
37586
37587
37588
37589
37590
37591
37592
37593
37594
37595
37596
37597
37598
37599
37600
37601
37602
37603
37604
37605
37606
37607
37608
37609
37610
37611
37612
37613
37614
37615
37616
37617
37618
37619
37620
37621
37622
37623
37624
37625
37626
37627
37628
37629
37630
37631
37632
37633
37634
37635
37636
37637
37638
37639
37640
37641
37642
37643
37644
37645
37646
37647
37648
37649
37650
37651
37652
37653
37654
37655
37656
37657
37658
37659
37660
37661
37662
37663
37664
37665
37666
37667
37668
37669
37670
37671
37672
37673
37674
37675
37676
37677
37678
37679
37680
37681
37682
37683
37684
37685
37686
37687
37688
37689
37690
37691
37692
37693
37694
37695
37696
37697
37698
37699
37700
37701
37702
37703
37704
37705
37706
37707
37708
37709
37710
37711
37712
37713
37714
37715
37716
37717
37718
37719
37720
37721
37722
37723
37724
37725
37726
37727
37728
37729
37730
37731
37732
37733
37734
37735
37736
37737
37738
37739
37740
37741
37742
37743
37744
37745
37746
37747
37748
37749
37750
37751
37752
37753
37754
37755
37756
37757
37758
37759
37760
37761
37762
37763
37764
37765
37766
37767
37768
37769
37770
37771
37772
37773
37774
37775
37776
37777
37778
37779
37780
37781
37782
37783
37784
37785
37786
37787
37788
37789
37790
37791
37792
37793
37794
37795
37796
37797
37798
37799
37800
37801
37802
37803
37804
37805
37806
37807
37808
37809
37810
37811
37812
37813
37814
37815
37816
37817
37818
37819
37820
37821
37822
37823
37824
37825
37826
37827
37828
37829
37830
37831
37832
37833
37834
37835
37836
37837
37838
37839
37840
37841
37842
37843
37844
37845
37846
37847
37848
37849
37850
37851
37852
37853
37854
37855
37856
37857
37858
37859
37860
37861
37862
37863
37864
37865
37866
37867
37868
37869
37870
37871
37872
37873
37874
37875
37876
37877
37878
37879
37880
37881
37882
37883
37884
37885
37886
37887
37888
37889
37890
37891
37892
37893
37894
37895
37896
37897
37898
37899
37900
37901
37902
37903
37904
37905
37906
37907
37908
37909
37910
37911
37912
37913
37914
37915
37916
37917
37918
37919
37920
37921
37922
37923
37924
37925
37926
37927
37928
37929
37930
37931
37932
37933
37934
37935
37936
37937
37938
37939
37940
37941
37942
37943
37944
37945
37946
37947
37948
37949
37950
37951
37952
37953
37954
37955
37956
37957
37958
37959
37960
37961
37962
37963
37964
37965
37966
37967
37968
37969
37970
37971
37972
37973
37974
37975
37976
37977
37978
37979
37980
37981
37982
37983
37984
37985
37986
37987
37988
37989
37990
37991
37992
37993
37994
37995
37996
37997
37998
37999
38000
38001
38002
38003
38004
38005
38006
38007
38008
38009
38010
38011
38012
38013
38014
38015
38016
38017
38018
38019
38020
38021
38022
38023
38024
38025
38026
38027
38028
38029
38030
38031
38032
38033
38034
38035
38036
38037
38038
38039
38040
38041
38042
38043
38044
38045
38046
38047
38048
38049
38050
38051
38052
38053
38054
38055
38056
38057
38058
38059
38060
38061
38062
38063
38064
38065
38066
38067
38068
38069
38070
38071
38072
38073
38074
38075
38076
38077
38078
38079
38080
38081
38082
38083
38084
38085
38086
38087
38088
38089
38090
38091
38092
38093
38094
38095
38096
38097
38098
38099
38100
38101
38102
38103
38104
38105
38106
38107
38108
38109
38110
38111
38112
38113
38114
38115
38116
38117
38118
38119
38120
38121
38122
38123
38124
38125
38126
38127
38128
38129
38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
38147
38148
38149
38150
38151
38152
38153
38154
38155
38156
38157
38158
38159
38160
38161
38162
38163
38164
38165
38166
38167
38168
38169
38170
38171
38172
38173
38174
38175
38176
38177
38178
38179
38180
38181
38182
38183
38184
38185
38186
38187
38188
38189
38190
38191
38192
38193
38194
38195
38196
38197
38198
38199
38200
38201
38202
38203
38204
38205
38206
38207
38208
38209
38210
38211
38212
38213
38214
38215
38216
38217
38218
38219
38220
38221
38222
38223
38224
38225
38226
38227
38228
38229
38230
38231
38232
38233
38234
38235
38236
38237
38238
38239
38240
38241
38242
38243
38244
38245
38246
38247
38248
38249
38250
38251
38252
38253
38254
38255
38256
38257
38258
38259
38260
38261
38262
38263
38264
38265
38266
38267
38268
38269
38270
38271
38272
38273
38274
38275
38276
38277
38278
38279
38280
38281
38282
38283
38284
38285
38286
38287
38288
38289
38290
38291
38292
38293
38294
38295
38296
38297
38298
38299
38300
38301
38302
38303
38304
38305
38306
38307
38308
38309
38310
38311
38312
38313
38314
38315
38316
38317
38318
38319
38320
38321
38322
38323
38324
38325
38326
38327
38328
38329
38330
38331
38332
38333
38334
38335
38336
38337
38338
38339
38340
38341
38342
38343
38344
38345
38346
38347
38348
38349
38350
38351
38352
38353
38354
38355
38356
38357
38358
38359
38360
38361
38362
38363
38364
38365
38366
38367
38368
38369
38370
38371
38372
38373
38374
38375
38376
38377
38378
38379
38380
38381
38382
38383
38384
38385
38386
38387
38388
38389
38390
38391
38392
38393
38394
38395
38396
38397
38398
38399
38400
38401
38402
38403
38404
38405
38406
38407
38408
38409
38410
38411
38412
38413
38414
38415
38416
38417
38418
38419
38420
38421
38422
38423
38424
38425
38426
38427
38428
38429
38430
38431
38432
38433
38434
38435
38436
38437
38438
38439
38440
38441
38442
38443
38444
38445
38446
38447
38448
38449
38450
38451
38452
38453
38454
38455
38456
38457
38458
38459
38460
38461
38462
38463
38464
38465
38466
38467
38468
38469
38470
38471
38472
38473
38474
38475
38476
38477
38478
38479
38480
38481
38482
38483
38484
38485
38486
38487
38488
38489
38490
38491
38492
38493
38494
38495
38496
38497
38498
38499
38500
38501
38502
38503
38504
38505
38506
38507
38508
38509
38510
38511
38512
38513
38514
38515
38516
38517
38518
38519
38520
38521
38522
38523
38524
38525
38526
38527
38528
38529
38530
38531
38532
38533
38534
38535
38536
38537
38538
38539
38540
38541
38542
38543
38544
38545
38546
38547
38548
38549
38550
38551
38552
38553
38554
38555
38556
38557
38558
38559
38560
38561
38562
38563
38564
38565
38566
38567
38568
38569
38570
38571
38572
38573
38574
38575
38576
38577
38578
38579
38580
38581
38582
38583
38584
38585
38586
38587
38588
38589
38590
38591
38592
38593
38594
38595
38596
38597
38598
38599
38600
38601
38602
38603
38604
38605
38606
38607
38608
38609
38610
38611
38612
38613
38614
38615
38616
38617
38618
38619
38620
38621
38622
38623
38624
38625
38626
38627
38628
38629
38630
38631
38632
38633
38634
38635
38636
38637
38638
38639
38640
38641
38642
38643
38644
38645
38646
38647
38648
38649
38650
38651
38652
38653
38654
38655
38656
38657
38658
38659
38660
38661
38662
38663
38664
38665
38666
38667
38668
38669
38670
38671
38672
38673
38674
38675
38676
38677
38678
38679
38680
38681
38682
38683
38684
38685
38686
38687
38688
38689
38690
38691
38692
38693
38694
38695
38696
38697
38698
38699
38700
38701
38702
38703
38704
38705
38706
38707
38708
38709
38710
38711
38712
38713
38714
38715
38716
38717
38718
38719
38720
38721
38722
38723
38724
38725
38726
38727
38728
38729
38730
38731
38732
38733
38734
38735
38736
38737
38738
38739
38740
38741
38742
38743
38744
38745
38746
38747
38748
38749
38750
38751
38752
38753
38754
38755
38756
38757
38758
38759
38760
38761
38762
38763
38764
38765
38766
38767
38768
38769
38770
38771
38772
38773
38774
38775
38776
38777
38778
38779
38780
38781
38782
38783
38784
38785
38786
38787
38788
38789
38790
38791
38792
38793
38794
38795
38796
38797
38798
38799
38800
38801
38802
38803
38804
38805
38806
38807
38808
38809
38810
38811
38812
38813
38814
38815
38816
38817
38818
38819
38820
38821
38822
38823
38824
38825
38826
38827
38828
38829
38830
38831
38832
38833
38834
38835
38836
38837
38838
38839
38840
38841
38842
38843
38844
38845
38846
38847
38848
38849
38850
38851
38852
38853
38854
38855
38856
38857
38858
38859
38860
38861
38862
38863
38864
38865
38866
38867
38868
38869
38870
38871
38872
38873
38874
38875
38876
38877
38878
38879
38880
38881
38882
38883
38884
38885
38886
38887
38888
38889
38890
38891
38892
38893
38894
38895
38896
38897
38898
38899
38900
38901
38902
38903
38904
38905
38906
38907
38908
38909
38910
38911
38912
38913
38914
38915
38916
38917
38918
38919
38920
38921
38922
38923
38924
38925
38926
38927
38928
38929
38930
38931
38932
38933
38934
38935
38936
38937
38938
38939
38940
38941
38942
38943
38944
38945
38946
38947
38948
38949
38950
38951
38952
38953
38954
38955
38956
38957
38958
38959
38960
38961
38962
38963
38964
38965
38966
38967
38968
38969
38970
38971
38972
38973
38974
38975
38976
38977
38978
38979
38980
38981
38982
38983
38984
38985
38986
38987
38988
38989
38990
38991
38992
38993
38994
38995
38996
38997
38998
38999
39000
39001
39002
39003
39004
39005
39006
39007
39008
39009
39010
39011
39012
39013
39014
39015
39016
39017
39018
39019
39020
39021
39022
39023
39024
39025
39026
39027
39028
39029
39030
39031
39032
39033
39034
39035
39036
39037
39038
39039
39040
39041
39042
39043
39044
39045
39046
39047
39048
39049
39050
39051
39052
39053
39054
39055
39056
39057
39058
39059
39060
39061
39062
39063
39064
39065
39066
39067
39068
39069
39070
39071
39072
39073
39074
39075
39076
39077
39078
39079
39080
39081
39082
39083
39084
39085
39086
39087
39088
39089
39090
39091
39092
39093
39094
39095
39096
39097
39098
39099
39100
39101
39102
39103
39104
39105
39106
39107
39108
39109
39110
39111
39112
39113
39114
39115
39116
39117
39118
39119
39120
39121
39122
39123
39124
39125
39126
39127
39128
39129
39130
39131
39132
39133
39134
39135
39136
39137
39138
39139
39140
39141
39142
39143
39144
39145
39146
39147
39148
39149
39150
39151
39152
39153
39154
39155
39156
39157
39158
39159
39160
39161
39162
39163
39164
39165
39166
39167
39168
39169
39170
39171
39172
39173
39174
39175
39176
39177
39178
39179
39180
39181
39182
39183
39184
39185
39186
39187
39188
39189
39190
39191
39192
39193
39194
39195
39196
39197
39198
39199
39200
39201
39202
39203
39204
39205
39206
39207
39208
39209
39210
39211
39212
39213
39214
39215
39216
39217
39218
39219
39220
39221
39222
39223
39224
39225
39226
39227
39228
39229
39230
39231
39232
39233
39234
39235
39236
39237
39238
39239
39240
39241
39242
39243
39244
39245
39246
39247
39248
39249
39250
39251
39252
39253
39254
39255
39256
39257
39258
39259
39260
39261
39262
39263
39264
39265
39266
39267
39268
39269
39270
39271
39272
39273
39274
39275
39276
39277
39278
39279
39280
39281
39282
39283
39284
39285
39286
39287
39288
39289
39290
39291
39292
39293
39294
39295
39296
39297
39298
39299
39300
39301
39302
39303
39304
39305
39306
39307
39308
39309
39310
39311
39312
39313
39314
39315
39316
39317
39318
39319
39320
39321
39322
39323
39324
39325
39326
39327
39328
39329
39330
39331
39332
39333
39334
39335
39336
39337
39338
39339
39340
39341
39342
39343
39344
39345
39346
39347
39348
39349
39350
39351
39352
39353
39354
39355
39356
39357
39358
39359
39360
39361
39362
39363
39364
39365
39366
39367
39368
39369
39370
39371
39372
39373
39374
39375
39376
39377
39378
39379
39380
39381
39382
39383
39384
39385
39386
39387
39388
39389
39390
39391
39392
39393
39394
39395
39396
39397
39398
39399
39400
39401
39402
39403
39404
39405
39406
39407
39408
39409
39410
39411
39412
39413
39414
39415
39416
39417
39418
39419
39420
39421
39422
39423
39424
39425
39426
39427
39428
39429
39430
39431
39432
39433
39434
39435
39436
39437
39438
39439
39440
39441
39442
39443
39444
39445
39446
39447
39448
39449
39450
39451
39452
39453
39454
39455
39456
39457
39458
39459
39460
39461
39462
39463
39464
39465
39466
39467
39468
39469
39470
39471
39472
39473
39474
39475
39476
39477
39478
39479
39480
39481
39482
39483
39484
39485
39486
39487
39488
39489
39490
39491
39492
39493
39494
39495
39496
39497
39498
39499
39500
39501
39502
39503
39504
39505
39506
39507
39508
39509
39510
39511
39512
39513
39514
39515
39516
39517
39518
39519
39520
39521
39522
39523
39524
39525
39526
39527
39528
39529
39530
39531
39532
39533
39534
39535
39536
39537
39538
39539
39540
39541
39542
39543
39544
39545
39546
39547
39548
39549
39550
39551
39552
39553
39554
39555
39556
39557
39558
39559
39560
39561
39562
39563
39564
39565
39566
39567
39568
39569
39570
39571
39572
39573
39574
39575
39576
39577
39578
39579
39580
39581
39582
39583
39584
39585
39586
39587
39588
39589
39590
39591
39592
39593
39594
39595
39596
39597
39598
39599
39600
39601
39602
39603
39604
39605
39606
39607
39608
39609
39610
39611
39612
39613
39614
39615
39616
39617
39618
39619
39620
39621
39622
39623
39624
39625
39626
39627
39628
39629
39630
39631
39632
39633
39634
39635
39636
39637
39638
39639
39640
39641
39642
39643
39644
39645
39646
39647
39648
39649
39650
39651
39652
39653
39654
39655
39656
39657
39658
39659
39660
39661
39662
39663
39664
39665
39666
39667
39668
39669
39670
39671
39672
39673
39674
39675
39676
39677
39678
39679
39680
39681
39682
39683
39684
39685
39686
39687
39688
39689
39690
39691
39692
39693
39694
39695
39696
39697
39698
39699
39700
39701
39702
39703
39704
39705
39706
39707
39708
39709
39710
39711
39712
39713
39714
39715
39716
39717
39718
39719
39720
39721
39722
39723
39724
39725
39726
39727
39728
39729
39730
39731
39732
39733
39734
39735
39736
39737
39738
39739
39740
39741
39742
39743
39744
39745
39746
39747
39748
39749
39750
39751
39752
39753
39754
39755
39756
39757
39758
39759
39760
39761
39762
39763
39764
39765
39766
39767
39768
39769
39770
39771
39772
39773
39774
39775
39776
39777
39778
39779
39780
39781
39782
39783
39784
39785
39786
39787
39788
39789
39790
39791
39792
39793
39794
39795
39796
39797
39798
39799
39800
39801
39802
39803
39804
39805
39806
39807
39808
39809
39810
39811
39812
39813
39814
39815
39816
39817
39818
39819
39820
39821
39822
39823
39824
39825
39826
39827
39828
39829
39830
39831
39832
39833
39834
39835
39836
39837
39838
39839
39840
39841
39842
39843
39844
39845
39846
39847
39848
39849
39850
39851
39852
39853
39854
39855
39856
39857
39858
39859
39860
39861
39862
39863
39864
39865
39866
39867
39868
39869
39870
39871
39872
39873
39874
39875
39876
39877
39878
39879
39880
39881
39882
39883
39884
39885
39886
39887
39888
39889
39890
39891
39892
39893
39894
39895
39896
39897
39898
39899
39900
39901
39902
39903
39904
39905
39906
39907
39908
39909
39910
39911
39912
39913
39914
39915
39916
39917
39918
39919
39920
39921
39922
39923
39924
39925
39926
39927
39928
39929
39930
39931
39932
39933
39934
39935
39936
39937
39938
39939
39940
39941
39942
39943
39944
39945
39946
39947
39948
39949
39950
39951
39952
39953
39954
39955
39956
39957
39958
39959
39960
39961
39962
39963
39964
39965
39966
39967
39968
39969
39970
39971
39972
39973
39974
39975
39976
39977
39978
39979
39980
39981
39982
39983
39984
39985
39986
39987
39988
39989
39990
39991
39992
39993
39994
39995
39996
39997
39998
39999
40000
40001
40002
40003
40004
40005
40006
40007
40008
40009
40010
40011
40012
40013
40014
40015
40016
40017
40018
40019
40020
40021
40022
40023
40024
40025
40026
40027
40028
40029
40030
40031
40032
40033
40034
40035
40036
40037
40038
40039
40040
40041
40042
40043
40044
40045
40046
40047
40048
40049
40050
40051
40052
40053
40054
40055
40056
40057
40058
40059
40060
40061
40062
40063
40064
40065
40066
40067
40068
40069
40070
40071
40072
40073
40074
40075
40076
40077
40078
40079
40080
40081
40082
40083
40084
40085
40086
40087
40088
40089
40090
40091
40092
40093
40094
40095
40096
40097
40098
40099
40100
40101
40102
40103
40104
40105
40106
40107
40108
40109
40110
40111
40112
40113
40114
40115
40116
40117
40118
40119
40120
40121
40122
40123
40124
40125
40126
40127
40128
40129
40130
40131
40132
40133
40134
40135
40136
40137
40138
40139
40140
40141
40142
40143
40144
40145
40146
40147
40148
40149
40150
40151
40152
40153
40154
40155
40156
40157
40158
40159
40160
40161
40162
40163
40164
40165
40166
40167
40168
40169
40170
40171
40172
40173
40174
40175
40176
40177
40178
40179
40180
40181
40182
40183
40184
40185
40186
40187
40188
40189
40190
40191
40192
40193
40194
40195
40196
40197
40198
40199
40200
40201
40202
40203
40204
40205
40206
40207
40208
40209
40210
40211
40212
40213
40214
40215
40216
40217
40218
40219
40220
40221
40222
40223
40224
40225
40226
40227
40228
40229
40230
40231
40232
40233
40234
40235
40236
40237
40238
40239
40240
40241
40242
40243
40244
40245
40246
40247
40248
40249
40250
40251
40252
40253
40254
40255
40256
40257
40258
40259
40260
40261
40262
40263
40264
40265
40266
40267
40268
40269
40270
40271
40272
40273
40274
40275
40276
40277
40278
40279
40280
40281
40282
40283
40284
40285
40286
40287
40288
40289
40290
40291
40292
40293
40294
40295
40296
40297
40298
40299
40300
40301
40302
40303
40304
40305
40306
40307
40308
40309
40310
40311
40312
40313
40314
40315
40316
40317
40318
40319
40320
40321
40322
40323
40324
40325
40326
40327
40328
40329
40330
40331
40332
40333
40334
40335
40336
40337
40338
40339
40340
40341
40342
40343
40344
40345
40346
40347
40348
40349
40350
40351
40352
40353
40354
40355
40356
40357
40358
40359
40360
40361
40362
40363
40364
40365
40366
40367
40368
40369
40370
40371
40372
40373
40374
40375
40376
40377
40378
40379
40380
40381
40382
40383
40384
40385
40386
40387
40388
40389
40390
40391
40392
40393
40394
40395
40396
40397
40398
40399
40400
40401
40402
40403
40404
40405
40406
40407
40408
40409
40410
40411
40412
40413
40414
40415
40416
40417
40418
40419
40420
40421
40422
40423
40424
40425
40426
40427
40428
40429
40430
40431
40432
40433
40434
40435
40436
40437
40438
40439
40440
40441
40442
40443
40444
40445
40446
40447
40448
40449
40450
40451
40452
40453
40454
40455
40456
40457
40458
40459
40460
40461
40462
40463
40464
40465
40466
40467
40468
40469
40470
40471
40472
40473
40474
40475
40476
40477
40478
40479
40480
40481
40482
40483
40484
40485
40486
40487
40488
40489
40490
40491
40492
40493
40494
40495
40496
40497
40498
40499
40500
40501
40502
40503
40504
40505
40506
40507
40508
40509
40510
40511
40512
40513
40514
40515
40516
40517
40518
40519
40520
40521
40522
40523
40524
40525
40526
40527
40528
40529
40530
40531
40532
40533
40534
40535
40536
40537
40538
40539
40540
40541
40542
40543
40544
40545
40546
40547
40548
40549
40550
40551
40552
40553
40554
40555
40556
40557
40558
40559
40560
40561
40562
40563
40564
40565
40566
40567
40568
40569
40570
40571
40572
40573
40574
40575
40576
40577
40578
40579
40580
40581
40582
40583
40584
40585
40586
40587
40588
40589
40590
40591
40592
40593
40594
40595
40596
40597
40598
40599
40600
40601
40602
40603
40604
40605
40606
40607
40608
40609
40610
40611
40612
40613
40614
40615
40616
40617
40618
40619
40620
40621
40622
40623
40624
40625
40626
40627
40628
40629
40630
40631
40632
40633
40634
40635
40636
40637
40638
40639
40640
40641
40642
40643
40644
40645
40646
40647
40648
40649
40650
40651
40652
40653
40654
40655
40656
40657
40658
40659
40660
40661
40662
40663
40664
40665
40666
40667
40668
40669
40670
40671
40672
40673
40674
40675
40676
40677
40678
40679
40680
40681
40682
40683
40684
40685
40686
40687
40688
40689
40690
40691
40692
40693
40694
40695
40696
40697
40698
40699
40700
40701
40702
40703
40704
40705
40706
40707
40708
40709
40710
40711
40712
40713
40714
40715
40716
40717
40718
40719
40720
40721
40722
40723
40724
40725
40726
40727
40728
40729
40730
40731
40732
40733
40734
40735
40736
40737
40738
40739
40740
40741
40742
40743
40744
40745
40746
40747
40748
40749
40750
40751
40752
40753
40754
40755
40756
40757
40758
40759
40760
40761
40762
40763
40764
40765
40766
40767
40768
40769
40770
40771
40772
40773
40774
40775
40776
40777
40778
40779
40780
40781
40782
40783
40784
40785
40786
40787
40788
40789
40790
40791
40792
40793
40794
40795
40796
40797
40798
40799
40800
40801
40802
40803
40804
40805
40806
40807
40808
40809
40810
40811
40812
40813
40814
40815
40816
40817
40818
40819
40820
40821
40822
40823
40824
40825
40826
40827
40828
40829
40830
40831
40832
40833
40834
40835
40836
40837
40838
40839
40840
40841
40842
40843
40844
40845
40846
40847
40848
40849
40850
40851
40852
40853
40854
40855
40856
40857
40858
40859
40860
40861
40862
40863
40864
40865
40866
40867
40868
40869
40870
40871
40872
40873
40874
40875
40876
40877
40878
40879
40880
40881
40882
40883
40884
40885
40886
40887
40888
40889
40890
40891
40892
40893
40894
40895
40896
40897
40898
40899
40900
40901
40902
40903
40904
40905
40906
40907
40908
40909
40910
40911
40912
40913
40914
40915
40916
40917
40918
40919
40920
40921
40922
40923
40924
40925
40926
40927
40928
40929
40930
40931
40932
40933
40934
40935
40936
40937
40938
40939
40940
40941
40942
40943
40944
40945
40946
40947
40948
40949
40950
40951
40952
40953
40954
40955
40956
40957
40958
40959
40960
40961
40962
40963
40964
40965
40966
40967
40968
40969
40970
40971
40972
40973
40974
40975
40976
40977
40978
40979
40980
40981
40982
40983
40984
40985
40986
40987
40988
40989
40990
40991
40992
40993
40994
40995
40996
40997
40998
40999
41000
41001
41002
41003
41004
41005
41006
41007
41008
41009
41010
41011
41012
41013
41014
41015
41016
41017
41018
41019
41020
41021
41022
41023
41024
41025
41026
41027
41028
41029
41030
41031
41032
41033
41034
41035
41036
41037
41038
41039
41040
41041
41042
41043
41044
41045
41046
41047
41048
41049
41050
41051
41052
41053
41054
41055
41056
41057
41058
41059
41060
41061
41062
41063
41064
41065
41066
41067
41068
41069
41070
41071
41072
41073
41074
41075
41076
41077
41078
41079
41080
41081
41082
41083
41084
41085
41086
41087
41088
41089
41090
41091
41092
41093
41094
41095
41096
41097
41098
41099
41100
41101
41102
41103
41104
41105
41106
41107
41108
41109
41110
41111
41112
41113
41114
41115
41116
41117
41118
41119
41120
41121
41122
41123
41124
41125
41126
41127
41128
41129
41130
41131
41132
41133
41134
41135
41136
41137
41138
41139
41140
41141
41142
41143
41144
41145
41146
41147
41148
41149
41150
41151
41152
41153
41154
41155
41156
41157
41158
41159
41160
41161
41162
41163
41164
41165
41166
41167
41168
41169
41170
41171
41172
41173
41174
41175
41176
41177
41178
41179
41180
41181
41182
41183
41184
41185
41186
41187
41188
41189
41190
41191
41192
41193
41194
41195
41196
41197
41198
41199
41200
41201
41202
41203
41204
41205
41206
41207
41208
41209
41210
41211
41212
41213
41214
41215
41216
41217
41218
41219
41220
41221
41222
41223
41224
41225
41226
41227
41228
41229
41230
41231
41232
41233
41234
41235
41236
41237
41238
41239
41240
41241
41242
41243
41244
41245
41246
41247
41248
41249
41250
41251
41252
41253
41254
41255
41256
41257
41258
41259
41260
41261
41262
41263
41264
41265
41266
41267
41268
41269
41270
41271
41272
41273
41274
41275
41276
41277
41278
41279
41280
41281
41282
41283
41284
41285
41286
41287
41288
41289
41290
41291
41292
41293
41294
41295
41296
41297
41298
41299
41300
41301
41302
41303
41304
41305
41306
41307
41308
41309
41310
41311
41312
41313
41314
41315
41316
41317
41318
41319
41320
41321
41322
41323
41324
41325
41326
41327
41328
41329
41330
41331
41332
41333
41334
41335
41336
41337
41338
41339
41340
41341
41342
41343
41344
41345
41346
41347
41348
41349
41350
41351
41352
41353
41354
41355
41356
41357
41358
41359
41360
41361
41362
41363
41364
41365
41366
41367
41368
41369
41370
41371
41372
41373
41374
41375
41376
41377
41378
41379
41380
41381
41382
41383
41384
41385
41386
41387
41388
41389
41390
41391
41392
41393
41394
41395
41396
41397
41398
41399
41400
41401
41402
41403
41404
41405
41406
41407
41408
41409
41410
41411
41412
41413
41414
41415
41416
41417
41418
41419
41420
41421
41422
41423
41424
41425
41426
41427
41428
41429
41430
41431
41432
41433
41434
41435
41436
41437
41438
41439
41440
41441
41442
41443
41444
41445
41446
41447
41448
41449
41450
41451
41452
41453
41454
41455
41456
41457
41458
41459
41460
41461
41462
41463
41464
41465
41466
41467
41468
41469
41470
41471
41472
41473
41474
41475
41476
41477
41478
41479
41480
41481
41482
41483
41484
41485
41486
41487
41488
41489
41490
41491
41492
41493
41494
41495
41496
41497
41498
41499
41500
41501
41502
41503
41504
41505
41506
41507
41508
41509
41510
41511
41512
41513
41514
41515
41516
41517
41518
41519
41520
41521
41522
41523
41524
41525
41526
41527
41528
41529
41530
41531
41532
41533
41534
41535
41536
41537
41538
41539
41540
41541
41542
41543
41544
41545
41546
41547
41548
41549
41550
41551
41552
41553
41554
41555
41556
41557
41558
41559
41560
41561
41562
41563
41564
41565
41566
41567
41568
41569
41570
41571
41572
41573
41574
41575
41576
41577
41578
41579
41580
41581
41582
41583
41584
41585
41586
41587
41588
41589
41590
41591
41592
41593
41594
41595
41596
41597
41598
41599
41600
41601
41602
41603
41604
41605
41606
41607
41608
41609
41610
41611
41612
41613
41614
41615
41616
41617
41618
41619
41620
41621
41622
41623
41624
41625
41626
41627
41628
41629
41630
41631
41632
41633
41634
41635
41636
41637
41638
41639
41640
41641
41642
41643
41644
41645
41646
41647
41648
41649
41650
41651
41652
41653
41654
41655
41656
41657
41658
41659
41660
41661
41662
41663
41664
41665
41666
41667
41668
41669
41670
41671
41672
41673
41674
41675
41676
41677
41678
41679
41680
41681
41682
41683
41684
41685
41686
41687
41688
41689
41690
41691
41692
41693
41694
41695
41696
41697
41698
41699
41700
41701
41702
41703
41704
41705
41706
41707
41708
41709
41710
41711
41712
41713
41714
41715
41716
41717
41718
41719
41720
41721
41722
41723
41724
41725
41726
41727
41728
41729
41730
41731
41732
41733
41734
41735
41736
41737
41738
41739
41740
41741
41742
41743
41744
41745
41746
41747
41748
41749
41750
41751
41752
41753
41754
41755
41756
41757
41758
41759
41760
41761
41762
41763
41764
41765
41766
41767
41768
41769
41770
41771
41772
41773
41774
41775
41776
41777
41778
41779
41780
41781
41782
41783
41784
41785
41786
41787
41788
41789
41790
41791
41792
41793
41794
41795
41796
41797
41798
41799
41800
41801
41802
41803
41804
41805
41806
41807
41808
41809
41810
41811
41812
41813
41814
41815
41816
41817
41818
41819
41820
41821
41822
41823
41824
41825
41826
41827
41828
41829
41830
41831
41832
41833
41834
41835
41836
41837
41838
41839
41840
41841
41842
41843
41844
41845
41846
41847
41848
41849
41850
41851
41852
41853
41854
41855
41856
41857
41858
41859
41860
41861
41862
41863
41864
41865
41866
41867
41868
41869
41870
41871
41872
41873
41874
41875
41876
41877
41878
41879
41880
41881
41882
41883
41884
41885
41886
41887
41888
41889
41890
41891
41892
41893
41894
41895
41896
41897
41898
41899
41900
41901
41902
41903
41904
41905
41906
41907
41908
41909
41910
41911
41912
41913
41914
41915
41916
41917
41918
41919
41920
41921
41922
41923
41924
41925
41926
41927
41928
41929
41930
41931
41932
41933
41934
41935
41936
41937
41938
41939
41940
41941
41942
41943
41944
41945
41946
41947
41948
41949
41950
41951
41952
41953
41954
41955
41956
41957
41958
41959
41960
41961
41962
41963
41964
41965
41966
41967
41968
41969
41970
41971
41972
41973
41974
41975
41976
41977
41978
41979
41980
41981
41982
41983
41984
41985
41986
41987
41988
41989
41990
41991
41992
41993
41994
41995
41996
41997
41998
41999
42000
42001
42002
42003
42004
42005
42006
42007
42008
42009
42010
42011
42012
42013
42014
42015
42016
42017
42018
42019
42020
42021
42022
42023
42024
42025
42026
42027
42028
42029
42030
42031
42032
42033
42034
42035
42036
42037
42038
42039
42040
42041
42042
42043
42044
42045
42046
42047
42048
42049
42050
42051
42052
42053
42054
42055
42056
42057
42058
42059
42060
42061
42062
42063
42064
42065
42066
42067
42068
42069
42070
42071
42072
42073
42074
42075
42076
42077
42078
42079
42080
42081
42082
42083
42084
42085
42086
42087
42088
42089
42090
42091
42092
42093
42094
42095
42096
42097
42098
42099
42100
42101
42102
42103
42104
42105
42106
42107
42108
42109
42110
42111
42112
42113
42114
42115
42116
42117
42118
42119
42120
42121
42122
42123
42124
42125
42126
42127
42128
42129
42130
42131
42132
42133
42134
42135
42136
42137
42138
42139
42140
42141
42142
42143
42144
42145
42146
42147
42148
42149
42150
42151
42152
42153
42154
42155
42156
42157
42158
42159
42160
42161
42162
42163
42164
42165
42166
42167
42168
42169
42170
42171
42172
42173
42174
42175
42176
42177
42178
42179
42180
42181
42182
42183
42184
42185
42186
42187
42188
42189
42190
42191
42192
42193
42194
42195
42196
42197
42198
42199
42200
42201
42202
42203
42204
42205
42206
42207
42208
42209
42210
42211
42212
42213
42214
42215
42216
42217
42218
42219
42220
42221
42222
42223
42224
42225
42226
42227
42228
42229
42230
42231
42232
42233
42234
42235
42236
42237
42238
42239
42240
42241
42242
42243
42244
42245
42246
42247
42248
42249
42250
42251
42252
42253
42254
42255
42256
42257
42258
42259
42260
42261
42262
42263
42264
42265
42266
42267
42268
42269
42270
42271
42272
42273
42274
42275
42276
42277
42278
42279
42280
42281
42282
42283
42284
42285
42286
42287
42288
42289
42290
42291
42292
42293
42294
42295
42296
42297
42298
42299
42300
42301
42302
42303
42304
42305
42306
42307
42308
42309
42310
42311
42312
42313
42314
42315
42316
42317
42318
42319
42320
42321
42322
42323
42324
42325
42326
42327
42328
42329
42330
42331
42332
42333
42334
42335
42336
42337
42338
42339
42340
42341
42342
42343
42344
42345
42346
42347
42348
42349
42350
42351
42352
42353
42354
42355
42356
42357
42358
42359
42360
42361
42362
42363
42364
42365
42366
42367
42368
42369
42370
42371
42372
42373
42374
42375
42376
42377
42378
42379
42380
42381
42382
42383
42384
42385
42386
42387
42388
42389
42390
42391
42392
42393
42394
42395
42396
42397
42398
42399
42400
42401
42402
42403
42404
42405
42406
42407
42408
42409
42410
42411
42412
42413
42414
42415
42416
42417
42418
42419
42420
42421
42422
42423
42424
42425
42426
42427
42428
42429
42430
42431
42432
42433
42434
42435
42436
42437
42438
42439
42440
42441
42442
42443
42444
42445
42446
42447
42448
42449
42450
42451
42452
42453
42454
42455
42456
42457
42458
42459
42460
42461
42462
42463
42464
42465
42466
42467
42468
42469
42470
42471
42472
42473
42474
42475
42476
42477
42478
42479
42480
42481
42482
42483
42484
42485
42486
42487
42488
42489
42490
42491
42492
42493
42494
42495
42496
42497
42498
42499
42500
42501
42502
42503
42504
42505
42506
42507
42508
42509
42510
42511
42512
42513
42514
42515
42516
42517
42518
42519
42520
42521
42522
42523
42524
42525
42526
42527
42528
42529
42530
42531
42532
42533
42534
42535
42536
42537
42538
42539
42540
42541
42542
42543
42544
42545
42546
42547
42548
42549
42550
42551
42552
42553
42554
42555
42556
42557
42558
42559
42560
42561
42562
42563
42564
42565
42566
42567
42568
42569
42570
42571
42572
42573
42574
42575
42576
42577
42578
42579
42580
42581
42582
42583
42584
42585
42586
42587
42588
42589
42590
42591
42592
42593
42594
42595
42596
42597
42598
42599
42600
42601
42602
42603
42604
42605
42606
42607
42608
42609
42610
42611
42612
42613
42614
42615
42616
42617
42618
42619
42620
42621
42622
42623
42624
42625
42626
42627
42628
42629
42630
42631
42632
42633
42634
42635
42636
42637
42638
42639
42640
42641
42642
42643
42644
42645
42646
42647
42648
42649
42650
42651
42652
42653
42654
42655
42656
42657
42658
42659
42660
42661
42662
42663
42664
42665
42666
42667
42668
42669
42670
42671
42672
42673
42674
42675
42676
42677
42678
42679
42680
42681
42682
42683
42684
42685
42686
42687
42688
42689
42690
42691
42692
42693
42694
42695
42696
42697
42698
42699
42700
42701
42702
42703
42704
42705
42706
42707
42708
42709
42710
42711
42712
42713
42714
42715
42716
42717
42718
42719
42720
42721
42722
42723
42724
42725
42726
42727
42728
42729
42730
42731
42732
42733
42734
42735
42736
42737
42738
42739
42740
42741
42742
42743
42744
42745
42746
42747
42748
42749
42750
42751
42752
42753
42754
42755
42756
42757
42758
42759
42760
42761
42762
42763
42764
42765
42766
42767
42768
42769
42770
42771
42772
42773
42774
42775
42776
42777
42778
42779
42780
42781
42782
42783
42784
42785
42786
42787
42788
42789
42790
42791
42792
42793
42794
42795
42796
42797
42798
42799
42800
42801
42802
42803
42804
42805
42806
42807
42808
42809
42810
42811
42812
42813
42814
42815
42816
42817
42818
42819
42820
42821
42822
42823
42824
42825
42826
42827
42828
42829
42830
42831
42832
42833
42834
42835
42836
42837
42838
42839
42840
42841
42842
42843
42844
42845
42846
42847
42848
42849
42850
42851
42852
42853
42854
42855
42856
42857
42858
42859
42860
42861
42862
42863
42864
42865
42866
42867
42868
42869
42870
42871
42872
42873
42874
42875
42876
42877
42878
42879
42880
42881
42882
42883
42884
42885
42886
42887
42888
42889
42890
42891
42892
42893
42894
42895
42896
42897
42898
42899
42900
42901
42902
42903
42904
42905
42906
42907
42908
42909
42910
42911
42912
42913
42914
42915
42916
42917
42918
42919
42920
42921
42922
42923
42924
42925
42926
42927
42928
42929
42930
42931
42932
42933
42934
42935
42936
42937
42938
42939
42940
42941
42942
42943
42944
42945
42946
42947
42948
42949
42950
42951
42952
42953
42954
42955
42956
42957
42958
42959
42960
42961
42962
42963
42964
42965
42966
42967
42968
42969
42970
42971
42972
42973
42974
42975
42976
42977
42978
42979
42980
42981
42982
42983
42984
42985
42986
42987
42988
42989
42990
42991
42992
42993
42994
42995
42996
42997
42998
42999
43000
43001
43002
43003
43004
43005
43006
43007
43008
43009
43010
43011
43012
43013
43014
43015
43016
43017
43018
43019
43020
43021
43022
43023
43024
43025
43026
43027
43028
43029
43030
43031
43032
43033
43034
43035
43036
43037
43038
43039
43040
43041
43042
43043
43044
43045
43046
43047
43048
43049
43050
43051
43052
43053
43054
43055
43056
43057
43058
43059
43060
43061
43062
43063
43064
43065
43066
43067
43068
43069
43070
43071
43072
43073
43074
43075
43076
43077
43078
43079
43080
43081
43082
43083
43084
43085
43086
43087
43088
43089
43090
43091
43092
43093
43094
43095
43096
43097
43098
43099
43100
43101
43102
43103
43104
43105
43106
43107
43108
43109
43110
43111
43112
43113
43114
43115
43116
43117
43118
43119
43120
43121
43122
43123
43124
43125
43126
43127
43128
43129
43130
43131
43132
43133
43134
43135
43136
43137
43138
43139
43140
43141
43142
43143
43144
43145
43146
43147
43148
43149
43150
43151
43152
43153
43154
43155
43156
43157
43158
43159
43160
43161
43162
43163
43164
43165
43166
43167
43168
43169
43170
43171
43172
43173
43174
43175
43176
43177
43178
43179
43180
43181
43182
43183
43184
43185
43186
43187
43188
43189
43190
43191
43192
43193
43194
43195
43196
43197
43198
43199
43200
43201
43202
43203
43204
43205
43206
43207
43208
43209
43210
43211
43212
43213
43214
43215
43216
43217
43218
43219
43220
43221
43222
43223
43224
43225
43226
43227
43228
43229
43230
43231
43232
43233
43234
43235
43236
43237
43238
43239
43240
43241
43242
43243
43244
43245
43246
43247
43248
43249
43250
43251
43252
43253
43254
43255
43256
43257
43258
43259
43260
43261
43262
43263
43264
43265
43266
43267
43268
43269
43270
43271
43272
43273
43274
43275
43276
43277
43278
43279
43280
43281
43282
43283
43284
43285
43286
43287
43288
43289
43290
43291
43292
43293
43294
43295
43296
43297
43298
43299
43300
43301
43302
43303
43304
43305
43306
43307
43308
43309
43310
43311
43312
43313
43314
43315
43316
43317
43318
43319
43320
43321
43322
43323
43324
43325
43326
43327
43328
43329
43330
43331
43332
43333
43334
43335
43336
43337
43338
43339
43340
43341
43342
43343
43344
43345
43346
43347
43348
43349
43350
43351
43352
43353
43354
43355
43356
43357
43358
43359
43360
43361
43362
43363
43364
43365
43366
43367
43368
43369
43370
43371
43372
43373
43374
43375
43376
43377
43378
43379
43380
43381
43382
43383
43384
43385
43386
43387
43388
43389
43390
43391
43392
43393
43394
43395
43396
43397
43398
43399
43400
43401
43402
43403
43404
43405
43406
43407
43408
43409
43410
43411
43412
43413
43414
43415
43416
43417
43418
43419
43420
43421
43422
43423
43424
43425
43426
43427
43428
43429
43430
43431
43432
43433
43434
43435
43436
43437
43438
43439
43440
43441
43442
43443
43444
43445
43446
43447
43448
43449
43450
43451
43452
43453
43454
43455
43456
43457
43458
43459
43460
43461
43462
43463
43464
43465
43466
43467
43468
43469
43470
43471
43472
43473
43474
43475
43476
43477
43478
43479
43480
43481
43482
43483
43484
43485
43486
43487
43488
43489
43490
43491
43492
43493
43494
43495
43496
43497
43498
43499
43500
43501
43502
43503
43504
43505
43506
43507
43508
43509
43510
43511
43512
43513
43514
43515
43516
43517
43518
43519
43520
43521
43522
43523
43524
43525
43526
43527
43528
43529
43530
43531
43532
43533
43534
43535
43536
43537
43538
43539
43540
43541
43542
43543
43544
43545
43546
43547
43548
43549
43550
43551
43552
43553
43554
43555
43556
43557
43558
43559
43560
43561
43562
43563
43564
43565
43566
43567
43568
43569
43570
43571
43572
43573
43574
43575
43576
43577
43578
43579
43580
43581
43582
43583
43584
43585
43586
43587
43588
43589
43590
43591
43592
43593
43594
43595
43596
43597
43598
43599
43600
43601
43602
43603
43604
43605
43606
43607
43608
43609
43610
43611
43612
43613
43614
43615
43616
43617
43618
43619
43620
43621
43622
43623
43624
43625
43626
43627
43628
43629
43630
43631
43632
43633
43634
43635
43636
43637
43638
43639
43640
43641
43642
43643
43644
43645
43646
43647
43648
43649
43650
43651
43652
43653
43654
43655
43656
43657
43658
43659
43660
43661
43662
43663
43664
43665
43666
43667
43668
43669
43670
43671
43672
43673
43674
43675
43676
43677
43678
43679
43680
43681
43682
43683
43684
43685
43686
43687
43688
43689
43690
43691
43692
43693
43694
43695
43696
43697
43698
43699
43700
43701
43702
43703
43704
43705
43706
43707
43708
43709
43710
43711
43712
43713
43714
43715
43716
43717
43718
43719
43720
43721
43722
43723
43724
43725
43726
43727
43728
43729
43730
43731
43732
43733
43734
43735
43736
43737
43738
43739
43740
43741
43742
43743
43744
43745
43746
43747
43748
43749
43750
43751
43752
43753
43754
43755
43756
43757
43758
43759
43760
43761
43762
43763
43764
43765
43766
43767
43768
43769
43770
43771
43772
43773
43774
43775
43776
43777
43778
43779
43780
43781
43782
43783
43784
43785
43786
43787
43788
43789
43790
43791
43792
43793
43794
43795
43796
43797
43798
43799
43800
43801
43802
43803
43804
43805
43806
43807
43808
43809
43810
43811
43812
43813
43814
43815
43816
43817
43818
43819
43820
43821
43822
43823
43824
43825
43826
43827
43828
43829
43830
43831
43832
43833
43834
43835
43836
43837
43838
43839
43840
43841
43842
43843
43844
43845
43846
43847
43848
43849
43850
43851
43852
43853
43854
43855
43856
43857
43858
43859
43860
43861
43862
43863
43864
43865
43866
43867
43868
43869
43870
43871
43872
43873
43874
43875
43876
43877
43878
43879
43880
43881
43882
43883
43884
43885
43886
43887
43888
43889
43890
43891
43892
43893
43894
43895
43896
43897
43898
43899
43900
43901
43902
43903
43904
43905
43906
43907
43908
43909
43910
43911
43912
43913
43914
43915
43916
43917
43918
43919
43920
43921
43922
43923
43924
43925
43926
43927
43928
43929
43930
43931
43932
43933
43934
43935
43936
43937
43938
43939
43940
43941
43942
43943
43944
43945
43946
43947
43948
43949
43950
43951
43952
43953
43954
43955
43956
43957
43958
43959
43960
43961
43962
43963
43964
43965
43966
43967
43968
43969
43970
43971
43972
43973
43974
43975
43976
43977
43978
43979
43980
43981
43982
43983
43984
43985
43986
43987
43988
43989
43990
43991
43992
43993
43994
43995
43996
43997
43998
43999
44000
44001
44002
44003
44004
44005
44006
44007
44008
44009
44010
44011
44012
44013
44014
44015
44016
44017
44018
44019
44020
44021
44022
44023
44024
44025
44026
44027
44028
44029
44030
44031
44032
44033
44034
44035
44036
44037
44038
44039
44040
44041
44042
44043
44044
44045
44046
44047
44048
44049
44050
44051
44052
44053
44054
44055
44056
44057
44058
44059
44060
44061
44062
44063
44064
44065
44066
44067
44068
44069
44070
44071
44072
44073
44074
44075
44076
44077
44078
44079
44080
44081
44082
44083
44084
44085
44086
44087
44088
44089
44090
44091
44092
44093
44094
44095
44096
44097
44098
44099
44100
44101
44102
44103
44104
44105
44106
44107
44108
44109
44110
44111
44112
44113
44114
44115
44116
44117
44118
44119
44120
44121
44122
44123
44124
44125
44126
44127
44128
44129
44130
44131
44132
44133
44134
44135
44136
44137
44138
44139
44140
44141
44142
44143
44144
44145
44146
44147
44148
44149
44150
44151
44152
44153
44154
44155
44156
44157
44158
44159
44160
44161
44162
44163
44164
44165
44166
44167
44168
44169
44170
44171
44172
44173
44174
44175
44176
44177
44178
44179
44180
44181
44182
44183
44184
44185
44186
44187
44188
44189
44190
44191
44192
44193
44194
44195
44196
44197
44198
44199
44200
44201
44202
44203
44204
44205
44206
44207
44208
44209
44210
44211
44212
44213
44214
44215
44216
44217
44218
44219
44220
44221
44222
44223
44224
44225
44226
44227
44228
44229
44230
44231
44232
44233
44234
44235
44236
44237
44238
44239
44240
44241
44242
44243
44244
44245
44246
44247
44248
44249
44250
44251
44252
44253
44254
44255
44256
44257
44258
44259
44260
44261
44262
44263
44264
44265
44266
44267
44268
44269
44270
44271
44272
44273
44274
44275
44276
44277
44278
44279
44280
44281
44282
44283
44284
44285
44286
44287
44288
44289
44290
44291
44292
44293
44294
44295
44296
44297
44298
44299
44300
44301
44302
44303
44304
44305
44306
44307
44308
44309
44310
44311
44312
44313
44314
44315
44316
44317
44318
44319
44320
44321
44322
44323
44324
44325
44326
44327
44328
44329
44330
44331
44332
44333
44334
44335
44336
44337
44338
44339
44340
44341
44342
44343
44344
44345
44346
44347
44348
44349
44350
44351
44352
44353
44354
44355
44356
44357
44358
44359
44360
44361
44362
44363
44364
44365
44366
44367
44368
44369
44370
44371
44372
44373
44374
44375
44376
44377
44378
44379
44380
44381
44382
44383
44384
44385
44386
44387
44388
44389
44390
44391
44392
44393
44394
44395
44396
44397
44398
44399
44400
44401
44402
44403
44404
44405
44406
44407
44408
44409
44410
44411
44412
44413
44414
44415
44416
44417
44418
44419
44420
44421
44422
44423
44424
44425
44426
44427
44428
44429
44430
44431
44432
44433
44434
44435
44436
44437
44438
44439
44440
44441
44442
44443
44444
44445
44446
44447
44448
44449
44450
44451
44452
44453
44454
44455
44456
44457
44458
44459
44460
44461
44462
44463
44464
44465
44466
44467
44468
44469
44470
44471
44472
44473
44474
44475
44476
44477
44478
44479
44480
44481
44482
44483
44484
44485
44486
44487
44488
44489
44490
44491
44492
44493
44494
44495
44496
44497
44498
44499
44500
44501
44502
44503
44504
44505
44506
44507
44508
44509
44510
44511
44512
44513
44514
44515
44516
44517
44518
44519
44520
44521
44522
44523
44524
44525
44526
44527
44528
44529
44530
44531
44532
44533
44534
44535
44536
44537
44538
44539
44540
44541
44542
44543
44544
44545
44546
44547
44548
44549
44550
44551
44552
44553
44554
44555
44556
44557
44558
44559
44560
44561
44562
44563
44564
44565
44566
44567
44568
44569
44570
44571
44572
44573
44574
44575
44576
44577
44578
44579
44580
44581
44582
44583
44584
44585
44586
44587
44588
44589
44590
44591
44592
44593
44594
44595
44596
44597
44598
44599
44600
44601
44602
44603
44604
44605
44606
44607
44608
44609
44610
44611
44612
44613
44614
44615
44616
44617
44618
44619
44620
44621
44622
44623
44624
44625
44626
44627
44628
44629
44630
44631
44632
44633
44634
44635
44636
44637
44638
44639
44640
44641
44642
44643
44644
44645
44646
44647
44648
44649
44650
44651
44652
44653
44654
44655
44656
44657
44658
44659
44660
44661
44662
44663
44664
44665
44666
44667
44668
44669
44670
44671
44672
44673
44674
44675
44676
44677
44678
44679
44680
44681
44682
44683
44684
44685
44686
44687
44688
44689
44690
44691
44692
44693
44694
44695
44696
44697
44698
44699
44700
44701
44702
44703
44704
44705
44706
44707
44708
44709
44710
44711
44712
44713
44714
44715
44716
44717
44718
44719
44720
44721
44722
44723
44724
44725
44726
44727
44728
44729
44730
44731
44732
44733
44734
44735
44736
44737
44738
44739
44740
44741
44742
44743
44744
44745
44746
44747
44748
44749
44750
44751
44752
44753
44754
44755
44756
44757
44758
44759
44760
44761
44762
44763
44764
44765
44766
44767
44768
44769
44770
44771
44772
44773
44774
44775
44776
44777
44778
44779
44780
44781
44782
44783
44784
44785
44786
44787
44788
44789
44790
44791
44792
44793
44794
44795
44796
44797
44798
44799
44800
44801
44802
44803
44804
44805
44806
44807
44808
44809
44810
44811
44812
44813
44814
44815
44816
44817
44818
44819
44820
44821
44822
44823
44824
44825
44826
44827
44828
44829
44830
44831
44832
44833
44834
44835
44836
44837
44838
44839
44840
44841
44842
44843
44844
44845
44846
44847
44848
44849
44850
44851
44852
44853
44854
44855
44856
44857
44858
44859
44860
44861
44862
44863
44864
44865
44866
44867
44868
44869
44870
44871
44872
44873
44874
44875
44876
44877
44878
44879
44880
44881
44882
44883
44884
44885
44886
44887
44888
44889
44890
44891
44892
44893
44894
44895
44896
44897
44898
44899
44900
44901
44902
44903
44904
44905
44906
44907
44908
44909
44910
44911
44912
44913
44914
44915
44916
44917
44918
44919
44920
44921
44922
44923
44924
44925
44926
44927
44928
44929
44930
44931
44932
44933
44934
44935
44936
44937
44938
44939
44940
44941
44942
44943
44944
44945
44946
44947
44948
44949
44950
44951
44952
44953
44954
44955
44956
44957
44958
44959
44960
44961
44962
44963
44964
44965
44966
44967
44968
44969
44970
44971
44972
44973
44974
44975
44976
44977
44978
44979
44980
44981
44982
44983
44984
44985
44986
44987
44988
44989
44990
44991
44992
44993
44994
44995
44996
44997
44998
44999
45000
45001
45002
45003
45004
45005
45006
45007
45008
45009
45010
45011
45012
45013
45014
45015
45016
45017
45018
45019
45020
45021
45022
45023
45024
45025
45026
45027
45028
45029
45030
45031
45032
45033
45034
45035
45036
45037
45038
45039
45040
45041
45042
45043
45044
45045
45046
45047
45048
45049
45050
45051
45052
45053
45054
45055
45056
45057
45058
45059
45060
45061
45062
45063
45064
45065
45066
45067
45068
45069
45070
45071
45072
45073
45074
45075
45076
45077
45078
45079
45080
45081
45082
45083
45084
45085
45086
45087
45088
45089
45090
45091
45092
45093
45094
45095
45096
45097
45098
45099
45100
45101
45102
45103
45104
45105
45106
45107
45108
45109
45110
45111
45112
45113
45114
45115
45116
45117
45118
45119
45120
45121
45122
45123
45124
45125
45126
45127
45128
45129
45130
45131
45132
45133
45134
45135
45136
45137
45138
45139
45140
45141
45142
45143
45144
45145
45146
45147
45148
45149
45150
45151
45152
45153
45154
45155
45156
45157
45158
45159
45160
45161
45162
45163
45164
45165
45166
45167
45168
45169
45170
45171
45172
45173
45174
45175
45176
45177
45178
45179
45180
45181
45182
45183
45184
45185
45186
45187
45188
45189
45190
45191
45192
45193
45194
45195
45196
45197
45198
45199
45200
45201
45202
45203
45204
45205
45206
45207
45208
45209
45210
45211
45212
45213
45214
45215
45216
45217
45218
45219
45220
45221
45222
45223
45224
45225
45226
45227
45228
45229
45230
45231
45232
45233
45234
45235
45236
45237
45238
45239
45240
45241
45242
45243
45244
45245
45246
45247
45248
45249
45250
45251
45252
45253
45254
45255
45256
45257
45258
45259
45260
45261
45262
45263
45264
45265
45266
45267
45268
45269
45270
45271
45272
45273
45274
45275
45276
45277
45278
45279
45280
45281
45282
45283
45284
45285
45286
45287
45288
45289
45290
45291
45292
45293
45294
45295
45296
45297
45298
45299
45300
45301
45302
45303
45304
45305
45306
45307
45308
45309
45310
45311
45312
45313
45314
45315
45316
45317
45318
45319
45320
45321
45322
45323
45324
45325
45326
45327
45328
45329
45330
45331
45332
45333
45334
45335
45336
45337
45338
45339
45340
45341
45342
45343
45344
45345
45346
45347
45348
45349
45350
45351
45352
45353
45354
45355
45356
45357
45358
45359
45360
45361
45362
45363
45364
45365
45366
45367
45368
45369
45370
45371
45372
45373
45374
45375
45376
45377
45378
45379
45380
45381
45382
45383
45384
45385
45386
45387
45388
45389
45390
45391
45392
45393
45394
45395
45396
45397
45398
45399
45400
45401
45402
45403
45404
45405
45406
45407
45408
45409
45410
45411
45412
45413
45414
45415
45416
45417
45418
45419
45420
45421
45422
45423
45424
45425
45426
45427
45428
45429
45430
45431
45432
45433
45434
45435
45436
45437
45438
45439
45440
45441
45442
45443
45444
45445
45446
45447
45448
45449
45450
45451
45452
45453
45454
45455
45456
45457
45458
45459
45460
45461
45462
45463
45464
45465
45466
45467
45468
45469
45470
45471
45472
45473
45474
45475
45476
45477
45478
45479
45480
45481
45482
45483
45484
45485
45486
45487
45488
45489
45490
45491
45492
45493
45494
45495
45496
45497
45498
45499
45500
45501
45502
45503
45504
45505
45506
45507
45508
45509
45510
45511
45512
45513
45514
45515
45516
45517
45518
45519
45520
45521
45522
45523
45524
45525
45526
45527
45528
45529
45530
45531
45532
45533
45534
45535
45536
45537
45538
45539
45540
45541
45542
45543
45544
45545
45546
45547
45548
45549
45550
45551
45552
45553
45554
45555
45556
45557
45558
45559
45560
45561
45562
45563
45564
45565
45566
45567
45568
45569
45570
45571
45572
45573
45574
45575
45576
45577
45578
45579
45580
45581
45582
45583
45584
45585
45586
45587
45588
45589
45590
45591
45592
45593
45594
45595
45596
45597
45598
45599
45600
45601
45602
45603
45604
45605
45606
45607
45608
45609
45610
45611
45612
45613
45614
45615
45616
45617
45618
45619
45620
45621
45622
45623
45624
45625
45626
45627
45628
45629
45630
45631
45632
45633
45634
45635
45636
45637
45638
45639
45640
45641
45642
45643
45644
45645
45646
45647
45648
45649
45650
45651
45652
45653
45654
45655
45656
45657
45658
45659
45660
45661
45662
45663
45664
45665
45666
45667
45668
45669
45670
45671
45672
45673
45674
45675
45676
45677
45678
45679
45680
45681
45682
45683
45684
45685
45686
45687
45688
45689
45690
45691
45692
45693
45694
45695
45696
45697
45698
45699
45700
45701
45702
45703
45704
45705
45706
45707
45708
45709
45710
45711
45712
45713
45714
45715
45716
45717
45718
45719
45720
45721
45722
45723
45724
45725
45726
45727
45728
45729
45730
45731
45732
45733
45734
45735
45736
45737
45738
45739
45740
45741
45742
45743
45744
45745
45746
45747
45748
45749
45750
45751
45752
45753
45754
45755
45756
45757
45758
45759
45760
45761
45762
45763
45764
45765
45766
45767
45768
45769
45770
45771
45772
45773
45774
45775
45776
45777
45778
45779
45780
45781
45782
45783
45784
45785
45786
45787
45788
45789
45790
45791
45792
45793
45794
45795
45796
45797
45798
45799
45800
45801
45802
45803
45804
45805
45806
45807
45808
45809
45810
45811
45812
45813
45814
45815
45816
45817
45818
45819
45820
45821
45822
45823
45824
45825
45826
45827
45828
45829
45830
45831
45832
45833
45834
45835
45836
45837
45838
45839
45840
45841
45842
45843
45844
45845
45846
45847
45848
45849
45850
45851
45852
45853
45854
45855
45856
45857
45858
45859
45860
45861
45862
45863
45864
45865
45866
45867
45868
45869
45870
45871
45872
45873
45874
45875
45876
45877
45878
45879
45880
45881
45882
45883
45884
45885
45886
45887
45888
45889
45890
45891
45892
45893
45894
45895
45896
45897
45898
45899
45900
45901
45902
45903
45904
45905
45906
45907
45908
45909
45910
45911
45912
45913
45914
45915
45916
45917
45918
45919
45920
45921
45922
45923
45924
45925
45926
45927
45928
45929
45930
45931
45932
45933
45934
45935
45936
45937
45938
45939
45940
45941
45942
45943
45944
45945
45946
45947
45948
45949
45950
45951
45952
45953
45954
45955
45956
45957
45958
45959
45960
45961
45962
45963
45964
45965
45966
45967
45968
45969
45970
45971
45972
45973
45974
45975
45976
45977
45978
45979
45980
45981
45982
45983
45984
45985
45986
45987
45988
45989
45990
45991
45992
45993
45994
45995
45996
45997
45998
45999
46000
46001
46002
46003
46004
46005
46006
46007
46008
46009
46010
46011
46012
46013
46014
46015
46016
46017
46018
46019
46020
46021
46022
46023
46024
46025
46026
46027
46028
46029
46030
46031
46032
46033
46034
46035
46036
46037
46038
46039
46040
46041
46042
46043
46044
46045
46046
46047
46048
46049
46050
46051
46052
46053
46054
46055
46056
46057
46058
46059
46060
46061
46062
46063
46064
46065
46066
46067
46068
46069
46070
46071
46072
46073
46074
46075
46076
46077
46078
46079
46080
46081
46082
46083
46084
46085
46086
46087
46088
46089
46090
46091
46092
46093
46094
46095
46096
46097
46098
46099
46100
46101
46102
46103
46104
46105
46106
46107
46108
46109
46110
46111
46112
46113
46114
46115
46116
46117
46118
46119
46120
46121
46122
46123
46124
46125
46126
46127
46128
46129
46130
46131
46132
46133
46134
46135
46136
46137
46138
46139
46140
46141
46142
46143
46144
46145
46146
46147
46148
46149
46150
46151
46152
46153
46154
46155
46156
46157
46158
46159
46160
46161
46162
46163
46164
46165
46166
46167
46168
46169
46170
46171
46172
46173
46174
46175
46176
46177
46178
46179
46180
46181
46182
46183
46184
46185
46186
46187
46188
46189
46190
46191
46192
46193
46194
46195
46196
46197
46198
46199
46200
46201
46202
46203
46204
46205
46206
46207
46208
46209
46210
46211
46212
46213
46214
46215
46216
46217
46218
46219
46220
46221
46222
46223
46224
46225
46226
46227
46228
46229
46230
46231
46232
46233
46234
46235
46236
46237
46238
46239
46240
46241
46242
46243
46244
46245
46246
46247
46248
46249
46250
46251
46252
46253
46254
46255
46256
46257
46258
46259
46260
46261
46262
46263
46264
46265
46266
46267
46268
46269
46270
46271
46272
46273
46274
46275
46276
46277
46278
46279
46280
46281
46282
46283
46284
46285
46286
46287
46288
46289
46290
46291
46292
46293
46294
46295
46296
46297
46298
46299
46300
46301
46302
46303
46304
46305
46306
46307
46308
46309
46310
46311
46312
46313
46314
46315
46316
46317
46318
46319
46320
46321
46322
46323
46324
46325
46326
46327
46328
46329
46330
46331
46332
46333
46334
46335
46336
46337
46338
46339
46340
46341
46342
46343
46344
46345
46346
46347
46348
46349
46350
46351
46352
46353
46354
46355
46356
46357
46358
46359
46360
46361
46362
46363
46364
46365
46366
46367
46368
46369
46370
46371
46372
46373
46374
46375
46376
46377
46378
46379
46380
46381
46382
46383
46384
46385
46386
46387
46388
46389
46390
46391
46392
46393
46394
46395
46396
46397
46398
46399
46400
46401
46402
46403
46404
46405
46406
46407
46408
46409
46410
46411
46412
46413
46414
46415
46416
46417
46418
46419
46420
46421
46422
46423
46424
46425
46426
46427
46428
46429
46430
46431
46432
46433
46434
46435
46436
46437
46438
46439
46440
46441
46442
46443
46444
46445
46446
46447
46448
46449
46450
46451
46452
46453
46454
46455
46456
46457
46458
46459
46460
46461
46462
46463
46464
46465
46466
46467
46468
46469
46470
46471
46472
46473
46474
46475
46476
46477
46478
46479
46480
46481
46482
46483
46484
46485
46486
46487
46488
46489
46490
46491
46492
46493
46494
46495
46496
46497
46498
46499
46500
46501
46502
46503
46504
46505
46506
46507
46508
46509
46510
46511
46512
46513
46514
46515
46516
46517
46518
46519
46520
46521
46522
46523
46524
46525
46526
46527
46528
46529
46530
46531
46532
46533
46534
46535
46536
46537
46538
46539
46540
46541
46542
46543
46544
46545
46546
46547
46548
46549
46550
46551
46552
46553
46554
46555
46556
46557
46558
46559
46560
46561
46562
46563
46564
46565
46566
46567
46568
46569
46570
46571
46572
46573
46574
46575
46576
46577
46578
46579
46580
46581
46582
46583
46584
46585
46586
46587
46588
46589
46590
46591
46592
46593
46594
46595
46596
46597
46598
46599
46600
46601
46602
46603
46604
46605
46606
46607
46608
46609
46610
46611
46612
46613
46614
46615
46616
46617
46618
46619
46620
46621
46622
46623
46624
46625
46626
46627
46628
46629
46630
46631
46632
46633
46634
46635
46636
46637
46638
46639
46640
46641
46642
46643
46644
46645
46646
46647
46648
46649
46650
46651
46652
46653
46654
46655
46656
46657
46658
46659
46660
46661
46662
46663
46664
46665
46666
46667
46668
46669
46670
46671
46672
46673
46674
46675
46676
46677
46678
46679
46680
46681
46682
46683
46684
46685
46686
46687
46688
46689
46690
46691
46692
46693
46694
46695
46696
46697
46698
46699
46700
46701
46702
46703
46704
46705
46706
46707
46708
46709
46710
46711
46712
46713
46714
46715
46716
46717
46718
46719
46720
46721
46722
46723
46724
46725
46726
46727
46728
46729
46730
46731
46732
46733
46734
46735
46736
46737
46738
46739
46740
46741
46742
46743
46744
46745
46746
46747
46748
46749
46750
46751
46752
46753
46754
46755
46756
46757
46758
46759
46760
46761
46762
46763
46764
46765
46766
46767
46768
46769
46770
46771
46772
46773
46774
46775
46776
46777
46778
46779
46780
46781
46782
46783
46784
46785
46786
46787
46788
46789
46790
46791
46792
46793
46794
46795
46796
46797
46798
46799
46800
46801
46802
46803
46804
46805
46806
46807
46808
46809
46810
46811
46812
46813
46814
46815
46816
46817
46818
46819
46820
46821
46822
46823
46824
46825
46826
46827
46828
46829
46830
46831
46832
46833
46834
46835
46836
46837
46838
46839
46840
46841
46842
46843
46844
46845
46846
46847
46848
46849
46850
46851
46852
46853
46854
46855
46856
46857
46858
46859
46860
46861
46862
46863
46864
46865
46866
46867
46868
46869
46870
46871
46872
46873
46874
46875
46876
46877
46878
46879
46880
46881
46882
46883
46884
46885
46886
46887
46888
46889
46890
46891
46892
46893
46894
46895
46896
46897
46898
46899
46900
46901
46902
46903
46904
46905
46906
46907
46908
46909
46910
46911
46912
46913
46914
46915
46916
46917
46918
46919
46920
46921
46922
46923
46924
46925
46926
46927
46928
46929
46930
46931
46932
46933
46934
46935
46936
46937
46938
46939
46940
46941
46942
46943
46944
46945
46946
46947
46948
46949
46950
46951
46952
46953
46954
46955
46956
46957
46958
46959
46960
46961
46962
46963
46964
46965
46966
46967
46968
46969
46970
46971
46972
46973
46974
46975
46976
46977
46978
46979
46980
46981
46982
46983
46984
46985
46986
46987
46988
46989
46990
46991
46992
46993
46994
46995
46996
46997
46998
46999
47000
47001
47002
47003
47004
47005
47006
47007
47008
47009
47010
47011
47012
47013
47014
47015
47016
47017
47018
47019
47020
47021
47022
47023
47024
47025
47026
47027
47028
47029
47030
47031
47032
47033
47034
47035
47036
47037
47038
47039
47040
47041
47042
47043
47044
47045
47046
47047
47048
47049
47050
47051
47052
47053
47054
47055
47056
47057
47058
47059
47060
47061
47062
47063
47064
47065
47066
47067
47068
47069
47070
47071
47072
47073
47074
47075
47076
47077
47078
47079
47080
47081
47082
47083
47084
47085
47086
47087
47088
47089
47090
47091
47092
47093
47094
47095
47096
47097
47098
47099
47100
47101
47102
47103
47104
47105
47106
47107
47108
47109
47110
47111
47112
47113
47114
47115
47116
47117
47118
47119
47120
47121
47122
47123
47124
47125
47126
47127
47128
47129
47130
47131
47132
47133
47134
47135
47136
47137
47138
47139
47140
47141
47142
47143
47144
47145
47146
47147
47148
47149
47150
47151
47152
47153
47154
47155
47156
47157
47158
47159
47160
47161
47162
47163
47164
47165
47166
47167
47168
47169
47170
47171
47172
47173
47174
47175
47176
47177
47178
47179
47180
47181
47182
47183
47184
47185
47186
47187
47188
47189
47190
47191
47192
47193
47194
47195
47196
47197
47198
47199
47200
47201
47202
47203
47204
47205
47206
47207
47208
47209
47210
47211
47212
47213
47214
47215
47216
47217
47218
47219
47220
47221
47222
47223
47224
47225
47226
47227
47228
47229
47230
47231
47232
47233
47234
47235
47236
47237
47238
47239
47240
47241
47242
47243
47244
47245
47246
47247
47248
47249
47250
47251
47252
47253
47254
47255
47256
47257
47258
47259
47260
47261
47262
47263
47264
47265
47266
47267
47268
47269
47270
47271
47272
47273
47274
47275
47276
47277
47278
47279
47280
47281
47282
47283
47284
47285
47286
47287
47288
47289
47290
47291
47292
47293
47294
47295
47296
47297
47298
47299
47300
47301
47302
47303
47304
47305
47306
47307
47308
47309
47310
47311
47312
47313
47314
47315
47316
47317
47318
47319
47320
47321
47322
47323
47324
47325
47326
47327
47328
47329
47330
47331
47332
47333
47334
47335
47336
47337
47338
47339
47340
47341
47342
47343
47344
47345
47346
47347
47348
47349
47350
47351
47352
47353
47354
47355
47356
47357
47358
47359
47360
47361
47362
47363
47364
47365
47366
47367
47368
47369
47370
47371
47372
47373
47374
47375
47376
47377
47378
47379
47380
47381
47382
47383
47384
47385
47386
47387
47388
47389
47390
47391
47392
47393
47394
47395
47396
47397
47398
47399
47400
47401
47402
47403
47404
47405
47406
47407
47408
47409
47410
47411
47412
47413
47414
47415
47416
47417
47418
47419
47420
47421
47422
47423
47424
47425
47426
47427
47428
47429
47430
47431
47432
47433
47434
47435
47436
47437
47438
47439
47440
47441
47442
47443
47444
47445
47446
47447
47448
47449
47450
47451
47452
47453
47454
47455
47456
47457
47458
47459
47460
47461
47462
47463
47464
47465
47466
47467
47468
47469
47470
47471
47472
47473
47474
47475
47476
47477
47478
47479
47480
47481
47482
47483
47484
47485
47486
47487
47488
47489
47490
47491
47492
47493
47494
47495
47496
47497
47498
47499
47500
47501
47502
47503
47504
47505
47506
47507
47508
47509
47510
47511
47512
47513
47514
47515
47516
47517
47518
47519
47520
47521
47522
47523
47524
47525
47526
47527
47528
47529
47530
47531
47532
47533
47534
47535
47536
47537
47538
47539
47540
47541
47542
47543
47544
47545
47546
47547
47548
47549
47550
47551
47552
47553
47554
47555
47556
47557
47558
47559
47560
47561
47562
47563
47564
47565
47566
47567
47568
47569
47570
47571
47572
47573
47574
47575
47576
47577
47578
47579
47580
47581
47582
47583
47584
47585
47586
47587
47588
47589
47590
47591
47592
47593
47594
47595
47596
47597
47598
47599
47600
47601
47602
47603
47604
47605
47606
47607
47608
47609
47610
47611
47612
47613
47614
47615
47616
47617
47618
47619
47620
47621
47622
47623
47624
47625
47626
47627
47628
47629
47630
47631
47632
47633
47634
47635
47636
47637
47638
47639
47640
47641
47642
47643
47644
47645
47646
47647
47648
47649
47650
47651
47652
47653
47654
47655
47656
47657
47658
47659
47660
47661
47662
47663
47664
47665
47666
47667
47668
47669
47670
47671
47672
47673
47674
47675
47676
47677
47678
47679
47680
47681
47682
47683
47684
47685
47686
47687
47688
47689
47690
47691
47692
47693
47694
47695
47696
47697
47698
47699
47700
47701
47702
47703
47704
47705
47706
47707
47708
47709
47710
47711
47712
47713
47714
47715
47716
47717
47718
47719
47720
47721
47722
47723
47724
47725
47726
47727
47728
47729
47730
47731
47732
47733
47734
47735
47736
47737
47738
47739
47740
47741
47742
47743
47744
47745
47746
47747
47748
47749
47750
47751
47752
47753
47754
47755
47756
47757
47758
47759
47760
47761
47762
47763
47764
47765
47766
47767
47768
47769
47770
47771
47772
47773
47774
47775
47776
47777
47778
47779
47780
47781
47782
47783
47784
47785
47786
47787
47788
47789
47790
47791
47792
47793
47794
47795
47796
47797
47798
47799
47800
47801
47802
47803
47804
47805
47806
47807
47808
47809
47810
47811
47812
47813
47814
47815
47816
47817
47818
47819
47820
47821
47822
47823
47824
47825
47826
47827
47828
47829
47830
47831
47832
47833
47834
47835
47836
47837
47838
47839
47840
47841
47842
47843
47844
47845
47846
47847
47848
47849
47850
47851
47852
47853
47854
47855
47856
47857
47858
47859
47860
47861
47862
47863
47864
47865
47866
47867
47868
47869
47870
47871
47872
47873
47874
47875
47876
47877
47878
47879
47880
47881
47882
47883
47884
47885
47886
47887
47888
47889
47890
47891
47892
47893
47894
47895
47896
47897
47898
47899
47900
47901
47902
47903
47904
47905
47906
47907
47908
47909
47910
47911
47912
47913
47914
47915
47916
47917
47918
47919
47920
47921
47922
47923
47924
47925
47926
47927
47928
47929
47930
47931
47932
47933
47934
47935
47936
47937
47938
47939
47940
47941
47942
47943
47944
47945
47946
47947
47948
47949
47950
47951
47952
47953
47954
47955
47956
47957
47958
47959
47960
47961
47962
47963
47964
47965
47966
47967
47968
47969
47970
47971
47972
47973
47974
47975
47976
47977
47978
47979
47980
47981
47982
47983
47984
47985
47986
47987
47988
47989
47990
47991
47992
47993
47994
47995
47996
47997
47998
47999
48000
48001
48002
48003
48004
48005
48006
48007
48008
48009
48010
48011
48012
48013
48014
48015
48016
48017
48018
48019
48020
48021
48022
48023
48024
48025
48026
48027
48028
48029
48030
48031
48032
48033
48034
48035
48036
48037
48038
48039
48040
48041
48042
48043
48044
48045
48046
48047
48048
48049
48050
48051
48052
48053
48054
48055
48056
48057
48058
48059
48060
48061
48062
48063
48064
48065
48066
48067
48068
48069
48070
48071
48072
48073
48074
48075
48076
48077
48078
48079
48080
48081
48082
48083
48084
48085
48086
48087
48088
48089
48090
48091
48092
48093
48094
48095
48096
48097
48098
48099
48100
48101
48102
48103
48104
48105
48106
48107
48108
48109
48110
48111
48112
48113
48114
48115
48116
48117
48118
48119
48120
48121
48122
48123
48124
48125
48126
48127
48128
48129
48130
48131
48132
48133
48134
48135
48136
48137
48138
48139
48140
48141
48142
48143
48144
48145
48146
48147
48148
48149
48150
48151
48152
48153
48154
48155
48156
48157
48158
48159
48160
48161
48162
48163
48164
48165
48166
48167
48168
48169
48170
48171
48172
48173
48174
48175
48176
48177
48178
48179
48180
48181
48182
48183
48184
48185
48186
48187
48188
48189
48190
48191
48192
48193
48194
48195
48196
48197
48198
48199
48200
48201
48202
48203
48204
48205
48206
48207
48208
48209
48210
48211
48212
48213
48214
48215
48216
48217
48218
48219
48220
48221
48222
48223
48224
48225
48226
48227
48228
48229
48230
48231
48232
48233
48234
48235
48236
48237
48238
48239
48240
48241
48242
48243
48244
48245
48246
48247
48248
48249
48250
48251
48252
48253
48254
48255
48256
48257
48258
48259
48260
48261
48262
48263
48264
48265
48266
48267
48268
48269
48270
48271
48272
48273
48274
48275
48276
48277
48278
48279
48280
48281
48282
48283
48284
48285
48286
48287
48288
48289
48290
48291
48292
48293
48294
48295
48296
48297
48298
48299
48300
48301
48302
48303
48304
48305
48306
48307
48308
48309
48310
48311
48312
48313
48314
48315
48316
48317
48318
48319
48320
48321
48322
48323
48324
48325
48326
48327
48328
48329
48330
48331
48332
48333
48334
48335
48336
48337
48338
48339
48340
48341
48342
48343
48344
48345
48346
48347
48348
48349
48350
48351
48352
48353
48354
48355
48356
48357
48358
48359
48360
48361
48362
48363
48364
48365
48366
48367
48368
48369
48370
48371
48372
48373
48374
48375
48376
48377
48378
48379
48380
48381
48382
48383
48384
48385
48386
48387
48388
48389
48390
48391
48392
48393
48394
48395
48396
48397
48398
48399
48400
48401
48402
48403
48404
48405
48406
48407
48408
48409
48410
48411
48412
48413
48414
48415
48416
48417
48418
48419
48420
48421
48422
48423
48424
48425
48426
48427
48428
48429
48430
48431
48432
48433
48434
48435
48436
48437
48438
48439
48440
48441
48442
48443
48444
48445
48446
48447
48448
48449
48450
48451
48452
48453
48454
48455
48456
48457
48458
48459
48460
48461
48462
48463
48464
48465
48466
48467
48468
48469
48470
48471
48472
48473
48474
48475
48476
48477
48478
48479
48480
48481
48482
48483
48484
48485
48486
48487
48488
48489
48490
48491
48492
48493
48494
48495
48496
48497
48498
48499
48500
48501
48502
48503
48504
48505
48506
48507
48508
48509
48510
48511
48512
48513
48514
48515
48516
48517
48518
48519
48520
48521
48522
48523
48524
48525
48526
48527
48528
48529
48530
48531
48532
48533
48534
48535
48536
48537
48538
48539
48540
48541
48542
48543
48544
48545
48546
48547
48548
48549
48550
48551
48552
48553
48554
48555
48556
48557
48558
48559
48560
48561
48562
48563
48564
48565
48566
48567
48568
48569
48570
48571
48572
48573
48574
48575
48576
48577
48578
48579
48580
48581
48582
48583
48584
48585
48586
48587
48588
48589
48590
48591
48592
48593
48594
48595
48596
48597
48598
48599
48600
48601
48602
48603
48604
48605
48606
48607
48608
48609
48610
48611
48612
48613
48614
48615
48616
48617
48618
48619
48620
48621
48622
48623
48624
48625
48626
48627
48628
48629
48630
48631
48632
48633
48634
48635
48636
48637
48638
48639
48640
48641
48642
48643
48644
48645
48646
48647
48648
48649
48650
48651
48652
48653
48654
48655
48656
48657
48658
48659
48660
48661
48662
48663
48664
48665
48666
48667
48668
48669
48670
48671
48672
48673
48674
48675
48676
48677
48678
48679
48680
48681
48682
48683
48684
48685
48686
48687
48688
48689
48690
48691
48692
48693
48694
48695
48696
48697
48698
48699
48700
48701
48702
48703
48704
48705
48706
48707
48708
48709
48710
48711
48712
48713
48714
48715
48716
48717
48718
48719
48720
48721
48722
48723
48724
48725
48726
48727
48728
48729
48730
48731
48732
48733
48734
48735
48736
48737
48738
48739
48740
48741
48742
48743
48744
48745
48746
48747
48748
48749
48750
48751
48752
48753
48754
48755
48756
48757
48758
48759
48760
48761
48762
48763
48764
48765
48766
48767
48768
48769
48770
48771
48772
48773
48774
48775
48776
48777
48778
48779
48780
48781
48782
48783
48784
48785
48786
48787
48788
48789
48790
48791
48792
48793
48794
48795
48796
48797
48798
48799
48800
48801
48802
48803
48804
48805
48806
48807
48808
48809
48810
48811
48812
48813
48814
48815
48816
48817
48818
48819
48820
48821
48822
48823
48824
48825
48826
48827
48828
48829
48830
48831
48832
48833
48834
48835
48836
48837
48838
48839
48840
48841
48842
48843
48844
48845
48846
48847
48848
48849
48850
48851
48852
48853
48854
48855
48856
48857
48858
48859
48860
48861
48862
48863
48864
48865
48866
48867
48868
48869
48870
48871
48872
48873
48874
48875
48876
48877
48878
48879
48880
48881
48882
48883
48884
48885
48886
48887
48888
48889
48890
48891
48892
48893
48894
48895
48896
48897
48898
48899
48900
48901
48902
48903
48904
48905
48906
48907
48908
48909
48910
48911
48912
48913
48914
48915
48916
48917
48918
48919
48920
48921
48922
48923
48924
48925
48926
48927
48928
48929
48930
48931
48932
48933
48934
48935
48936
48937
48938
48939
48940
48941
48942
48943
48944
48945
48946
48947
48948
48949
48950
48951
48952
48953
48954
48955
48956
48957
48958
48959
48960
48961
48962
48963
48964
48965
48966
48967
48968
48969
48970
48971
48972
48973
48974
48975
48976
48977
48978
48979
48980
48981
48982
48983
48984
48985
48986
48987
48988
48989
48990
48991
48992
48993
48994
48995
48996
48997
48998
48999
49000
49001
49002
49003
49004
49005
49006
49007
49008
49009
49010
49011
49012
49013
49014
49015
49016
49017
49018
49019
49020
49021
49022
49023
49024
49025
49026
49027
49028
49029
49030
49031
49032
49033
49034
49035
49036
49037
49038
49039
49040
49041
49042
49043
49044
49045
49046
49047
49048
49049
49050
49051
49052
49053
49054
49055
49056
49057
49058
49059
49060
49061
49062
49063
49064
49065
49066
49067
49068
49069
49070
49071
49072
49073
49074
49075
49076
49077
49078
49079
49080
49081
49082
49083
49084
49085
49086
49087
49088
49089
49090
49091
49092
49093
49094
49095
49096
49097
49098
49099
49100
49101
49102
49103
49104
49105
49106
49107
49108
49109
49110
49111
49112
49113
49114
49115
49116
49117
49118
49119
49120
49121
49122
49123
49124
49125
49126
49127
49128
49129
49130
49131
49132
49133
49134
49135
49136
49137
49138
49139
49140
49141
49142
49143
49144
49145
49146
49147
49148
49149
49150
49151
49152
49153
49154
49155
49156
49157
49158
49159
49160
49161
49162
49163
49164
49165
49166
49167
49168
49169
49170
49171
49172
49173
49174
49175
49176
49177
49178
49179
49180
49181
49182
49183
49184
49185
49186
49187
49188
49189
49190
49191
49192
49193
49194
49195
49196
49197
49198
49199
49200
49201
49202
49203
49204
49205
49206
49207
49208
49209
49210
49211
49212
49213
49214
49215
49216
49217
49218
49219
49220
49221
49222
49223
49224
49225
49226
49227
49228
49229
49230
49231
49232
49233
49234
49235
49236
49237
49238
49239
49240
49241
49242
49243
49244
49245
49246
49247
49248
49249
49250
49251
49252
49253
49254
49255
49256
49257
49258
49259
49260
49261
49262
49263
49264
49265
49266
49267
49268
49269
49270
49271
49272
49273
49274
49275
49276
49277
49278
49279
49280
49281
49282
49283
49284
49285
49286
49287
49288
49289
49290
49291
49292
49293
49294
49295
49296
49297
49298
49299
49300
49301
49302
49303
49304
49305
49306
49307
49308
49309
49310
49311
49312
49313
49314
49315
49316
49317
49318
49319
49320
49321
49322
49323
49324
49325
49326
49327
49328
49329
49330
49331
49332
49333
49334
49335
49336
49337
49338
49339
49340
49341
49342
49343
49344
49345
49346
49347
49348
49349
49350
49351
49352
49353
49354
49355
49356
49357
49358
49359
49360
49361
49362
49363
49364
49365
49366
49367
49368
49369
49370
49371
49372
49373
49374
49375
49376
49377
49378
49379
49380
49381
49382
49383
49384
49385
49386
49387
49388
49389
49390
49391
49392
49393
49394
49395
49396
49397
49398
49399
49400
49401
49402
49403
49404
49405
49406
49407
49408
49409
49410
49411
49412
49413
49414
49415
49416
49417
49418
49419
49420
49421
49422
49423
49424
49425
49426
49427
49428
49429
49430
49431
49432
49433
49434
49435
49436
49437
49438
49439
49440
49441
49442
49443
49444
49445
49446
49447
49448
49449
49450
49451
49452
49453
49454
49455
49456
49457
49458
49459
49460
49461
49462
49463
49464
49465
49466
49467
49468
49469
49470
49471
49472
49473
49474
49475
49476
49477
49478
49479
49480
49481
49482
49483
49484
49485
49486
49487
49488
49489
49490
49491
49492
49493
49494
49495
49496
49497
49498
49499
49500
49501
49502
49503
49504
49505
49506
49507
49508
49509
49510
49511
49512
49513
49514
49515
49516
49517
49518
49519
49520
49521
49522
49523
49524
49525
49526
49527
49528
49529
49530
49531
49532
49533
49534
49535
49536
49537
49538
49539
49540
49541
49542
49543
49544
49545
49546
49547
49548
49549
49550
49551
49552
49553
49554
49555
49556
49557
49558
49559
49560
49561
49562
49563
49564
49565
49566
49567
49568
49569
49570
49571
49572
49573
49574
49575
49576
49577
49578
49579
49580
49581
49582
49583
49584
49585
49586
49587
49588
49589
49590
49591
49592
49593
49594
49595
49596
49597
49598
49599
49600
49601
49602
49603
49604
49605
49606
49607
49608
49609
49610
49611
49612
49613
49614
49615
49616
49617
49618
49619
49620
49621
49622
49623
49624
49625
49626
49627
49628
49629
49630
49631
49632
49633
49634
49635
49636
49637
49638
49639
49640
49641
49642
49643
49644
49645
49646
49647
49648
49649
49650
49651
49652
49653
49654
49655
49656
49657
49658
49659
49660
49661
49662
49663
49664
49665
49666
49667
49668
49669
49670
49671
49672
49673
49674
49675
49676
49677
49678
49679
49680
49681
49682
49683
49684
49685
49686
49687
49688
49689
49690
49691
49692
49693
49694
49695
49696
49697
49698
49699
49700
49701
49702
49703
49704
49705
49706
49707
49708
49709
49710
49711
49712
49713
49714
49715
49716
49717
49718
49719
49720
49721
49722
49723
49724
49725
49726
49727
49728
49729
49730
49731
49732
49733
49734
49735
49736
49737
49738
49739
49740
49741
49742
49743
49744
49745
49746
49747
49748
49749
49750
49751
49752
49753
49754
49755
49756
49757
49758
49759
49760
49761
49762
49763
49764
49765
49766
49767
49768
49769
49770
49771
49772
49773
49774
49775
49776
49777
49778
49779
49780
49781
49782
49783
49784
49785
49786
49787
49788
49789
49790
49791
49792
49793
49794
49795
49796
49797
49798
49799
49800
49801
49802
49803
49804
49805
49806
49807
49808
49809
49810
49811
49812
49813
49814
49815
49816
49817
49818
49819
49820
49821
49822
49823
49824
49825
49826
49827
49828
49829
49830
49831
49832
49833
49834
49835
49836
49837
49838
49839
49840
49841
49842
49843
49844
49845
49846
49847
49848
49849
49850
49851
49852
49853
49854
49855
49856
49857
49858
49859
49860
49861
49862
49863
49864
49865
49866
49867
49868
49869
49870
49871
49872
49873
49874
49875
49876
49877
49878
49879
49880
49881
49882
49883
49884
49885
49886
49887
49888
49889
49890
49891
49892
49893
49894
49895
49896
49897
49898
49899
49900
49901
49902
49903
49904
49905
49906
49907
49908
49909
49910
49911
49912
49913
49914
49915
49916
49917
49918
49919
49920
49921
49922
49923
49924
49925
49926
49927
49928
49929
49930
49931
49932
49933
49934
49935
49936
49937
49938
49939
49940
49941
49942
49943
49944
49945
49946
49947
49948
49949
49950
49951
49952
49953
49954
49955
49956
49957
49958
49959
49960
49961
49962
49963
49964
49965
49966
49967
49968
49969
49970
49971
49972
49973
49974
49975
49976
49977
49978
49979
49980
49981
49982
49983
49984
49985
49986
49987
49988
49989
49990
49991
49992
49993
49994
49995
49996
49997
49998
49999
50000
50001
50002
50003
50004
50005
50006
50007
50008
50009
50010
50011
50012
50013
50014
50015
50016
50017
50018
50019
50020
50021
50022
50023
50024
50025
50026
50027
50028
50029
50030
50031
50032
50033
50034
50035
50036
50037
50038
50039
50040
50041
50042
50043
50044
50045
50046
50047
50048
50049
50050
50051
50052
50053
50054
50055
50056
50057
50058
50059
50060
50061
50062
50063
50064
50065
50066
50067
50068
50069
50070
50071
50072
50073
50074
50075
50076
50077
50078
50079
50080
50081
50082
50083
50084
50085
50086
50087
50088
50089
50090
50091
50092
50093
50094
50095
50096
50097
50098
50099
50100
50101
50102
50103
50104
50105
50106
50107
50108
50109
50110
50111
50112
50113
50114
50115
50116
50117
50118
50119
50120
50121
50122
50123
50124
50125
50126
50127
50128
50129
50130
50131
50132
50133
50134
50135
50136
50137
50138
50139
50140
50141
50142
50143
50144
50145
50146
50147
50148
50149
50150
50151
50152
50153
50154
50155
50156
50157
50158
50159
50160
50161
50162
50163
50164
50165
50166
50167
50168
50169
50170
50171
50172
50173
50174
50175
50176
50177
50178
50179
50180
50181
50182
50183
50184
50185
50186
50187
50188
50189
50190
50191
50192
50193
50194
50195
50196
50197
50198
50199
50200
50201
50202
50203
50204
50205
50206
50207
50208
50209
50210
50211
50212
50213
50214
50215
50216
50217
50218
50219
50220
50221
50222
50223
50224
50225
50226
50227
50228
50229
50230
50231
50232
50233
50234
50235
50236
50237
50238
50239
50240
50241
50242
50243
50244
50245
50246
50247
50248
50249
50250
50251
50252
50253
50254
50255
50256
50257
50258
50259
50260
50261
50262
50263
50264
50265
50266
50267
50268
50269
50270
50271
50272
50273
50274
50275
50276
50277
50278
50279
50280
50281
50282
50283
50284
50285
50286
50287
50288
50289
50290
50291
50292
50293
50294
50295
50296
50297
50298
50299
50300
50301
50302
50303
50304
50305
50306
50307
50308
50309
50310
50311
50312
50313
50314
50315
50316
50317
50318
50319
50320
50321
50322
50323
50324
50325
50326
50327
50328
50329
50330
50331
50332
50333
50334
50335
50336
50337
50338
50339
50340
50341
50342
50343
50344
50345
50346
50347
50348
50349
50350
50351
50352
50353
50354
50355
50356
50357
50358
50359
50360
50361
50362
50363
50364
50365
50366
50367
50368
50369
50370
50371
50372
50373
50374
50375
50376
50377
50378
50379
50380
50381
50382
50383
50384
50385
50386
50387
50388
50389
50390
50391
50392
50393
50394
50395
50396
50397
50398
50399
50400
50401
50402
50403
50404
50405
50406
50407
50408
50409
50410
50411
50412
50413
50414
50415
50416
50417
50418
50419
50420
50421
50422
50423
50424
50425
50426
50427
50428
50429
50430
50431
50432
50433
50434
50435
50436
50437
50438
50439
50440
50441
50442
50443
50444
50445
50446
50447
50448
50449
50450
50451
50452
50453
50454
50455
50456
50457
50458
50459
50460
50461
50462
50463
50464
50465
50466
50467
50468
50469
50470
50471
50472
50473
50474
50475
50476
50477
50478
50479
50480
50481
50482
50483
50484
50485
50486
50487
50488
50489
50490
50491
50492
50493
50494
50495
50496
50497
50498
50499
50500
50501
50502
50503
50504
50505
50506
50507
50508
50509
50510
50511
50512
50513
50514
50515
50516
50517
50518
50519
50520
50521
50522
50523
50524
50525
50526
50527
50528
50529
50530
50531
50532
50533
50534
50535
50536
50537
50538
50539
50540
50541
50542
50543
50544
50545
50546
50547
50548
50549
50550
50551
50552
50553
50554
50555
50556
50557
50558
50559
50560
50561
50562
50563
50564
50565
50566
50567
50568
50569
50570
50571
50572
50573
50574
50575
50576
50577
50578
50579
50580
50581
50582
50583
50584
50585
50586
50587
50588
50589
50590
50591
50592
50593
50594
50595
50596
50597
50598
50599
50600
50601
50602
50603
50604
50605
50606
50607
50608
50609
50610
50611
50612
50613
50614
50615
50616
50617
50618
50619
50620
50621
50622
50623
50624
50625
50626
50627
50628
50629
50630
50631
50632
50633
50634
50635
50636
50637
50638
50639
50640
50641
50642
50643
50644
50645
50646
50647
50648
50649
50650
50651
50652
50653
50654
50655
50656
50657
50658
50659
50660
50661
50662
50663
50664
50665
50666
50667
50668
50669
50670
50671
50672
50673
50674
50675
50676
50677
50678
50679
50680
50681
50682
50683
50684
50685
50686
50687
50688
50689
50690
50691
50692
50693
50694
50695
50696
50697
50698
50699
50700
50701
50702
50703
50704
50705
50706
50707
50708
50709
50710
50711
50712
50713
50714
50715
50716
50717
50718
50719
50720
50721
50722
50723
50724
50725
50726
50727
50728
50729
50730
50731
50732
50733
50734
50735
50736
50737
50738
50739
50740
50741
50742
50743
50744
50745
50746
50747
50748
50749
50750
50751
50752
50753
50754
50755
50756
50757
50758
50759
50760
50761
50762
50763
50764
50765
50766
50767
50768
50769
50770
50771
50772
50773
50774
50775
50776
50777
50778
50779
50780
50781
50782
50783
50784
50785
50786
50787
50788
50789
50790
50791
50792
50793
50794
50795
50796
50797
50798
50799
50800
50801
50802
50803
50804
50805
50806
50807
50808
50809
50810
50811
50812
50813
50814
50815
50816
50817
50818
50819
50820
50821
50822
50823
50824
50825
50826
50827
50828
50829
50830
50831
50832
50833
50834
50835
50836
50837
50838
50839
50840
50841
50842
50843
50844
50845
50846
50847
50848
50849
50850
50851
50852
50853
50854
50855
50856
50857
50858
50859
50860
50861
50862
50863
50864
50865
50866
50867
50868
50869
50870
50871
50872
50873
50874
50875
50876
50877
50878
50879
50880
50881
50882
50883
50884
50885
50886
50887
50888
50889
50890
50891
50892
50893
50894
50895
50896
50897
50898
50899
50900
50901
50902
50903
50904
50905
50906
50907
50908
50909
50910
50911
50912
50913
50914
50915
50916
50917
50918
50919
50920
50921
50922
50923
50924
50925
50926
50927
50928
50929
50930
50931
50932
50933
50934
50935
50936
50937
50938
50939
50940
50941
50942
50943
50944
50945
50946
50947
50948
50949
50950
50951
50952
50953
50954
50955
50956
50957
50958
50959
50960
50961
50962
50963
50964
50965
50966
50967
50968
50969
50970
50971
50972
50973
50974
50975
50976
50977
50978
50979
50980
50981
50982
50983
50984
50985
50986
50987
50988
50989
50990
50991
50992
50993
50994
50995
50996
50997
50998
50999
51000
51001
51002
51003
51004
51005
51006
51007
51008
51009
51010
51011
51012
51013
51014
51015
51016
51017
51018
51019
51020
51021
51022
51023
51024
51025
51026
51027
51028
51029
51030
51031
51032
51033
51034
51035
51036
51037
51038
51039
51040
51041
51042
51043
51044
51045
51046
51047
51048
51049
51050
51051
51052
51053
51054
51055
51056
51057
51058
51059
51060
51061
51062
51063
51064
51065
51066
51067
51068
51069
51070
51071
51072
51073
51074
51075
51076
51077
51078
51079
51080
51081
51082
51083
51084
51085
51086
51087
51088
51089
51090
51091
51092
51093
51094
51095
51096
51097
51098
51099
51100
51101
51102
51103
51104
51105
51106
51107
51108
51109
51110
51111
51112
51113
51114
51115
51116
51117
51118
51119
51120
51121
51122
51123
51124
51125
51126
51127
51128
51129
51130
51131
51132
51133
51134
51135
51136
51137
51138
51139
51140
51141
51142
51143
51144
51145
51146
51147
51148
51149
51150
51151
51152
51153
51154
51155
51156
51157
51158
51159
51160
51161
51162
51163
51164
51165
51166
51167
51168
51169
51170
51171
51172
51173
51174
51175
51176
51177
51178
51179
51180
51181
51182
51183
51184
51185
51186
51187
51188
51189
51190
51191
51192
51193
51194
51195
51196
51197
51198
51199
51200
51201
51202
51203
51204
51205
51206
51207
51208
51209
51210
51211
51212
51213
51214
51215
51216
51217
51218
51219
51220
51221
51222
51223
51224
51225
51226
51227
51228
51229
51230
51231
51232
51233
51234
51235
51236
51237
51238
51239
51240
51241
51242
51243
51244
51245
51246
51247
51248
51249
51250
51251
51252
51253
51254
51255
51256
51257
51258
51259
51260
51261
51262
51263
51264
51265
51266
51267
51268
51269
51270
51271
51272
51273
51274
51275
51276
51277
51278
51279
51280
51281
51282
51283
51284
51285
51286
51287
51288
51289
51290
51291
51292
51293
51294
51295
51296
51297
51298
51299
51300
51301
51302
51303
51304
51305
51306
51307
51308
51309
51310
51311
51312
51313
51314
51315
51316
51317
51318
51319
51320
51321
51322
51323
51324
51325
51326
51327
51328
51329
51330
51331
51332
51333
51334
51335
51336
51337
51338
51339
51340
51341
51342
51343
51344
51345
51346
51347
51348
51349
51350
51351
51352
51353
51354
51355
51356
51357
51358
51359
51360
51361
51362
51363
51364
51365
51366
51367
51368
51369
51370
51371
51372
51373
51374
51375
51376
51377
51378
51379
51380
51381
51382
51383
51384
51385
51386
51387
51388
51389
51390
51391
51392
51393
51394
51395
51396
51397
51398
51399
51400
51401
51402
51403
51404
51405
51406
51407
51408
51409
51410
51411
51412
51413
51414
51415
51416
51417
51418
51419
51420
51421
51422
51423
51424
51425
51426
51427
51428
51429
51430
51431
51432
51433
51434
51435
51436
51437
51438
51439
51440
51441
51442
51443
51444
51445
51446
51447
51448
51449
51450
51451
51452
51453
51454
51455
51456
51457
51458
51459
51460
51461
51462
51463
51464
51465
51466
51467
51468
51469
51470
51471
51472
51473
51474
51475
51476
51477
51478
51479
51480
51481
51482
51483
51484
51485
51486
51487
51488
51489
51490
51491
51492
51493
51494
51495
51496
51497
51498
51499
51500
51501
51502
51503
51504
51505
51506
51507
51508
51509
51510
51511
51512
51513
51514
51515
51516
51517
51518
51519
51520
51521
51522
51523
51524
51525
51526
51527
51528
51529
51530
51531
51532
51533
51534
51535
51536
51537
51538
51539
51540
51541
51542
51543
51544
51545
51546
51547
51548
51549
51550
51551
51552
51553
51554
51555
51556
51557
51558
51559
51560
51561
51562
51563
51564
51565
51566
51567
51568
51569
51570
51571
51572
51573
51574
51575
51576
51577
51578
51579
51580
51581
51582
51583
51584
51585
51586
51587
51588
51589
51590
51591
51592
51593
51594
51595
51596
51597
51598
51599
51600
51601
51602
51603
51604
51605
51606
51607
51608
51609
51610
51611
51612
51613
51614
51615
51616
51617
51618
51619
51620
51621
51622
51623
51624
51625
51626
51627
51628
51629
51630
51631
51632
51633
51634
51635
51636
51637
51638
51639
51640
51641
51642
51643
51644
51645
51646
51647
51648
51649
51650
51651
51652
51653
51654
51655
51656
51657
51658
51659
51660
51661
51662
51663
51664
51665
51666
51667
51668
51669
51670
51671
51672
51673
51674
51675
51676
51677
51678
51679
51680
51681
51682
51683
51684
51685
51686
51687
51688
51689
51690
51691
51692
51693
51694
51695
51696
51697
51698
51699
51700
51701
51702
51703
51704
51705
51706
51707
51708
51709
51710
51711
51712
51713
51714
51715
51716
51717
51718
51719
51720
51721
51722
51723
51724
51725
51726
51727
51728
51729
51730
51731
51732
51733
51734
51735
51736
51737
51738
51739
51740
51741
51742
51743
51744
51745
51746
51747
51748
51749
51750
51751
51752
51753
51754
51755
51756
51757
51758
51759
51760
51761
51762
51763
51764
51765
51766
51767
51768
51769
51770
51771
51772
51773
51774
51775
51776
51777
51778
51779
51780
51781
51782
51783
51784
51785
51786
51787
51788
51789
51790
51791
51792
51793
51794
51795
51796
51797
51798
51799
51800
51801
51802
51803
51804
51805
51806
51807
51808
51809
51810
51811
51812
51813
51814
51815
51816
51817
51818
51819
51820
51821
51822
51823
51824
51825
51826
51827
51828
51829
51830
51831
51832
51833
51834
51835
51836
51837
51838
51839
51840
51841
51842
51843
51844
51845
51846
51847
51848
51849
51850
51851
51852
51853
51854
51855
51856
51857
51858
51859
51860
51861
51862
51863
51864
51865
51866
51867
51868
51869
51870
51871
51872
51873
51874
51875
51876
51877
51878
51879
51880
51881
51882
51883
51884
51885
51886
51887
51888
51889
51890
51891
51892
51893
51894
51895
51896
51897
51898
51899
51900
51901
51902
51903
51904
51905
51906
51907
51908
51909
51910
51911
51912
51913
51914
51915
51916
51917
51918
51919
51920
51921
51922
51923
51924
51925
51926
51927
51928
51929
51930
51931
51932
51933
51934
51935
51936
51937
51938
51939
51940
51941
51942
51943
51944
51945
51946
51947
51948
51949
51950
51951
51952
51953
51954
51955
51956
51957
51958
51959
51960
51961
51962
51963
51964
51965
51966
51967
51968
51969
51970
51971
51972
51973
51974
51975
51976
51977
51978
51979
51980
51981
51982
51983
51984
51985
51986
51987
51988
51989
51990
51991
51992
51993
51994
51995
51996
51997
51998
51999
52000
52001
52002
52003
52004
52005
52006
52007
52008
52009
52010
52011
52012
52013
52014
52015
52016
52017
52018
52019
52020
52021
52022
52023
52024
52025
52026
52027
52028
52029
52030
52031
52032
52033
52034
52035
52036
52037
52038
52039
52040
52041
52042
52043
52044
52045
52046
52047
52048
52049
52050
52051
52052
52053
52054
52055
52056
52057
52058
52059
52060
52061
52062
52063
52064
52065
52066
52067
52068
52069
52070
52071
52072
52073
52074
52075
52076
52077
52078
52079
52080
52081
52082
52083
52084
52085
52086
52087
52088
52089
52090
52091
52092
52093
52094
52095
52096
52097
52098
52099
52100
52101
52102
52103
52104
52105
52106
52107
52108
52109
52110
52111
52112
52113
52114
52115
52116
52117
52118
52119
52120
52121
52122
52123
52124
52125
52126
52127
52128
52129
52130
52131
52132
52133
52134
52135
52136
52137
52138
52139
52140
52141
52142
52143
52144
52145
52146
52147
52148
52149
52150
52151
52152
52153
52154
52155
52156
52157
52158
52159
52160
52161
52162
52163
52164
52165
52166
52167
52168
52169
52170
52171
52172
52173
52174
52175
52176
52177
52178
52179
52180
52181
52182
52183
52184
52185
52186
52187
52188
52189
52190
52191
52192
52193
52194
52195
52196
52197
52198
52199
52200
52201
52202
52203
52204
52205
52206
52207
52208
52209
52210
52211
52212
52213
52214
52215
52216
52217
52218
52219
52220
52221
52222
52223
52224
52225
52226
52227
52228
52229
52230
52231
52232
52233
52234
52235
52236
52237
52238
52239
52240
52241
52242
52243
52244
52245
52246
52247
52248
52249
52250
52251
52252
52253
52254
52255
52256
52257
52258
52259
52260
52261
52262
52263
52264
52265
52266
52267
52268
52269
52270
52271
52272
52273
52274
52275
52276
52277
52278
52279
52280
52281
52282
52283
52284
52285
52286
52287
52288
52289
52290
52291
52292
52293
52294
52295
52296
52297
52298
52299
52300
52301
52302
52303
52304
52305
52306
52307
52308
52309
52310
52311
52312
52313
52314
52315
52316
52317
52318
52319
52320
52321
52322
52323
52324
52325
52326
52327
52328
52329
52330
52331
52332
52333
52334
52335
52336
52337
52338
52339
52340
52341
52342
52343
52344
52345
52346
52347
52348
52349
52350
52351
52352
52353
52354
52355
52356
52357
52358
52359
52360
52361
52362
52363
52364
52365
52366
52367
52368
52369
52370
52371
52372
52373
52374
52375
52376
52377
52378
52379
52380
52381
52382
52383
52384
52385
52386
52387
52388
52389
52390
52391
52392
52393
52394
52395
52396
52397
52398
52399
52400
52401
52402
52403
52404
52405
52406
52407
52408
52409
52410
52411
52412
52413
52414
52415
52416
52417
52418
52419
52420
52421
52422
52423
52424
52425
52426
52427
52428
52429
52430
52431
52432
52433
52434
52435
52436
52437
52438
52439
52440
52441
52442
52443
52444
52445
52446
52447
52448
52449
52450
52451
52452
52453
52454
52455
52456
52457
52458
52459
52460
52461
52462
52463
52464
52465
52466
52467
52468
52469
52470
52471
52472
52473
52474
52475
52476
52477
52478
52479
52480
52481
52482
52483
52484
52485
52486
52487
52488
52489
52490
52491
52492
52493
52494
52495
52496
52497
52498
52499
52500
52501
52502
52503
52504
52505
52506
52507
52508
52509
52510
52511
52512
52513
52514
52515
52516
52517
52518
52519
52520
52521
52522
52523
52524
52525
52526
52527
52528
52529
52530
52531
52532
52533
52534
52535
52536
52537
52538
52539
52540
52541
52542
52543
52544
52545
52546
52547
52548
52549
52550
52551
52552
52553
52554
52555
52556
52557
52558
52559
52560
52561
52562
52563
52564
52565
52566
52567
52568
52569
52570
52571
52572
52573
52574
52575
52576
52577
52578
52579
52580
52581
52582
52583
52584
52585
52586
52587
52588
52589
52590
52591
52592
52593
52594
52595
52596
52597
52598
52599
52600
52601
52602
52603
52604
52605
52606
52607
52608
52609
52610
52611
52612
52613
52614
52615
52616
52617
52618
52619
52620
52621
52622
52623
52624
52625
52626
52627
52628
52629
52630
52631
52632
52633
52634
52635
52636
52637
52638
52639
52640
52641
52642
52643
52644
52645
52646
52647
52648
52649
52650
52651
52652
52653
52654
52655
52656
52657
52658
52659
52660
52661
52662
52663
52664
52665
52666
52667
52668
52669
52670
52671
52672
52673
52674
52675
52676
52677
52678
52679
52680
52681
52682
52683
52684
52685
52686
52687
52688
52689
52690
52691
52692
52693
52694
52695
52696
52697
52698
52699
52700
52701
52702
52703
52704
52705
52706
52707
52708
52709
52710
52711
52712
52713
52714
52715
52716
52717
52718
52719
52720
52721
52722
52723
52724
52725
52726
52727
52728
52729
52730
52731
52732
52733
52734
52735
52736
52737
52738
52739
52740
52741
52742
52743
52744
52745
52746
52747
52748
52749
52750
52751
52752
52753
52754
52755
52756
52757
52758
52759
52760
52761
52762
52763
52764
52765
52766
52767
52768
52769
52770
52771
52772
52773
52774
52775
52776
52777
52778
52779
52780
52781
52782
52783
52784
52785
52786
52787
52788
52789
52790
52791
52792
52793
52794
52795
52796
52797
52798
52799
52800
52801
52802
52803
52804
52805
52806
52807
52808
52809
52810
52811
52812
52813
52814
52815
52816
52817
52818
52819
52820
52821
52822
52823
52824
52825
52826
52827
52828
52829
52830
52831
52832
52833
52834
52835
52836
52837
52838
52839
52840
52841
52842
52843
52844
52845
52846
52847
52848
52849
52850
52851
52852
52853
52854
52855
52856
52857
52858
52859
52860
52861
52862
52863
52864
52865
52866
52867
52868
52869
52870
52871
52872
52873
52874
52875
52876
52877
52878
52879
52880
52881
52882
52883
52884
52885
52886
52887
52888
52889
52890
52891
52892
52893
52894
52895
52896
52897
52898
52899
52900
52901
52902
52903
52904
52905
52906
52907
52908
52909
52910
52911
52912
52913
52914
52915
52916
52917
52918
52919
52920
52921
52922
52923
52924
52925
52926
52927
52928
52929
52930
52931
52932
52933
52934
52935
52936
52937
52938
52939
52940
52941
52942
52943
52944
52945
52946
52947
52948
52949
52950
52951
52952
52953
52954
52955
52956
52957
52958
52959
52960
52961
52962
52963
52964
52965
52966
52967
52968
52969
52970
52971
52972
52973
52974
52975
52976
52977
52978
52979
52980
52981
52982
52983
52984
52985
52986
52987
52988
52989
52990
52991
52992
52993
52994
52995
52996
52997
52998
52999
53000
53001
53002
53003
53004
53005
53006
53007
53008
53009
53010
53011
53012
53013
53014
53015
53016
53017
53018
53019
53020
53021
53022
53023
53024
53025
53026
53027
53028
53029
53030
53031
53032
53033
53034
53035
53036
53037
53038
53039
53040
53041
53042
53043
53044
53045
53046
53047
53048
53049
53050
53051
53052
53053
53054
53055
53056
53057
53058
53059
53060
53061
53062
53063
53064
53065
53066
53067
53068
53069
53070
53071
53072
53073
53074
53075
53076
53077
53078
53079
53080
53081
53082
53083
53084
53085
53086
53087
53088
53089
53090
53091
53092
53093
53094
53095
53096
53097
53098
53099
53100
53101
53102
53103
53104
53105
53106
53107
53108
53109
53110
53111
53112
53113
53114
53115
53116
53117
53118
53119
53120
53121
53122
53123
53124
53125
53126
53127
53128
53129
53130
53131
53132
53133
53134
53135
53136
53137
53138
53139
53140
53141
53142
53143
53144
53145
53146
53147
53148
53149
53150
53151
53152
53153
53154
53155
53156
53157
53158
53159
53160
53161
53162
53163
53164
53165
53166
53167
53168
53169
53170
53171
53172
53173
53174
53175
53176
53177
53178
53179
53180
53181
53182
53183
53184
53185
53186
53187
53188
53189
53190
53191
53192
53193
53194
53195
53196
53197
53198
53199
53200
53201
53202
53203
53204
53205
53206
53207
53208
53209
53210
53211
53212
53213
53214
53215
53216
53217
53218
53219
53220
53221
53222
53223
53224
53225
53226
53227
53228
53229
53230
53231
53232
53233
53234
53235
53236
53237
53238
53239
53240
53241
53242
53243
53244
53245
53246
53247
53248
53249
53250
53251
53252
53253
53254
53255
53256
53257
53258
53259
53260
53261
53262
53263
53264
53265
53266
53267
53268
53269
53270
53271
53272
53273
53274
53275
53276
53277
53278
53279
53280
53281
53282
53283
53284
53285
53286
53287
53288
53289
53290
53291
53292
53293
53294
53295
53296
53297
53298
53299
53300
53301
53302
53303
53304
53305
53306
53307
53308
53309
53310
53311
53312
53313
53314
53315
53316
53317
53318
53319
53320
53321
53322
53323
53324
53325
53326
53327
53328
53329
53330
53331
53332
53333
53334
53335
53336
53337
53338
53339
53340
53341
53342
53343
53344
53345
53346
53347
53348
53349
53350
53351
53352
53353
53354
53355
53356
53357
53358
53359
53360
53361
53362
53363
53364
53365
53366
53367
53368
53369
53370
53371
53372
53373
53374
53375
53376
53377
53378
53379
53380
53381
53382
53383
53384
53385
53386
53387
53388
53389
53390
53391
53392
53393
53394
53395
53396
53397
53398
53399
53400
53401
53402
53403
53404
53405
53406
53407
53408
53409
53410
53411
53412
53413
53414
53415
53416
53417
53418
53419
53420
53421
53422
53423
53424
53425
53426
53427
53428
53429
53430
53431
53432
53433
53434
53435
53436
53437
53438
53439
53440
53441
53442
53443
53444
53445
53446
53447
53448
53449
53450
53451
53452
53453
53454
53455
53456
53457
53458
53459
53460
53461
53462
53463
53464
53465
53466
53467
53468
53469
53470
53471
53472
53473
53474
53475
53476
53477
53478
53479
53480
53481
53482
53483
53484
53485
53486
53487
53488
53489
53490
53491
53492
53493
53494
53495
53496
53497
53498
53499
53500
53501
53502
53503
53504
53505
53506
53507
53508
53509
53510
53511
53512
53513
53514
53515
53516
53517
53518
53519
53520
53521
53522
53523
53524
53525
53526
53527
53528
53529
53530
53531
53532
53533
53534
53535
53536
53537
53538
53539
53540
53541
53542
53543
53544
53545
53546
53547
53548
53549
53550
53551
53552
53553
53554
53555
53556
53557
53558
53559
53560
53561
53562
53563
53564
53565
53566
53567
53568
53569
53570
53571
53572
53573
53574
53575
53576
53577
53578
53579
53580
53581
53582
53583
53584
53585
53586
53587
53588
53589
53590
53591
53592
53593
53594
53595
53596
53597
53598
53599
53600
53601
53602
53603
53604
53605
53606
53607
53608
53609
53610
53611
53612
53613
53614
53615
53616
53617
53618
53619
53620
53621
53622
53623
53624
53625
53626
53627
53628
53629
53630
53631
53632
53633
53634
53635
53636
53637
53638
53639
53640
53641
53642
53643
53644
53645
53646
53647
53648
53649
53650
53651
53652
53653
53654
53655
53656
53657
53658
53659
53660
53661
53662
53663
53664
53665
53666
53667
53668
53669
53670
53671
53672
53673
53674
53675
53676
53677
53678
53679
53680
53681
53682
53683
53684
53685
53686
53687
53688
53689
53690
53691
53692
53693
53694
53695
53696
53697
53698
53699
53700
53701
53702
53703
53704
53705
53706
53707
53708
53709
53710
53711
53712
53713
53714
53715
53716
53717
53718
53719
53720
53721
53722
53723
53724
53725
53726
53727
53728
53729
53730
53731
53732
53733
53734
53735
53736
53737
53738
53739
53740
53741
53742
53743
53744
53745
53746
53747
53748
53749
53750
53751
53752
53753
53754
53755
53756
53757
53758
53759
53760
53761
53762
53763
53764
53765
53766
53767
53768
53769
53770
53771
53772
53773
53774
53775
53776
53777
53778
53779
53780
53781
53782
53783
53784
53785
53786
53787
53788
53789
53790
53791
53792
53793
53794
53795
53796
53797
53798
53799
53800
53801
53802
53803
53804
53805
53806
53807
53808
53809
53810
53811
53812
53813
53814
53815
53816
53817
53818
53819
53820
53821
53822
53823
53824
53825
53826
53827
53828
53829
53830
53831
53832
53833
53834
53835
53836
53837
53838
53839
53840
53841
53842
53843
53844
53845
53846
53847
53848
53849
53850
53851
53852
53853
53854
53855
53856
53857
53858
53859
53860
53861
53862
53863
53864
53865
53866
53867
53868
53869
53870
53871
53872
53873
53874
53875
53876
53877
53878
53879
53880
53881
53882
53883
53884
53885
53886
53887
53888
53889
53890
53891
53892
53893
53894
53895
53896
53897
53898
53899
53900
53901
53902
53903
53904
53905
53906
53907
53908
53909
53910
53911
53912
53913
53914
53915
53916
53917
53918
53919
53920
53921
53922
53923
53924
53925
53926
53927
53928
53929
53930
53931
53932
53933
53934
53935
53936
53937
53938
53939
53940
53941
53942
53943
53944
53945
53946
53947
53948
53949
53950
53951
53952
53953
53954
53955
53956
53957
53958
53959
53960
53961
53962
53963
53964
53965
53966
53967
53968
53969
53970
53971
53972
53973
53974
53975
53976
53977
53978
53979
53980
53981
53982
53983
53984
53985
53986
53987
53988
53989
53990
53991
53992
53993
53994
53995
53996
53997
53998
53999
54000
54001
54002
54003
54004
54005
54006
54007
54008
54009
54010
54011
54012
54013
54014
54015
54016
54017
54018
54019
54020
54021
54022
54023
54024
54025
54026
54027
54028
54029
54030
54031
54032
54033
54034
54035
54036
54037
54038
54039
54040
54041
54042
54043
54044
54045
54046
54047
54048
54049
54050
54051
54052
54053
54054
54055
54056
54057
54058
54059
54060
54061
54062
54063
54064
54065
54066
54067
54068
54069
54070
54071
54072
54073
54074
54075
54076
54077
54078
54079
54080
54081
54082
54083
54084
54085
54086
54087
54088
54089
54090
54091
54092
54093
54094
54095
54096
54097
54098
54099
54100
54101
54102
54103
54104
54105
54106
54107
54108
54109
54110
54111
54112
54113
54114
54115
54116
54117
54118
54119
54120
54121
54122
54123
54124
54125
54126
54127
54128
54129
54130
54131
54132
54133
54134
54135
54136
54137
54138
54139
54140
54141
54142
54143
54144
54145
54146
54147
54148
54149
54150
54151
54152
54153
54154
54155
54156
54157
54158
54159
54160
54161
54162
54163
54164
54165
54166
54167
54168
54169
54170
54171
54172
54173
54174
54175
54176
54177
54178
54179
54180
54181
54182
54183
54184
54185
54186
54187
54188
54189
54190
54191
54192
54193
54194
54195
54196
54197
54198
54199
54200
54201
54202
54203
54204
54205
54206
54207
54208
54209
54210
54211
54212
54213
54214
54215
54216
54217
54218
54219
54220
54221
54222
54223
54224
54225
54226
54227
54228
54229
54230
54231
54232
54233
54234
54235
54236
54237
54238
54239
54240
54241
54242
54243
54244
54245
54246
54247
54248
54249
54250
54251
54252
54253
54254
54255
54256
54257
54258
54259
54260
54261
54262
54263
54264
54265
54266
54267
54268
54269
54270
54271
54272
54273
54274
54275
54276
54277
54278
54279
54280
54281
54282
54283
54284
54285
54286
54287
54288
54289
54290
54291
54292
54293
54294
54295
54296
54297
54298
54299
54300
54301
54302
54303
54304
54305
54306
54307
54308
54309
54310
54311
54312
54313
54314
54315
54316
54317
54318
54319
54320
54321
54322
54323
54324
54325
54326
54327
54328
54329
54330
54331
54332
54333
54334
54335
54336
54337
54338
54339
54340
54341
54342
54343
54344
54345
54346
54347
54348
54349
54350
54351
54352
54353
54354
54355
54356
54357
54358
54359
54360
54361
54362
54363
54364
54365
54366
54367
54368
54369
54370
54371
54372
54373
54374
54375
54376
54377
54378
54379
54380
54381
54382
54383
54384
54385
54386
54387
54388
54389
54390
54391
54392
54393
54394
54395
54396
54397
54398
54399
54400
54401
54402
54403
54404
54405
54406
54407
54408
54409
54410
54411
54412
54413
54414
54415
54416
54417
54418
54419
54420
54421
54422
54423
54424
54425
54426
54427
54428
54429
54430
54431
54432
54433
54434
54435
54436
54437
54438
54439
54440
54441
54442
54443
54444
54445
54446
54447
54448
54449
54450
54451
54452
54453
54454
54455
54456
54457
54458
54459
54460
54461
54462
54463
54464
54465
54466
54467
54468
54469
54470
54471
54472
54473
54474
54475
54476
54477
54478
54479
54480
54481
54482
54483
54484
54485
54486
54487
54488
54489
54490
54491
54492
54493
54494
54495
54496
54497
54498
54499
54500
54501
54502
54503
54504
54505
54506
54507
54508
54509
54510
54511
54512
54513
54514
54515
54516
54517
54518
54519
54520
54521
54522
54523
54524
54525
54526
54527
54528
54529
54530
54531
54532
54533
54534
54535
54536
54537
54538
54539
54540
54541
54542
54543
54544
54545
54546
54547
54548
54549
54550
54551
54552
54553
54554
54555
54556
54557
54558
54559
54560
54561
54562
54563
54564
54565
54566
54567
54568
54569
54570
54571
54572
54573
54574
54575
54576
54577
54578
54579
54580
54581
54582
54583
54584
54585
54586
54587
54588
54589
54590
54591
54592
54593
54594
54595
54596
54597
54598
54599
54600
54601
54602
54603
54604
54605
54606
54607
54608
54609
54610
54611
54612
54613
54614
54615
54616
54617
54618
54619
54620
54621
54622
54623
54624
54625
54626
54627
54628
54629
54630
54631
54632
54633
54634
54635
54636
54637
54638
54639
54640
54641
54642
54643
54644
54645
54646
54647
54648
54649
54650
54651
54652
54653
54654
54655
54656
54657
54658
54659
54660
54661
54662
54663
54664
54665
54666
54667
54668
54669
54670
54671
54672
54673
54674
54675
54676
54677
54678
54679
54680
54681
54682
54683
54684
54685
54686
54687
54688
54689
54690
54691
54692
54693
54694
54695
54696
54697
54698
54699
54700
54701
54702
54703
54704
54705
54706
54707
54708
54709
54710
54711
54712
54713
54714
54715
54716
54717
54718
54719
54720
54721
54722
54723
54724
54725
54726
54727
54728
54729
54730
54731
54732
54733
54734
54735
54736
54737
54738
54739
54740
54741
54742
54743
54744
54745
54746
54747
54748
54749
54750
54751
54752
54753
54754
54755
54756
54757
54758
54759
54760
54761
54762
54763
54764
54765
54766
54767
54768
54769
54770
54771
54772
54773
54774
54775
54776
54777
54778
54779
54780
54781
54782
54783
54784
54785
54786
54787
54788
54789
54790
54791
54792
54793
54794
54795
54796
54797
54798
54799
54800
54801
54802
54803
54804
54805
54806
54807
54808
54809
54810
54811
54812
54813
54814
54815
54816
54817
54818
54819
54820
54821
54822
54823
54824
54825
54826
54827
54828
54829
54830
54831
54832
54833
54834
54835
54836
54837
54838
54839
54840
54841
54842
54843
54844
54845
54846
54847
54848
54849
54850
54851
54852
54853
54854
54855
54856
54857
54858
54859
54860
54861
54862
54863
54864
54865
54866
54867
54868
54869
54870
54871
54872
54873
54874
54875
54876
54877
54878
54879
54880
54881
54882
54883
54884
54885
54886
54887
54888
54889
54890
54891
54892
54893
54894
54895
54896
54897
54898
54899
54900
54901
54902
54903
54904
54905
54906
54907
54908
54909
54910
54911
54912
54913
54914
54915
54916
54917
54918
54919
54920
54921
54922
54923
54924
54925
54926
54927
54928
54929
54930
54931
54932
54933
54934
54935
54936
54937
54938
54939
54940
54941
54942
54943
54944
54945
54946
54947
54948
54949
54950
54951
54952
54953
54954
54955
54956
54957
54958
54959
54960
54961
54962
54963
54964
54965
54966
54967
54968
54969
54970
54971
54972
54973
54974
54975
54976
54977
54978
54979
54980
54981
54982
54983
54984
54985
54986
54987
54988
54989
54990
54991
54992
54993
54994
54995
54996
54997
54998
54999
55000
55001
55002
55003
55004
55005
55006
55007
55008
55009
55010
55011
55012
55013
55014
55015
55016
55017
55018
55019
55020
55021
55022
55023
55024
55025
55026
55027
55028
55029
55030
55031
55032
55033
55034
55035
55036
55037
55038
55039
55040
55041
55042
55043
55044
55045
55046
55047
55048
55049
55050
55051
55052
55053
55054
55055
55056
55057
55058
55059
55060
55061
55062
55063
55064
55065
55066
55067
55068
55069
55070
55071
55072
55073
55074
55075
55076
55077
55078
55079
55080
55081
55082
55083
55084
55085
55086
55087
55088
55089
55090
55091
55092
55093
55094
55095
55096
55097
55098
55099
55100
55101
55102
55103
55104
55105
55106
55107
55108
55109
55110
55111
55112
55113
55114
55115
55116
55117
55118
55119
55120
55121
55122
55123
55124
55125
55126
55127
55128
55129
55130
55131
55132
55133
55134
55135
55136
55137
55138
55139
55140
55141
55142
55143
55144
55145
55146
55147
55148
55149
55150
55151
55152
55153
55154
55155
55156
55157
55158
55159
55160
55161
55162
55163
55164
55165
55166
55167
55168
55169
55170
55171
55172
55173
55174
55175
55176
55177
55178
55179
55180
55181
55182
55183
55184
55185
55186
55187
55188
55189
55190
55191
55192
55193
55194
55195
55196
55197
55198
55199
55200
55201
55202
55203
55204
55205
55206
55207
55208
55209
55210
55211
55212
55213
55214
55215
55216
55217
55218
55219
55220
55221
55222
55223
55224
55225
55226
55227
55228
55229
55230
55231
55232
55233
55234
55235
55236
55237
55238
55239
55240
55241
55242
55243
55244
55245
55246
55247
55248
55249
55250
55251
55252
55253
55254
55255
55256
55257
55258
55259
55260
55261
55262
55263
55264
55265
55266
55267
55268
55269
55270
55271
55272
55273
55274
55275
55276
55277
55278
55279
55280
55281
55282
55283
55284
55285
55286
55287
55288
55289
55290
55291
55292
55293
55294
55295
55296
55297
55298
55299
55300
55301
55302
55303
55304
55305
55306
55307
55308
55309
55310
55311
55312
55313
55314
55315
55316
55317
55318
55319
55320
55321
55322
55323
55324
55325
55326
55327
55328
55329
55330
55331
55332
55333
55334
55335
55336
55337
55338
55339
55340
55341
55342
55343
55344
55345
55346
55347
55348
55349
55350
55351
55352
55353
55354
55355
55356
55357
55358
55359
55360
55361
55362
55363
55364
55365
55366
55367
55368
55369
55370
55371
55372
55373
55374
55375
55376
55377
55378
55379
55380
55381
55382
55383
55384
55385
55386
55387
55388
55389
55390
55391
55392
55393
55394
55395
55396
55397
55398
55399
55400
55401
55402
55403
55404
55405
55406
55407
55408
55409
55410
55411
55412
55413
55414
55415
55416
55417
55418
55419
55420
55421
55422
55423
55424
55425
55426
55427
55428
55429
55430
55431
55432
55433
55434
55435
55436
55437
55438
55439
55440
55441
55442
55443
55444
55445
55446
55447
55448
55449
55450
55451
55452
55453
55454
55455
55456
55457
55458
55459
55460
55461
55462
55463
55464
55465
55466
55467
55468
55469
55470
55471
55472
55473
55474
55475
55476
55477
55478
55479
55480
55481
55482
55483
55484
55485
55486
55487
55488
55489
55490
55491
55492
55493
55494
55495
55496
55497
55498
55499
55500
55501
55502
55503
55504
55505
55506
55507
55508
55509
55510
55511
55512
55513
55514
55515
55516
55517
55518
55519
55520
55521
55522
55523
55524
55525
55526
55527
55528
55529
55530
55531
55532
55533
55534
55535
55536
55537
55538
55539
55540
55541
55542
55543
55544
55545
55546
55547
55548
55549
55550
55551
55552
55553
55554
55555
55556
55557
55558
55559
55560
55561
55562
55563
55564
55565
55566
55567
55568
55569
55570
55571
55572
55573
55574
55575
55576
55577
55578
55579
55580
55581
55582
55583
55584
55585
55586
55587
55588
55589
55590
55591
55592
55593
55594
55595
55596
55597
55598
55599
55600
55601
55602
55603
55604
55605
55606
55607
55608
55609
55610
55611
55612
55613
55614
55615
55616
55617
55618
55619
55620
55621
55622
55623
55624
55625
55626
55627
55628
55629
55630
55631
55632
55633
55634
55635
55636
55637
55638
55639
55640
55641
55642
55643
55644
55645
55646
55647
55648
55649
55650
55651
55652
55653
55654
55655
55656
55657
55658
55659
55660
55661
55662
55663
55664
55665
55666
55667
55668
55669
55670
55671
55672
55673
55674
55675
55676
55677
55678
55679
55680
55681
55682
55683
55684
55685
55686
55687
55688
55689
55690
55691
55692
55693
55694
55695
55696
55697
55698
55699
55700
55701
55702
55703
55704
55705
55706
55707
55708
55709
55710
55711
55712
55713
55714
55715
55716
55717
55718
55719
55720
55721
55722
55723
55724
55725
55726
55727
55728
55729
55730
55731
55732
55733
55734
55735
55736
55737
55738
55739
55740
55741
55742
55743
55744
55745
55746
55747
55748
55749
55750
55751
55752
55753
55754
55755
55756
55757
55758
55759
55760
55761
55762
55763
55764
55765
55766
55767
55768
55769
55770
55771
55772
55773
55774
55775
55776
55777
55778
55779
55780
55781
55782
55783
55784
55785
55786
55787
55788
55789
55790
55791
55792
55793
55794
55795
55796
55797
55798
55799
55800
55801
55802
55803
55804
55805
55806
55807
55808
55809
55810
55811
55812
55813
55814
55815
55816
55817
55818
55819
55820
55821
55822
55823
55824
55825
55826
55827
55828
55829
55830
55831
55832
55833
55834
55835
55836
55837
55838
55839
55840
55841
55842
55843
55844
55845
55846
55847
55848
55849
55850
55851
55852
55853
55854
55855
55856
55857
55858
55859
55860
55861
55862
55863
55864
55865
55866
55867
55868
55869
55870
55871
55872
55873
55874
55875
55876
55877
55878
55879
55880
55881
55882
55883
55884
55885
55886
55887
55888
55889
55890
55891
55892
55893
55894
55895
55896
55897
55898
55899
55900
55901
55902
55903
55904
55905
55906
55907
55908
55909
55910
55911
55912
55913
55914
55915
55916
55917
55918
55919
55920
55921
55922
55923
55924
55925
55926
55927
55928
55929
55930
55931
55932
55933
55934
55935
55936
55937
55938
55939
55940
55941
55942
55943
55944
55945
55946
55947
55948
55949
55950
55951
55952
55953
55954
55955
55956
55957
55958
55959
55960
55961
55962
55963
55964
55965
55966
55967
55968
55969
55970
55971
55972
55973
55974
55975
55976
55977
55978
55979
55980
55981
55982
55983
55984
55985
55986
55987
55988
55989
55990
55991
55992
55993
55994
55995
55996
55997
55998
55999
56000
56001
56002
56003
56004
56005
56006
56007
56008
56009
56010
56011
56012
56013
56014
56015
56016
56017
56018
56019
56020
56021
56022
56023
56024
56025
56026
56027
56028
56029
56030
56031
56032
56033
56034
56035
56036
56037
56038
56039
56040
56041
56042
56043
56044
56045
56046
56047
56048
56049
56050
56051
56052
56053
56054
56055
56056
56057
56058
56059
56060
56061
56062
56063
56064
56065
56066
56067
56068
56069
56070
56071
56072
56073
56074
56075
56076
56077
56078
56079
56080
56081
56082
56083
56084
56085
56086
56087
56088
56089
56090
56091
56092
56093
56094
56095
56096
56097
56098
56099
56100
56101
56102
56103
56104
56105
56106
56107
56108
56109
56110
56111
56112
56113
56114
56115
56116
56117
56118
56119
56120
56121
56122
56123
56124
56125
56126
56127
56128
56129
56130
56131
56132
56133
56134
56135
56136
56137
56138
56139
56140
56141
56142
56143
56144
56145
56146
56147
56148
56149
56150
56151
56152
56153
56154
56155
56156
56157
56158
56159
56160
56161
56162
56163
56164
56165
56166
56167
56168
56169
56170
56171
56172
56173
56174
56175
56176
56177
56178
56179
56180
56181
56182
56183
56184
56185
56186
56187
56188
56189
56190
56191
56192
56193
56194
56195
56196
56197
56198
56199
56200
56201
56202
56203
56204
56205
56206
56207
56208
56209
56210
56211
56212
56213
56214
56215
56216
56217
56218
56219
56220
56221
56222
56223
56224
56225
56226
56227
56228
56229
56230
56231
56232
56233
56234
56235
56236
56237
56238
56239
56240
56241
56242
56243
56244
56245
56246
56247
56248
56249
56250
56251
56252
56253
56254
56255
56256
56257
56258
56259
56260
56261
56262
56263
56264
56265
56266
56267
56268
56269
56270
56271
56272
56273
56274
56275
56276
56277
56278
56279
56280
56281
56282
56283
56284
56285
56286
56287
56288
56289
56290
56291
56292
56293
56294
56295
56296
56297
56298
56299
56300
56301
56302
56303
56304
56305
56306
56307
56308
56309
56310
56311
56312
56313
56314
56315
56316
56317
56318
56319
56320
56321
56322
56323
56324
56325
56326
56327
56328
56329
56330
56331
56332
56333
56334
56335
56336
56337
56338
56339
56340
56341
56342
56343
56344
56345
56346
56347
56348
56349
56350
56351
56352
56353
56354
56355
56356
56357
56358
56359
56360
56361
56362
56363
56364
56365
56366
56367
56368
56369
56370
56371
56372
56373
56374
56375
56376
56377
56378
56379
56380
56381
56382
56383
56384
56385
56386
56387
56388
56389
56390
56391
56392
56393
56394
56395
56396
56397
56398
56399
56400
56401
56402
56403
56404
56405
56406
56407
56408
56409
56410
56411
56412
56413
56414
56415
56416
56417
56418
56419
56420
56421
56422
56423
56424
56425
56426
56427
56428
56429
56430
56431
56432
56433
56434
56435
56436
56437
56438
56439
56440
56441
56442
56443
56444
56445
56446
56447
56448
56449
56450
56451
56452
56453
56454
56455
56456
56457
56458
56459
56460
56461
56462
56463
56464
56465
56466
56467
56468
56469
56470
56471
56472
56473
56474
56475
56476
56477
56478
56479
56480
56481
56482
56483
56484
56485
56486
56487
56488
56489
56490
56491
56492
56493
56494
56495
56496
56497
56498
56499
56500
56501
56502
56503
56504
56505
56506
56507
56508
56509
56510
56511
56512
56513
56514
56515
56516
56517
56518
56519
56520
56521
56522
56523
56524
56525
56526
56527
56528
56529
56530
56531
56532
56533
56534
56535
56536
56537
56538
56539
56540
56541
56542
56543
56544
56545
56546
56547
56548
56549
56550
56551
56552
56553
56554
56555
56556
56557
56558
56559
56560
56561
56562
56563
56564
56565
56566
56567
56568
56569
56570
56571
56572
56573
56574
56575
56576
56577
56578
56579
56580
56581
56582
56583
56584
56585
56586
56587
56588
56589
56590
56591
56592
56593
56594
56595
56596
56597
56598
56599
56600
56601
56602
56603
56604
56605
56606
56607
56608
56609
56610
56611
56612
56613
56614
56615
56616
56617
56618
56619
56620
56621
56622
56623
56624
56625
56626
56627
56628
56629
56630
56631
56632
56633
56634
56635
56636
56637
56638
56639
56640
56641
56642
56643
56644
56645
56646
56647
56648
56649
56650
56651
56652
56653
56654
56655
56656
56657
56658
56659
56660
56661
56662
56663
56664
56665
56666
56667
56668
56669
56670
56671
56672
56673
56674
56675
56676
56677
56678
56679
56680
56681
56682
56683
56684
56685
56686
56687
56688
56689
56690
56691
56692
56693
56694
56695
56696
56697
56698
56699
56700
56701
56702
56703
56704
56705
56706
56707
56708
56709
56710
56711
56712
56713
56714
56715
56716
56717
56718
56719
56720
56721
56722
56723
56724
56725
56726
56727
56728
56729
56730
56731
56732
56733
56734
56735
56736
56737
56738
56739
56740
56741
56742
56743
56744
56745
56746
56747
56748
56749
56750
56751
56752
56753
56754
56755
56756
56757
56758
56759
56760
56761
56762
56763
56764
56765
56766
56767
56768
56769
56770
56771
56772
56773
56774
56775
56776
56777
56778
56779
56780
56781
56782
56783
56784
56785
56786
56787
56788
56789
56790
56791
56792
56793
56794
56795
56796
56797
56798
56799
56800
56801
56802
56803
56804
56805
56806
56807
56808
56809
56810
56811
56812
56813
56814
56815
56816
56817
56818
56819
56820
56821
56822
56823
56824
56825
56826
56827
56828
56829
56830
56831
56832
56833
56834
56835
56836
56837
56838
56839
56840
56841
56842
56843
56844
56845
56846
56847
56848
56849
56850
56851
56852
56853
56854
56855
56856
56857
56858
56859
56860
56861
56862
56863
56864
56865
56866
56867
56868
56869
56870
56871
56872
56873
56874
56875
56876
56877
56878
56879
56880
56881
56882
56883
56884
56885
56886
56887
56888
56889
56890
56891
56892
56893
56894
56895
56896
56897
56898
56899
56900
56901
56902
56903
56904
56905
56906
56907
56908
56909
56910
56911
56912
56913
56914
56915
56916
56917
56918
56919
56920
56921
56922
56923
56924
56925
56926
56927
56928
56929
56930
56931
56932
56933
56934
56935
56936
56937
56938
56939
56940
56941
56942
56943
56944
56945
56946
56947
56948
56949
56950
56951
56952
56953
56954
56955
56956
56957
56958
56959
56960
56961
56962
56963
56964
56965
56966
56967
56968
56969
56970
56971
56972
56973
56974
56975
56976
56977
56978
56979
56980
56981
56982
56983
56984
56985
56986
56987
56988
56989
56990
56991
56992
56993
56994
56995
56996
56997
56998
56999
57000
57001
57002
57003
57004
57005
57006
57007
57008
57009
57010
57011
57012
57013
57014
57015
57016
57017
57018
57019
57020
57021
57022
57023
57024
57025
57026
57027
57028
57029
57030
57031
57032
57033
57034
57035
57036
57037
57038
57039
57040
57041
57042
57043
57044
57045
57046
57047
57048
57049
57050
57051
57052
57053
57054
57055
57056
57057
57058
57059
57060
57061
57062
57063
57064
57065
57066
57067
57068
57069
57070
57071
57072
57073
57074
57075
57076
57077
57078
57079
57080
57081
57082
57083
57084
57085
57086
57087
57088
57089
57090
57091
57092
57093
57094
57095
57096
57097
57098
57099
57100
57101
57102
57103
57104
57105
57106
57107
57108
57109
57110
57111
57112
57113
57114
57115
57116
57117
57118
57119
57120
57121
57122
57123
57124
57125
57126
57127
57128
57129
57130
57131
57132
57133
57134
57135
57136
57137
57138
57139
57140
57141
57142
57143
57144
57145
57146
57147
57148
57149
57150
57151
57152
57153
57154
57155
57156
57157
57158
57159
57160
57161
57162
57163
57164
57165
57166
57167
57168
57169
57170
57171
57172
57173
57174
57175
57176
57177
57178
57179
57180
57181
57182
57183
57184
57185
57186
57187
57188
57189
57190
57191
57192
57193
57194
57195
57196
57197
57198
57199
57200
57201
57202
57203
57204
57205
57206
57207
57208
57209
57210
57211
57212
57213
57214
57215
57216
57217
57218
57219
57220
57221
57222
57223
57224
57225
57226
57227
57228
57229
57230
57231
57232
57233
57234
57235
57236
57237
57238
57239
57240
57241
57242
57243
57244
57245
57246
57247
57248
57249
57250
57251
57252
57253
57254
57255
57256
57257
57258
57259
57260
57261
57262
57263
57264
57265
57266
57267
57268
57269
57270
57271
57272
57273
57274
57275
57276
57277
57278
57279
57280
57281
57282
57283
57284
57285
57286
57287
57288
57289
57290
57291
57292
57293
57294
57295
57296
57297
57298
57299
57300
57301
57302
57303
57304
57305
57306
57307
57308
57309
57310
57311
57312
57313
57314
57315
57316
57317
57318
57319
57320
57321
57322
57323
57324
57325
57326
57327
57328
57329
57330
57331
57332
57333
57334
57335
57336
57337
57338
57339
57340
57341
57342
57343
57344
57345
57346
57347
57348
57349
57350
57351
57352
57353
57354
57355
57356
57357
57358
57359
57360
57361
57362
57363
57364
57365
57366
57367
57368
57369
57370
57371
57372
57373
57374
57375
57376
57377
57378
57379
57380
57381
57382
57383
57384
57385
57386
57387
57388
57389
57390
57391
57392
57393
57394
57395
57396
57397
57398
57399
57400
57401
57402
57403
57404
57405
57406
57407
57408
57409
57410
57411
57412
57413
57414
57415
57416
57417
57418
57419
57420
57421
57422
57423
57424
57425
57426
57427
57428
57429
57430
57431
57432
57433
57434
57435
57436
57437
57438
57439
57440
57441
57442
57443
57444
57445
57446
57447
57448
57449
57450
57451
57452
57453
57454
57455
57456
57457
57458
57459
57460
57461
57462
57463
57464
57465
57466
57467
57468
57469
57470
57471
57472
57473
57474
57475
57476
57477
57478
57479
57480
57481
57482
57483
57484
57485
57486
57487
57488
57489
57490
57491
57492
57493
57494
57495
57496
57497
57498
57499
57500
57501
57502
57503
57504
57505
57506
57507
57508
57509
57510
57511
57512
57513
57514
57515
57516
57517
57518
57519
57520
57521
57522
57523
57524
57525
57526
57527
57528
57529
57530
57531
57532
57533
57534
57535
57536
57537
57538
57539
57540
57541
57542
57543
57544
57545
57546
57547
57548
57549
57550
57551
57552
57553
57554
57555
57556
57557
57558
57559
57560
57561
57562
57563
57564
57565
57566
57567
57568
57569
57570
57571
57572
57573
57574
57575
57576
57577
57578
57579
57580
57581
57582
57583
57584
57585
57586
57587
57588
57589
57590
57591
57592
57593
57594
57595
57596
57597
57598
57599
57600
57601
57602
57603
57604
57605
57606
57607
57608
57609
57610
57611
57612
57613
57614
57615
57616
57617
57618
57619
57620
57621
57622
57623
57624
57625
57626
57627
57628
57629
57630
57631
57632
57633
57634
57635
57636
57637
57638
57639
57640
57641
57642
57643
57644
57645
57646
57647
57648
57649
57650
57651
57652
57653
57654
57655
57656
57657
57658
57659
57660
57661
57662
57663
57664
57665
57666
57667
57668
57669
57670
57671
57672
57673
57674
57675
57676
57677
57678
57679
57680
57681
57682
57683
57684
57685
57686
57687
57688
57689
57690
57691
57692
57693
57694
57695
57696
57697
57698
57699
57700
57701
57702
57703
57704
57705
57706
57707
57708
57709
57710
57711
57712
57713
57714
57715
57716
57717
57718
57719
57720
57721
57722
57723
57724
57725
57726
57727
57728
57729
57730
57731
57732
57733
57734
57735
57736
57737
57738
57739
57740
57741
57742
57743
57744
57745
57746
57747
57748
57749
57750
57751
57752
57753
57754
57755
57756
57757
57758
57759
57760
57761
57762
57763
57764
57765
57766
57767
57768
57769
57770
57771
57772
57773
57774
57775
57776
57777
57778
57779
57780
57781
57782
57783
57784
57785
57786
57787
57788
57789
57790
57791
57792
57793
57794
57795
57796
57797
57798
57799
57800
57801
57802
57803
57804
57805
57806
57807
57808
57809
57810
57811
57812
57813
57814
57815
57816
57817
57818
57819
57820
57821
57822
57823
57824
57825
57826
57827
57828
57829
57830
57831
57832
57833
57834
57835
57836
57837
57838
57839
57840
57841
57842
57843
57844
57845
57846
57847
57848
57849
57850
57851
57852
57853
57854
57855
57856
57857
57858
57859
57860
57861
57862
57863
57864
57865
57866
57867
57868
57869
57870
57871
57872
57873
57874
57875
57876
57877
57878
57879
57880
57881
57882
57883
57884
57885
57886
57887
57888
57889
57890
57891
57892
57893
57894
57895
57896
57897
57898
57899
57900
57901
57902
57903
57904
57905
57906
57907
57908
57909
57910
57911
57912
57913
57914
57915
57916
57917
57918
57919
57920
57921
57922
57923
57924
57925
57926
57927
57928
57929
57930
57931
57932
57933
57934
57935
57936
57937
57938
57939
57940
57941
57942
57943
57944
57945
57946
57947
57948
57949
57950
57951
57952
57953
57954
57955
57956
57957
57958
57959
57960
57961
57962
57963
57964
57965
57966
57967
57968
57969
57970
57971
57972
57973
57974
57975
57976
57977
57978
57979
57980
57981
57982
57983
57984
57985
57986
57987
57988
57989
57990
57991
57992
57993
57994
57995
57996
57997
57998
57999
58000
58001
58002
58003
58004
58005
58006
58007
58008
58009
58010
58011
58012
58013
58014
58015
58016
58017
58018
58019
58020
58021
58022
58023
58024
58025
58026
58027
58028
58029
58030
58031
58032
58033
58034
58035
58036
58037
58038
58039
58040
58041
58042
58043
58044
58045
58046
58047
58048
58049
58050
58051
58052
58053
58054
58055
58056
58057
58058
58059
58060
58061
58062
58063
58064
58065
58066
58067
58068
58069
58070
58071
58072
58073
58074
58075
58076
58077
58078
58079
58080
58081
58082
58083
58084
58085
58086
58087
58088
58089
58090
58091
58092
58093
58094
58095
58096
58097
58098
58099
58100
58101
58102
58103
58104
58105
58106
58107
58108
58109
58110
58111
58112
58113
58114
58115
58116
58117
58118
58119
58120
58121
58122
58123
58124
58125
58126
58127
58128
58129
58130
58131
58132
58133
58134
58135
58136
58137
58138
58139
58140
58141
58142
58143
58144
58145
58146
58147
58148
58149
58150
58151
58152
58153
58154
58155
58156
58157
58158
58159
58160
58161
58162
58163
58164
58165
58166
58167
58168
58169
58170
58171
58172
58173
58174
58175
58176
58177
58178
58179
58180
58181
58182
58183
58184
58185
58186
58187
58188
58189
58190
58191
58192
58193
58194
58195
58196
58197
58198
58199
58200
58201
58202
58203
58204
58205
58206
58207
58208
58209
58210
58211
58212
58213
58214
58215
58216
58217
58218
58219
58220
58221
58222
58223
58224
58225
58226
58227
58228
58229
58230
58231
58232
58233
58234
58235
58236
58237
58238
58239
58240
58241
58242
58243
58244
58245
58246
58247
58248
58249
58250
58251
58252
58253
58254
58255
58256
58257
58258
58259
58260
58261
58262
58263
58264
58265
58266
58267
58268
58269
58270
58271
58272
58273
58274
58275
58276
58277
58278
58279
58280
58281
58282
58283
58284
58285
58286
58287
58288
58289
58290
58291
58292
58293
58294
58295
58296
58297
58298
58299
58300
58301
58302
58303
58304
58305
58306
58307
58308
58309
58310
58311
58312
58313
58314
58315
58316
58317
58318
58319
58320
58321
58322
58323
58324
58325
58326
58327
58328
58329
58330
58331
58332
58333
58334
58335
58336
58337
58338
58339
58340
58341
58342
58343
58344
58345
58346
58347
58348
58349
58350
58351
58352
58353
58354
58355
58356
58357
58358
58359
58360
58361
58362
58363
58364
58365
58366
58367
58368
58369
58370
58371
58372
58373
58374
58375
58376
58377
58378
58379
58380
58381
58382
58383
58384
58385
58386
58387
58388
58389
58390
58391
58392
58393
58394
58395
58396
58397
58398
58399
58400
58401
58402
58403
58404
58405
58406
58407
58408
58409
58410
58411
58412
58413
58414
58415
58416
58417
58418
58419
58420
58421
58422
58423
58424
58425
58426
58427
58428
58429
58430
58431
58432
58433
58434
58435
58436
58437
58438
58439
58440
58441
58442
58443
58444
58445
58446
58447
58448
58449
58450
58451
58452
58453
58454
58455
58456
58457
58458
58459
58460
58461
58462
58463
58464
58465
58466
58467
58468
58469
58470
58471
58472
58473
58474
58475
58476
58477
58478
58479
58480
58481
58482
58483
58484
58485
58486
58487
58488
58489
58490
58491
58492
58493
58494
58495
58496
58497
58498
58499
58500
58501
58502
58503
58504
58505
58506
58507
58508
58509
58510
58511
58512
58513
58514
58515
58516
58517
58518
58519
58520
58521
58522
58523
58524
58525
58526
58527
58528
58529
58530
58531
58532
58533
58534
58535
58536
58537
58538
58539
58540
58541
58542
58543
58544
58545
58546
58547
58548
58549
58550
58551
58552
58553
58554
58555
58556
58557
58558
58559
58560
58561
58562
58563
58564
58565
58566
58567
58568
58569
58570
58571
58572
58573
58574
58575
58576
58577
58578
58579
58580
58581
58582
58583
58584
58585
58586
58587
58588
58589
58590
58591
58592
58593
58594
58595
58596
58597
58598
58599
58600
58601
58602
58603
58604
58605
58606
58607
58608
58609
58610
58611
58612
58613
58614
58615
58616
58617
58618
58619
58620
58621
58622
58623
58624
58625
58626
58627
58628
58629
58630
58631
58632
58633
58634
58635
58636
58637
58638
58639
58640
58641
58642
58643
58644
58645
58646
58647
58648
58649
58650
58651
58652
58653
58654
58655
58656
58657
58658
58659
58660
58661
58662
58663
58664
58665
58666
58667
58668
58669
58670
58671
58672
58673
58674
58675
58676
58677
58678
58679
58680
58681
58682
58683
58684
58685
58686
58687
58688
58689
58690
58691
58692
58693
58694
58695
58696
58697
58698
58699
58700
58701
58702
58703
58704
58705
58706
58707
58708
58709
58710
58711
58712
58713
58714
58715
58716
58717
58718
58719
58720
58721
58722
58723
58724
58725
58726
58727
58728
58729
58730
58731
58732
58733
58734
58735
58736
58737
58738
58739
58740
58741
58742
58743
58744
58745
58746
58747
58748
58749
58750
58751
58752
58753
58754
58755
58756
58757
58758
58759
58760
58761
58762
58763
58764
58765
58766
58767
58768
58769
58770
58771
58772
58773
58774
58775
58776
58777
58778
58779
58780
58781
58782
58783
58784
58785
58786
58787
58788
58789
58790
58791
58792
58793
58794
58795
58796
58797
58798
58799
58800
58801
58802
58803
58804
58805
58806
58807
58808
58809
58810
58811
58812
58813
58814
58815
58816
58817
58818
58819
58820
58821
58822
58823
58824
58825
58826
58827
58828
58829
58830
58831
58832
58833
58834
58835
58836
58837
58838
58839
58840
58841
58842
58843
58844
58845
58846
58847
58848
58849
58850
58851
58852
58853
58854
58855
58856
58857
58858
58859
58860
58861
58862
58863
58864
58865
58866
58867
58868
58869
58870
58871
58872
58873
58874
58875
58876
58877
58878
58879
58880
58881
58882
58883
58884
58885
58886
58887
58888
58889
58890
58891
58892
58893
58894
58895
58896
58897
58898
58899
58900
58901
58902
58903
58904
58905
58906
58907
58908
58909
58910
58911
58912
58913
58914
58915
58916
58917
58918
58919
58920
58921
58922
58923
58924
58925
58926
58927
58928
58929
58930
58931
58932
58933
58934
58935
58936
58937
58938
58939
58940
58941
58942
58943
58944
58945
58946
58947
58948
58949
58950
58951
58952
58953
58954
58955
58956
58957
58958
58959
58960
58961
58962
58963
58964
58965
58966
58967
58968
58969
58970
58971
58972
58973
58974
58975
58976
58977
58978
58979
58980
58981
58982
58983
58984
58985
58986
58987
58988
58989
58990
58991
58992
58993
58994
58995
58996
58997
58998
58999
59000
59001
59002
59003
59004
59005
59006
59007
59008
59009
59010
59011
59012
59013
59014
59015
59016
59017
59018
59019
59020
59021
59022
59023
59024
59025
59026
59027
59028
59029
59030
59031
59032
59033
59034
59035
59036
59037
59038
59039
59040
59041
59042
59043
59044
59045
59046
59047
59048
59049
59050
59051
59052
59053
59054
59055
59056
59057
59058
59059
59060
59061
59062
59063
59064
59065
59066
59067
59068
59069
59070
59071
59072
59073
59074
59075
59076
59077
59078
59079
59080
59081
59082
59083
59084
59085
59086
59087
59088
59089
59090
59091
59092
59093
59094
59095
59096
59097
59098
59099
59100
59101
59102
59103
59104
59105
59106
59107
59108
59109
59110
59111
59112
59113
59114
59115
59116
59117
59118
59119
59120
59121
59122
59123
59124
59125
59126
59127
59128
59129
59130
59131
59132
59133
59134
59135
59136
59137
59138
59139
59140
59141
59142
59143
59144
59145
59146
59147
59148
59149
59150
59151
59152
59153
59154
59155
59156
59157
59158
59159
59160
59161
59162
59163
59164
59165
59166
59167
59168
59169
59170
59171
59172
59173
59174
59175
59176
59177
59178
59179
59180
59181
59182
59183
59184
59185
59186
59187
59188
59189
59190
59191
59192
59193
59194
59195
59196
59197
59198
59199
59200
59201
59202
59203
59204
59205
59206
59207
59208
59209
59210
59211
59212
59213
59214
59215
59216
59217
59218
59219
59220
59221
59222
59223
59224
59225
59226
59227
59228
59229
59230
59231
59232
59233
59234
59235
59236
59237
59238
59239
59240
59241
59242
59243
59244
59245
59246
59247
59248
59249
59250
59251
59252
59253
59254
59255
59256
59257
59258
59259
59260
59261
59262
59263
59264
59265
59266
59267
59268
59269
59270
59271
59272
59273
59274
59275
59276
59277
59278
59279
59280
59281
59282
59283
59284
59285
59286
59287
59288
59289
59290
59291
59292
59293
59294
59295
59296
59297
59298
59299
59300
59301
59302
59303
59304
59305
59306
59307
59308
59309
59310
59311
59312
59313
59314
59315
59316
59317
59318
59319
59320
59321
59322
59323
59324
59325
59326
59327
59328
59329
59330
59331
59332
59333
59334
59335
59336
59337
59338
59339
59340
59341
59342
59343
59344
59345
59346
59347
59348
59349
59350
59351
59352
59353
59354
59355
59356
59357
59358
59359
59360
59361
59362
59363
59364
59365
59366
59367
59368
59369
59370
59371
59372
59373
59374
59375
59376
59377
59378
59379
59380
59381
59382
59383
59384
59385
59386
59387
59388
59389
59390
59391
59392
59393
59394
59395
59396
59397
59398
59399
59400
59401
59402
59403
59404
59405
59406
59407
59408
59409
59410
59411
59412
59413
59414
59415
59416
59417
59418
59419
59420
59421
59422
59423
59424
59425
59426
59427
59428
59429
59430
59431
59432
59433
59434
59435
59436
59437
59438
59439
59440
59441
59442
59443
59444
59445
59446
59447
59448
59449
59450
59451
59452
59453
59454
59455
59456
59457
59458
59459
59460
59461
59462
59463
59464
59465
59466
59467
59468
59469
59470
59471
59472
59473
59474
59475
59476
59477
59478
59479
59480
59481
59482
59483
59484
59485
59486
59487
59488
59489
59490
59491
59492
59493
59494
59495
59496
59497
59498
59499
59500
59501
59502
59503
59504
59505
59506
59507
59508
59509
59510
59511
59512
59513
59514
59515
59516
59517
59518
59519
59520
59521
59522
59523
59524
59525
59526
59527
59528
59529
59530
59531
59532
59533
59534
59535
59536
59537
59538
59539
59540
59541
59542
59543
59544
59545
59546
59547
59548
59549
59550
59551
59552
59553
59554
59555
59556
59557
59558
59559
59560
59561
59562
59563
59564
59565
59566
59567
59568
59569
59570
59571
59572
59573
59574
59575
59576
59577
59578
59579
59580
59581
59582
59583
59584
59585
59586
59587
59588
59589
59590
59591
59592
59593
59594
59595
59596
59597
59598
59599
59600
59601
59602
59603
59604
59605
59606
59607
59608
59609
59610
59611
59612
59613
59614
59615
59616
59617
59618
59619
59620
59621
59622
59623
59624
59625
59626
59627
59628
59629
59630
59631
59632
59633
59634
59635
59636
59637
59638
59639
59640
59641
59642
59643
59644
59645
59646
59647
59648
59649
59650
59651
59652
59653
59654
59655
59656
59657
59658
59659
59660
59661
59662
59663
59664
59665
59666
59667
59668
59669
59670
59671
59672
59673
59674
59675
59676
59677
59678
59679
59680
59681
59682
59683
59684
59685
59686
59687
59688
59689
59690
59691
59692
59693
59694
59695
59696
59697
59698
59699
59700
59701
59702
59703
59704
59705
59706
59707
59708
59709
59710
59711
59712
59713
59714
59715
59716
59717
59718
59719
59720
59721
59722
59723
59724
59725
59726
59727
59728
59729
59730
59731
59732
59733
59734
59735
59736
59737
59738
59739
59740
59741
59742
59743
59744
59745
59746
59747
59748
59749
59750
59751
59752
59753
59754
59755
59756
59757
59758
59759
59760
59761
59762
59763
59764
59765
59766
59767
59768
59769
59770
59771
59772
59773
59774
59775
59776
59777
59778
59779
59780
59781
59782
59783
59784
59785
59786
59787
59788
59789
59790
59791
59792
59793
59794
59795
59796
59797
59798
59799
59800
59801
59802
59803
59804
59805
59806
59807
59808
59809
59810
59811
59812
59813
59814
59815
59816
59817
59818
59819
59820
59821
59822
59823
59824
59825
59826
59827
59828
59829
59830
59831
59832
59833
59834
59835
59836
59837
59838
59839
59840
59841
59842
59843
59844
59845
59846
59847
59848
59849
59850
59851
59852
59853
59854
59855
59856
59857
59858
59859
59860
59861
59862
59863
59864
59865
59866
59867
59868
59869
59870
59871
59872
59873
59874
59875
59876
59877
59878
59879
59880
59881
59882
59883
59884
59885
59886
59887
59888
59889
59890
59891
59892
59893
59894
59895
59896
59897
59898
59899
59900
59901
59902
59903
59904
59905
59906
59907
59908
59909
59910
59911
59912
59913
59914
59915
59916
59917
59918
59919
59920
59921
59922
59923
59924
59925
59926
59927
59928
59929
59930
59931
59932
59933
59934
59935
59936
59937
59938
59939
59940
59941
59942
59943
59944
59945
59946
59947
59948
59949
59950
59951
59952
59953
59954
59955
59956
59957
59958
59959
59960
59961
59962
59963
59964
59965
59966
59967
59968
59969
59970
59971
59972
59973
59974
59975
59976
59977
59978
59979
59980
59981
59982
59983
59984
59985
59986
59987
59988
59989
59990
59991
59992
59993
59994
59995
59996
59997
59998
59999
60000
60001
60002
60003
60004
60005
60006
60007
60008
60009
60010
60011
60012
60013
60014
60015
60016
60017
60018
60019
60020
60021
60022
60023
60024
60025
60026
60027
60028
60029
60030
60031
60032
60033
60034
60035
60036
60037
60038
60039
60040
60041
60042
60043
60044
60045
60046
60047
60048
60049
60050
60051
60052
60053
60054
60055
60056
60057
60058
60059
60060
60061
60062
60063
60064
60065
60066
60067
60068
60069
60070
60071
60072
60073
60074
60075
60076
60077
60078
60079
60080
60081
60082
60083
60084
60085
60086
60087
60088
60089
60090
60091
60092
60093
60094
60095
60096
60097
60098
60099
60100
60101
60102
60103
60104
60105
60106
60107
60108
60109
60110
60111
60112
60113
60114
60115
60116
60117
60118
60119
60120
60121
60122
60123
60124
60125
60126
60127
60128
60129
60130
60131
60132
60133
60134
60135
60136
60137
60138
60139
60140
60141
60142
60143
60144
60145
60146
60147
60148
60149
60150
60151
60152
60153
60154
60155
60156
60157
60158
60159
60160
60161
60162
60163
60164
60165
60166
60167
60168
60169
60170
60171
60172
60173
60174
60175
60176
60177
60178
60179
60180
60181
60182
60183
60184
60185
60186
60187
60188
60189
60190
60191
60192
60193
60194
60195
60196
60197
60198
60199
60200
60201
60202
60203
60204
60205
60206
60207
60208
60209
60210
60211
60212
60213
60214
60215
60216
60217
60218
60219
60220
60221
60222
60223
60224
60225
60226
60227
60228
60229
60230
60231
60232
60233
60234
60235
60236
60237
60238
60239
60240
60241
60242
60243
60244
60245
60246
60247
60248
60249
60250
60251
60252
60253
60254
60255
60256
60257
60258
60259
60260
60261
60262
60263
60264
60265
60266
60267
60268
60269
60270
60271
60272
60273
60274
60275
60276
60277
60278
60279
60280
60281
60282
60283
60284
60285
60286
60287
60288
60289
60290
60291
60292
60293
60294
60295
60296
60297
60298
60299
60300
60301
60302
60303
60304
60305
60306
60307
60308
60309
60310
60311
60312
60313
60314
60315
60316
60317
60318
60319
60320
60321
60322
60323
60324
60325
60326
60327
60328
60329
60330
60331
60332
60333
60334
60335
60336
60337
60338
60339
60340
60341
60342
60343
60344
60345
60346
60347
60348
60349
60350
60351
60352
60353
60354
60355
60356
60357
60358
60359
60360
60361
60362
60363
60364
60365
60366
60367
60368
60369
60370
60371
60372
60373
60374
60375
60376
60377
60378
60379
60380
60381
60382
60383
60384
60385
60386
60387
60388
60389
60390
60391
60392
60393
60394
60395
60396
60397
60398
60399
60400
60401
60402
60403
60404
60405
60406
60407
60408
60409
60410
60411
60412
60413
60414
60415
60416
60417
60418
60419
60420
60421
60422
60423
60424
60425
60426
60427
60428
60429
60430
60431
60432
60433
60434
60435
60436
60437
60438
60439
60440
60441
60442
60443
60444
60445
60446
60447
60448
60449
60450
60451
60452
60453
60454
60455
60456
60457
60458
60459
60460
60461
60462
60463
60464
60465
60466
60467
60468
60469
60470
60471
60472
60473
60474
60475
60476
60477
60478
60479
60480
60481
60482
60483
60484
60485
60486
60487
60488
60489
60490
60491
60492
60493
60494
60495
60496
60497
60498
60499
60500
60501
60502
60503
60504
60505
60506
60507
60508
60509
60510
60511
60512
60513
60514
60515
60516
60517
60518
60519
60520
60521
60522
60523
60524
60525
60526
60527
60528
60529
60530
60531
60532
60533
60534
60535
60536
60537
60538
60539
60540
60541
60542
60543
60544
60545
60546
60547
60548
60549
60550
60551
60552
60553
60554
60555
60556
60557
60558
60559
60560
60561
60562
60563
60564
60565
60566
60567
60568
60569
60570
60571
60572
60573
60574
60575
60576
60577
60578
60579
60580
60581
60582
60583
60584
60585
60586
60587
60588
60589
60590
60591
60592
60593
60594
60595
60596
60597
60598
60599
60600
60601
60602
60603
60604
60605
60606
60607
60608
60609
60610
60611
60612
60613
60614
60615
60616
60617
60618
60619
60620
60621
60622
60623
60624
60625
60626
60627
60628
60629
60630
60631
60632
60633
60634
60635
60636
60637
60638
60639
60640
60641
60642
60643
60644
60645
60646
60647
60648
60649
60650
60651
60652
60653
60654
60655
60656
60657
60658
60659
60660
60661
60662
60663
60664
60665
60666
60667
60668
60669
60670
60671
60672
60673
60674
60675
60676
60677
60678
60679
60680
60681
60682
60683
60684
60685
60686
60687
60688
60689
60690
60691
60692
60693
60694
60695
60696
60697
60698
60699
60700
60701
60702
60703
60704
60705
60706
60707
60708
60709
60710
60711
60712
60713
60714
60715
60716
60717
60718
60719
60720
60721
60722
60723
60724
60725
60726
60727
60728
60729
60730
60731
60732
60733
60734
60735
60736
60737
60738
60739
60740
60741
60742
60743
60744
60745
60746
60747
60748
60749
60750
60751
60752
60753
60754
60755
60756
60757
60758
60759
60760
60761
60762
60763
60764
60765
60766
60767
60768
60769
60770
60771
60772
60773
60774
60775
60776
60777
60778
60779
60780
60781
60782
60783
60784
60785
60786
60787
60788
60789
60790
60791
60792
60793
60794
60795
60796
60797
60798
60799
60800
60801
60802
60803
60804
60805
60806
60807
60808
60809
60810
60811
60812
60813
60814
60815
60816
60817
60818
60819
60820
60821
60822
60823
60824
60825
60826
60827
60828
60829
60830
60831
60832
60833
60834
60835
60836
60837
60838
60839
60840
60841
60842
60843
60844
60845
60846
60847
60848
60849
60850
60851
60852
60853
60854
60855
60856
60857
60858
60859
60860
60861
60862
60863
60864
60865
60866
60867
60868
60869
60870
60871
60872
60873
60874
60875
60876
60877
60878
60879
60880
60881
60882
60883
60884
60885
60886
60887
60888
60889
60890
60891
60892
60893
60894
60895
60896
60897
60898
60899
60900
60901
60902
60903
60904
60905
60906
60907
60908
60909
60910
60911
60912
60913
60914
60915
60916
60917
60918
60919
60920
60921
60922
60923
60924
60925
60926
60927
60928
60929
60930
60931
60932
60933
60934
60935
60936
60937
60938
60939
60940
60941
60942
60943
60944
60945
60946
60947
60948
60949
60950
60951
60952
60953
60954
60955
60956
60957
60958
60959
60960
60961
60962
60963
60964
60965
60966
60967
60968
60969
60970
60971
60972
60973
60974
60975
60976
60977
60978
60979
60980
60981
60982
60983
60984
60985
60986
60987
60988
60989
60990
60991
60992
60993
60994
60995
60996
60997
60998
60999
61000
61001
61002
61003
61004
61005
61006
61007
61008
61009
61010
61011
61012
61013
61014
61015
61016
61017
61018
61019
61020
61021
61022
61023
61024
61025
61026
61027
61028
61029
61030
61031
61032
61033
61034
61035
61036
61037
61038
61039
61040
61041
61042
61043
61044
61045
61046
61047
61048
61049
61050
61051
61052
61053
61054
61055
61056
61057
61058
61059
61060
61061
61062
61063
61064
61065
61066
61067
61068
61069
61070
61071
61072
61073
61074
61075
61076
61077
61078
61079
61080
61081
61082
61083
61084
61085
61086
61087
61088
61089
61090
61091
61092
61093
61094
61095
61096
61097
61098
61099
61100
61101
61102
61103
61104
61105
61106
61107
61108
61109
61110
61111
61112
61113
61114
61115
61116
61117
61118
61119
61120
61121
61122
61123
61124
61125
61126
61127
61128
61129
61130
61131
61132
61133
61134
61135
61136
61137
61138
61139
61140
61141
61142
61143
61144
61145
61146
61147
61148
61149
61150
61151
61152
61153
61154
61155
61156
61157
61158
61159
61160
61161
61162
61163
61164
61165
61166
61167
61168
61169
61170
61171
61172
61173
61174
61175
61176
61177
61178
61179
61180
61181
61182
61183
61184
61185
61186
61187
61188
61189
61190
61191
61192
61193
61194
61195
61196
61197
61198
61199
61200
61201
61202
61203
61204
61205
61206
61207
61208
61209
61210
61211
61212
61213
61214
61215
61216
61217
61218
61219
61220
61221
61222
61223
61224
61225
61226
61227
61228
61229
61230
61231
61232
61233
61234
61235
61236
61237
61238
61239
61240
61241
61242
61243
61244
61245
61246
61247
61248
61249
61250
61251
61252
61253
61254
61255
61256
61257
61258
61259
61260
61261
61262
61263
61264
61265
61266
61267
61268
61269
61270
61271
61272
61273
61274
61275
61276
61277
61278
61279
61280
61281
61282
61283
61284
61285
61286
61287
61288
61289
61290
61291
61292
61293
61294
61295
61296
61297
61298
61299
61300
61301
61302
61303
61304
61305
61306
61307
61308
61309
61310
61311
61312
61313
61314
61315
61316
61317
61318
61319
61320
61321
61322
61323
61324
61325
61326
61327
61328
61329
61330
61331
61332
61333
61334
61335
61336
61337
61338
61339
61340
61341
61342
61343
61344
61345
61346
61347
61348
61349
61350
61351
61352
61353
61354
61355
61356
61357
61358
61359
61360
61361
61362
61363
61364
61365
61366
61367
61368
61369
61370
61371
61372
61373
61374
61375
61376
61377
61378
61379
61380
61381
61382
61383
61384
61385
61386
61387
61388
61389
61390
61391
61392
61393
61394
61395
61396
61397
61398
61399
61400
61401
61402
61403
61404
61405
61406
61407
61408
61409
61410
61411
61412
61413
61414
61415
61416
61417
61418
61419
61420
61421
61422
61423
61424
61425
61426
61427
61428
61429
61430
61431
61432
61433
61434
61435
61436
61437
61438
61439
61440
61441
61442
61443
61444
61445
61446
61447
61448
61449
61450
61451
61452
61453
61454
61455
61456
61457
61458
61459
61460
61461
61462
61463
61464
61465
61466
61467
61468
61469
61470
61471
61472
61473
61474
61475
61476
61477
61478
61479
61480
61481
61482
61483
61484
61485
61486
61487
61488
61489
61490
61491
61492
61493
61494
61495
61496
61497
61498
61499
61500
61501
61502
61503
61504
61505
61506
61507
61508
61509
61510
61511
61512
61513
61514
61515
61516
61517
61518
61519
61520
61521
61522
61523
61524
61525
61526
61527
61528
61529
61530
61531
61532
61533
61534
61535
61536
61537
61538
61539
61540
61541
61542
61543
61544
61545
61546
61547
61548
61549
61550
61551
61552
61553
61554
61555
61556
61557
61558
61559
61560
61561
61562
61563
61564
61565
61566
61567
61568
61569
61570
61571
61572
61573
61574
61575
61576
61577
61578
61579
61580
61581
61582
61583
61584
61585
61586
61587
61588
61589
61590
61591
61592
61593
61594
61595
61596
61597
61598
61599
61600
61601
61602
61603
61604
61605
61606
61607
61608
61609
61610
61611
61612
61613
61614
61615
61616
61617
61618
61619
61620
61621
61622
61623
61624
61625
61626
61627
61628
61629
61630
61631
61632
61633
61634
61635
61636
61637
61638
61639
61640
61641
61642
61643
61644
61645
61646
61647
61648
61649
61650
61651
61652
61653
61654
61655
61656
61657
61658
61659
61660
61661
61662
61663
61664
61665
61666
61667
61668
61669
61670
61671
61672
61673
61674
61675
61676
61677
61678
61679
61680
61681
61682
61683
61684
61685
61686
61687
61688
61689
61690
61691
61692
61693
61694
61695
61696
61697
61698
61699
61700
61701
61702
61703
61704
61705
61706
61707
61708
61709
61710
61711
61712
61713
61714
61715
61716
61717
61718
61719
61720
61721
61722
61723
61724
61725
61726
61727
61728
61729
61730
61731
61732
61733
61734
61735
61736
61737
61738
61739
61740
61741
61742
61743
61744
61745
61746
61747
61748
61749
61750
61751
61752
61753
61754
61755
61756
61757
61758
61759
61760
61761
61762
61763
61764
61765
61766
61767
61768
61769
61770
61771
61772
61773
61774
61775
61776
61777
61778
61779
61780
61781
61782
61783
61784
61785
61786
61787
61788
61789
61790
61791
61792
61793
61794
61795
61796
61797
61798
61799
61800
61801
61802
61803
61804
61805
61806
61807
61808
61809
61810
61811
61812
61813
61814
61815
61816
61817
61818
61819
61820
61821
61822
61823
61824
61825
61826
61827
61828
61829
61830
61831
61832
61833
61834
61835
61836
61837
61838
61839
61840
61841
61842
61843
61844
61845
61846
61847
61848
61849
61850
61851
61852
61853
61854
61855
61856
61857
61858
61859
61860
61861
61862
61863
61864
61865
61866
61867
61868
61869
61870
61871
61872
61873
61874
61875
61876
61877
61878
61879
61880
61881
61882
61883
61884
61885
61886
61887
61888
61889
61890
61891
61892
61893
61894
61895
61896
61897
61898
61899
61900
61901
61902
61903
61904
61905
61906
61907
61908
61909
61910
61911
61912
61913
61914
61915
61916
61917
61918
61919
61920
61921
61922
61923
61924
61925
61926
61927
61928
61929
61930
61931
61932
61933
61934
61935
61936
61937
61938
61939
61940
61941
61942
61943
61944
61945
61946
61947
61948
61949
61950
61951
61952
61953
61954
61955
61956
61957
61958
61959
61960
61961
61962
61963
61964
61965
61966
61967
61968
61969
61970
61971
61972
61973
61974
61975
61976
61977
61978
61979
61980
61981
61982
61983
61984
61985
61986
61987
61988
61989
61990
61991
61992
61993
61994
61995
61996
61997
61998
61999
62000
62001
62002
62003
62004
62005
62006
62007
62008
62009
62010
62011
62012
62013
62014
62015
62016
62017
62018
62019
62020
62021
62022
62023
62024
62025
62026
62027
62028
62029
62030
62031
62032
62033
62034
62035
62036
62037
62038
62039
62040
62041
62042
62043
62044
62045
62046
62047
62048
62049
62050
62051
62052
62053
62054
62055
62056
62057
62058
62059
62060
62061
62062
62063
62064
62065
62066
62067
62068
62069
62070
62071
62072
62073
62074
62075
62076
62077
62078
62079
62080
62081
62082
62083
62084
62085
62086
62087
62088
62089
62090
62091
62092
62093
62094
62095
62096
62097
62098
62099
62100
62101
62102
62103
62104
62105
62106
62107
62108
62109
62110
62111
62112
62113
62114
62115
62116
62117
62118
62119
62120
62121
62122
62123
62124
62125
62126
62127
62128
62129
62130
62131
62132
62133
62134
62135
62136
62137
62138
62139
62140
62141
62142
62143
62144
62145
62146
62147
62148
62149
62150
62151
62152
62153
62154
62155
62156
62157
62158
62159
62160
62161
62162
62163
62164
62165
62166
62167
62168
62169
62170
62171
62172
62173
62174
62175
62176
62177
62178
62179
62180
62181
62182
62183
62184
62185
62186
62187
62188
62189
62190
62191
62192
62193
62194
62195
62196
62197
62198
62199
62200
62201
62202
62203
62204
62205
62206
62207
62208
62209
62210
62211
62212
62213
62214
62215
62216
62217
62218
62219
62220
62221
62222
62223
62224
62225
62226
62227
62228
62229
62230
62231
62232
62233
62234
62235
62236
62237
62238
62239
62240
62241
62242
62243
62244
62245
62246
62247
62248
62249
62250
62251
62252
62253
62254
62255
62256
62257
62258
62259
62260
62261
62262
62263
62264
62265
62266
62267
62268
62269
62270
62271
62272
62273
62274
62275
62276
62277
62278
62279
62280
62281
62282
62283
62284
62285
62286
62287
62288
62289
62290
62291
62292
62293
62294
62295
62296
62297
62298
62299
62300
62301
62302
62303
62304
62305
62306
62307
62308
62309
62310
62311
62312
62313
62314
62315
62316
62317
62318
62319
62320
62321
62322
62323
62324
62325
62326
62327
62328
62329
62330
62331
62332
62333
62334
62335
62336
62337
62338
62339
62340
62341
62342
62343
62344
62345
62346
62347
62348
62349
62350
62351
62352
62353
62354
62355
62356
62357
62358
62359
62360
62361
62362
62363
62364
62365
62366
62367
62368
62369
62370
62371
62372
62373
62374
62375
62376
62377
62378
62379
62380
62381
62382
62383
62384
62385
62386
62387
62388
62389
62390
62391
62392
62393
62394
62395
62396
62397
62398
62399
62400
62401
62402
62403
62404
62405
62406
62407
62408
62409
62410
62411
62412
62413
62414
62415
62416
62417
62418
62419
62420
62421
62422
62423
62424
62425
62426
62427
62428
62429
62430
62431
62432
62433
62434
62435
62436
62437
62438
62439
62440
62441
62442
62443
62444
62445
62446
62447
62448
62449
62450
62451
62452
62453
62454
62455
62456
62457
62458
62459
62460
62461
62462
62463
62464
62465
62466
62467
62468
62469
62470
62471
62472
62473
62474
62475
62476
62477
62478
62479
62480
62481
62482
62483
62484
62485
62486
62487
62488
62489
62490
62491
62492
62493
62494
62495
62496
62497
62498
62499
62500
62501
62502
62503
62504
62505
62506
62507
62508
62509
62510
62511
62512
62513
62514
62515
62516
62517
62518
62519
62520
62521
62522
62523
62524
62525
62526
62527
62528
62529
62530
62531
62532
62533
62534
62535
62536
62537
62538
62539
62540
62541
62542
62543
62544
62545
62546
62547
62548
62549
62550
62551
62552
62553
62554
62555
62556
62557
62558
62559
62560
62561
62562
62563
62564
62565
62566
62567
62568
62569
62570
62571
62572
62573
62574
62575
62576
62577
62578
62579
62580
62581
62582
62583
62584
62585
62586
62587
62588
62589
62590
62591
62592
62593
62594
62595
62596
62597
62598
62599
62600
62601
62602
62603
62604
62605
62606
62607
62608
62609
62610
62611
62612
62613
62614
62615
62616
62617
62618
62619
62620
62621
62622
62623
62624
62625
62626
62627
62628
62629
62630
62631
62632
62633
62634
62635
62636
62637
62638
62639
62640
62641
62642
62643
62644
62645
62646
62647
62648
62649
62650
62651
62652
62653
62654
62655
62656
62657
62658
62659
62660
62661
62662
62663
62664
62665
62666
62667
62668
62669
62670
62671
62672
62673
62674
62675
62676
62677
62678
62679
62680
62681
62682
62683
62684
62685
62686
62687
62688
62689
62690
62691
62692
62693
62694
62695
62696
62697
62698
62699
62700
62701
62702
62703
62704
62705
62706
62707
62708
62709
62710
62711
62712
62713
62714
62715
62716
62717
62718
62719
62720
62721
62722
62723
62724
62725
62726
62727
62728
62729
62730
62731
62732
62733
62734
62735
62736
62737
62738
62739
62740
62741
62742
62743
62744
62745
62746
62747
62748
62749
62750
62751
62752
62753
62754
62755
62756
62757
62758
62759
62760
62761
62762
62763
62764
62765
62766
62767
62768
62769
62770
62771
62772
62773
62774
62775
62776
62777
62778
62779
62780
62781
62782
62783
62784
62785
62786
62787
62788
62789
62790
62791
62792
62793
62794
62795
62796
62797
62798
62799
62800
62801
62802
62803
62804
62805
62806
62807
62808
62809
62810
62811
62812
62813
62814
62815
62816
62817
62818
62819
62820
62821
62822
62823
62824
62825
62826
62827
62828
62829
62830
62831
62832
62833
62834
62835
62836
62837
62838
62839
62840
62841
62842
62843
62844
62845
62846
62847
62848
62849
62850
62851
62852
62853
62854
62855
62856
62857
62858
62859
62860
62861
62862
62863
62864
62865
62866
62867
62868
62869
62870
62871
62872
62873
62874
62875
62876
62877
62878
62879
62880
62881
62882
62883
62884
62885
62886
62887
62888
62889
62890
62891
62892
62893
62894
62895
62896
62897
62898
62899
62900
62901
62902
62903
62904
62905
62906
62907
62908
62909
62910
62911
62912
62913
62914
62915
62916
62917
62918
62919
62920
62921
62922
62923
62924
62925
62926
62927
62928
62929
62930
62931
62932
62933
62934
62935
62936
62937
62938
62939
62940
62941
62942
62943
62944
62945
62946
62947
62948
62949
62950
62951
62952
62953
62954
62955
62956
62957
62958
62959
62960
62961
62962
62963
62964
62965
62966
62967
62968
62969
62970
62971
62972
62973
62974
62975
62976
62977
62978
62979
62980
62981
62982
62983
62984
62985
62986
62987
62988
62989
62990
62991
62992
62993
62994
62995
62996
62997
62998
62999
63000
63001
63002
63003
63004
63005
63006
63007
63008
63009
63010
63011
63012
63013
63014
63015
63016
63017
63018
63019
63020
63021
63022
63023
63024
63025
63026
63027
63028
63029
63030
63031
63032
63033
63034
63035
63036
63037
63038
63039
63040
63041
63042
63043
63044
63045
63046
63047
63048
63049
63050
63051
63052
63053
63054
63055
63056
63057
63058
63059
63060
63061
63062
63063
63064
63065
63066
63067
63068
63069
63070
63071
63072
63073
63074
63075
63076
63077
63078
63079
63080
63081
63082
63083
63084
63085
63086
63087
63088
63089
63090
63091
63092
63093
63094
63095
63096
63097
63098
63099
63100
63101
63102
63103
63104
63105
63106
63107
63108
63109
63110
63111
63112
63113
63114
63115
63116
63117
63118
63119
63120
63121
63122
63123
63124
63125
63126
63127
63128
63129
63130
63131
63132
63133
63134
63135
63136
63137
63138
63139
63140
63141
63142
63143
63144
63145
63146
63147
63148
63149
63150
63151
63152
63153
63154
63155
63156
63157
63158
63159
63160
63161
63162
63163
63164
63165
63166
63167
63168
63169
63170
63171
63172
63173
63174
63175
63176
63177
63178
63179
63180
63181
63182
63183
63184
63185
63186
63187
63188
63189
63190
63191
63192
63193
63194
63195
63196
63197
63198
63199
63200
63201
63202
63203
63204
63205
63206
63207
63208
63209
63210
63211
63212
63213
63214
63215
63216
63217
63218
63219
63220
63221
63222
63223
63224
63225
63226
63227
63228
63229
63230
63231
63232
63233
63234
63235
63236
63237
63238
63239
63240
63241
63242
63243
63244
63245
63246
63247
63248
63249
63250
63251
63252
63253
63254
63255
63256
63257
63258
63259
63260
63261
63262
63263
63264
63265
63266
63267
63268
63269
63270
63271
63272
63273
63274
63275
63276
63277
63278
63279
63280
63281
63282
63283
63284
63285
63286
63287
63288
63289
63290
63291
63292
63293
63294
63295
63296
63297
63298
63299
63300
63301
63302
63303
63304
63305
63306
63307
63308
63309
63310
63311
63312
63313
63314
63315
63316
63317
63318
63319
63320
63321
63322
63323
63324
63325
63326
63327
63328
63329
63330
63331
63332
63333
63334
63335
63336
63337
63338
63339
63340
63341
63342
63343
63344
63345
63346
63347
63348
63349
63350
63351
63352
63353
63354
63355
63356
63357
63358
63359
63360
63361
63362
63363
63364
63365
63366
63367
63368
63369
63370
63371
63372
63373
63374
63375
63376
63377
63378
63379
63380
63381
63382
63383
63384
63385
63386
63387
63388
63389
63390
63391
63392
63393
63394
63395
63396
63397
63398
63399
63400
63401
63402
63403
63404
63405
63406
63407
63408
63409
63410
63411
63412
63413
63414
63415
63416
63417
63418
63419
63420
63421
63422
63423
63424
63425
63426
63427
63428
63429
63430
63431
63432
63433
63434
63435
63436
63437
63438
63439
63440
63441
63442
63443
63444
63445
63446
63447
63448
63449
63450
63451
63452
63453
63454
63455
63456
63457
63458
63459
63460
63461
63462
63463
63464
63465
63466
63467
63468
63469
63470
63471
63472
63473
63474
63475
63476
63477
63478
63479
63480
63481
63482
63483
63484
63485
63486
63487
63488
63489
63490
63491
63492
63493
63494
63495
63496
63497
63498
63499
63500
63501
63502
63503
63504
63505
63506
63507
63508
63509
63510
63511
63512
63513
63514
63515
63516
63517
63518
63519
63520
63521
63522
63523
63524
63525
63526
63527
63528
63529
63530
63531
63532
63533
63534
63535
63536
63537
63538
63539
63540
63541
63542
63543
63544
63545
63546
63547
63548
63549
63550
63551
63552
63553
63554
63555
63556
63557
63558
63559
63560
63561
63562
63563
63564
63565
63566
63567
63568
63569
63570
63571
63572
63573
63574
63575
63576
63577
63578
63579
63580
63581
63582
63583
63584
63585
63586
63587
63588
63589
63590
63591
63592
63593
63594
63595
63596
63597
63598
63599
63600
63601
63602
63603
63604
63605
63606
63607
63608
63609
63610
63611
63612
63613
63614
63615
63616
63617
63618
63619
63620
63621
63622
63623
63624
63625
63626
63627
63628
63629
63630
63631
63632
63633
63634
63635
63636
63637
63638
63639
63640
63641
63642
63643
63644
63645
63646
63647
63648
63649
63650
63651
63652
63653
63654
63655
63656
63657
63658
63659
63660
63661
63662
63663
63664
63665
63666
63667
63668
63669
63670
63671
63672
63673
63674
63675
63676
63677
63678
63679
63680
63681
63682
63683
63684
63685
63686
63687
63688
63689
63690
63691
63692
63693
63694
63695
63696
63697
63698
63699
63700
63701
63702
63703
63704
63705
63706
63707
63708
63709
63710
63711
63712
63713
63714
63715
63716
63717
63718
63719
63720
63721
63722
63723
63724
63725
63726
63727
63728
63729
63730
63731
63732
63733
63734
63735
63736
63737
63738
63739
63740
63741
63742
63743
63744
63745
63746
63747
63748
63749
63750
63751
63752
63753
63754
63755
63756
63757
63758
63759
63760
63761
63762
63763
63764
63765
63766
63767
63768
63769
63770
63771
63772
63773
63774
63775
63776
63777
63778
63779
63780
63781
63782
63783
63784
63785
63786
63787
63788
63789
63790
63791
63792
63793
63794
63795
63796
63797
63798
63799
63800
63801
63802
63803
63804
63805
63806
63807
63808
63809
63810
63811
63812
63813
63814
63815
63816
63817
63818
63819
63820
63821
63822
63823
63824
63825
63826
63827
63828
63829
63830
63831
63832
63833
63834
63835
63836
63837
63838
63839
63840
63841
63842
63843
63844
63845
63846
63847
63848
63849
63850
63851
63852
63853
63854
63855
63856
63857
63858
63859
63860
63861
63862
63863
63864
63865
63866
63867
63868
63869
63870
63871
63872
63873
63874
63875
63876
63877
63878
63879
63880
63881
63882
63883
63884
63885
63886
63887
63888
63889
63890
63891
63892
63893
63894
63895
63896
63897
63898
63899
63900
63901
63902
63903
63904
63905
63906
63907
63908
63909
63910
63911
63912
63913
63914
63915
63916
63917
63918
63919
63920
63921
63922
63923
63924
63925
63926
63927
63928
63929
63930
63931
63932
63933
63934
63935
63936
63937
63938
63939
63940
63941
63942
63943
63944
63945
63946
63947
63948
63949
63950
63951
63952
63953
63954
63955
63956
63957
63958
63959
63960
63961
63962
63963
63964
63965
63966
63967
63968
63969
63970
63971
63972
63973
63974
63975
63976
63977
63978
63979
63980
63981
63982
63983
63984
63985
63986
63987
63988
63989
63990
63991
63992
63993
63994
63995
63996
63997
63998
63999
64000
64001
64002
64003
64004
64005
64006
64007
64008
64009
64010
64011
64012
64013
64014
64015
64016
64017
64018
64019
64020
64021
64022
64023
64024
64025
64026
64027
64028
64029
64030
64031
64032
64033
64034
64035
64036
64037
64038
64039
64040
64041
64042
64043
64044
64045
64046
64047
64048
64049
64050
64051
64052
64053
64054
64055
64056
64057
64058
64059
64060
64061
64062
64063
64064
64065
64066
64067
64068
64069
64070
64071
64072
64073
64074
64075
64076
64077
64078
64079
64080
64081
64082
64083
64084
64085
64086
64087
64088
64089
64090
64091
64092
64093
64094
64095
64096
64097
64098
64099
64100
64101
64102
64103
64104
64105
64106
64107
64108
64109
64110
64111
64112
64113
64114
64115
64116
64117
64118
64119
64120
64121
64122
64123
64124
64125
64126
64127
64128
64129
64130
64131
64132
64133
64134
64135
64136
64137
64138
64139
64140
64141
64142
64143
64144
64145
64146
64147
64148
64149
64150
64151
64152
64153
64154
64155
64156
64157
64158
64159
64160
64161
64162
64163
64164
64165
64166
64167
64168
64169
64170
64171
64172
64173
64174
64175
64176
64177
64178
64179
64180
64181
64182
64183
64184
64185
64186
64187
64188
64189
64190
64191
64192
64193
64194
64195
64196
64197
64198
64199
64200
64201
64202
64203
64204
64205
64206
64207
64208
64209
64210
64211
64212
64213
64214
64215
64216
64217
64218
64219
64220
64221
64222
64223
64224
64225
64226
64227
64228
64229
64230
64231
64232
64233
64234
64235
64236
64237
64238
64239
64240
64241
64242
64243
64244
64245
64246
64247
64248
64249
64250
64251
64252
64253
64254
64255
64256
64257
64258
64259
64260
64261
64262
64263
64264
64265
64266
64267
64268
64269
64270
64271
64272
64273
64274
64275
64276
64277
64278
64279
64280
64281
64282
64283
64284
64285
64286
64287
64288
64289
64290
64291
64292
64293
64294
64295
64296
64297
64298
64299
64300
64301
64302
64303
64304
64305
64306
64307
64308
64309
64310
64311
64312
64313
64314
64315
64316
64317
64318
64319
64320
64321
64322
64323
64324
64325
64326
64327
64328
64329
64330
64331
64332
64333
64334
64335
64336
64337
64338
64339
64340
64341
64342
64343
64344
64345
64346
64347
64348
64349
64350
64351
64352
64353
64354
64355
64356
64357
64358
64359
64360
64361
64362
64363
64364
64365
64366
64367
64368
64369
64370
64371
64372
64373
64374
64375
64376
64377
64378
64379
64380
64381
64382
64383
64384
64385
64386
64387
64388
64389
64390
64391
64392
64393
64394
64395
64396
64397
64398
64399
64400
64401
64402
64403
64404
64405
64406
64407
64408
64409
64410
64411
64412
64413
64414
64415
64416
64417
64418
64419
64420
64421
64422
64423
64424
64425
64426
64427
64428
64429
64430
64431
64432
64433
64434
64435
64436
64437
64438
64439
64440
64441
64442
64443
64444
64445
64446
64447
64448
64449
64450
64451
64452
64453
64454
64455
64456
64457
64458
64459
64460
64461
64462
64463
64464
64465
64466
64467
64468
64469
64470
64471
64472
64473
64474
64475
64476
64477
64478
64479
64480
64481
64482
64483
64484
64485
64486
64487
64488
64489
64490
64491
64492
64493
64494
64495
64496
64497
64498
64499
64500
64501
64502
64503
64504
64505
64506
64507
64508
64509
64510
64511
64512
64513
64514
64515
64516
64517
64518
64519
64520
64521
64522
64523
64524
64525
64526
64527
64528
64529
64530
64531
64532
64533
64534
64535
64536
64537
64538
64539
64540
64541
64542
64543
64544
64545
64546
64547
64548
64549
64550
64551
64552
64553
64554
64555
64556
64557
64558
64559
64560
64561
64562
64563
64564
64565
64566
64567
64568
64569
64570
64571
64572
64573
64574
64575
64576
64577
64578
64579
64580
64581
64582
64583
64584
64585
64586
64587
64588
64589
64590
64591
64592
64593
64594
64595
64596
64597
64598
64599
64600
64601
64602
64603
64604
64605
64606
64607
64608
64609
64610
64611
64612
64613
64614
64615
64616
64617
64618
64619
64620
64621
64622
64623
64624
64625
64626
64627
64628
64629
64630
64631
64632
64633
64634
64635
64636
64637
64638
64639
64640
64641
64642
64643
64644
64645
64646
64647
64648
64649
64650
64651
64652
64653
64654
64655
64656
64657
64658
64659
64660
64661
64662
64663
64664
64665
64666
64667
64668
64669
64670
64671
64672
64673
64674
64675
64676
64677
64678
64679
64680
64681
64682
64683
64684
64685
64686
64687
64688
64689
64690
64691
64692
64693
64694
64695
64696
64697
64698
64699
64700
64701
64702
64703
64704
64705
64706
64707
64708
64709
64710
64711
64712
64713
64714
64715
64716
64717
64718
64719
64720
64721
64722
64723
64724
64725
64726
64727
64728
64729
64730
64731
64732
64733
64734
64735
64736
64737
64738
64739
64740
64741
64742
64743
64744
64745
64746
64747
64748
64749
64750
64751
64752
64753
64754
64755
64756
64757
64758
64759
64760
64761
64762
64763
64764
64765
64766
64767
64768
64769
64770
64771
64772
64773
64774
64775
64776
64777
64778
64779
64780
64781
64782
64783
64784
64785
64786
64787
64788
64789
64790
64791
64792
64793
64794
64795
64796
64797
64798
64799
64800
64801
64802
64803
64804
64805
64806
64807
64808
64809
64810
64811
64812
64813
64814
64815
64816
64817
64818
64819
64820
64821
64822
64823
64824
64825
64826
64827
64828
64829
64830
64831
64832
64833
64834
64835
64836
64837
64838
64839
64840
64841
64842
64843
64844
64845
64846
64847
64848
64849
64850
64851
64852
64853
64854
64855
64856
64857
64858
64859
64860
64861
64862
64863
64864
64865
64866
64867
64868
64869
64870
64871
64872
64873
64874
64875
64876
64877
64878
64879
64880
64881
64882
64883
64884
64885
64886
64887
64888
64889
64890
64891
64892
64893
64894
64895
64896
64897
64898
64899
64900
64901
64902
64903
64904
64905
64906
64907
64908
64909
64910
64911
64912
64913
64914
64915
64916
64917
64918
64919
64920
64921
64922
64923
64924
64925
64926
64927
64928
64929
64930
64931
64932
64933
64934
64935
64936
64937
64938
64939
64940
64941
64942
64943
64944
64945
64946
64947
64948
64949
64950
64951
64952
64953
64954
64955
64956
64957
64958
64959
64960
64961
64962
64963
64964
64965
64966
64967
64968
64969
64970
64971
64972
64973
64974
64975
64976
64977
64978
64979
64980
64981
64982
64983
64984
64985
64986
64987
64988
64989
64990
64991
64992
64993
64994
64995
64996
64997
64998
64999
65000
65001
65002
65003
65004
65005
65006
65007
65008
65009
65010
65011
65012
65013
65014
65015
65016
65017
65018
65019
65020
65021
65022
65023
65024
65025
65026
65027
65028
65029
65030
65031
65032
65033
65034
65035
65036
65037
65038
65039
65040
65041
65042
65043
65044
65045
65046
65047
65048
65049
65050
65051
65052
65053
65054
65055
65056
65057
65058
65059
65060
65061
65062
65063
65064
65065
65066
65067
65068
65069
65070
65071
65072
65073
65074
65075
65076
65077
65078
65079
65080
65081
65082
65083
65084
65085
65086
65087
65088
65089
65090
65091
65092
65093
65094
65095
65096
65097
65098
65099
65100
65101
65102
65103
65104
65105
65106
65107
65108
65109
65110
65111
65112
65113
65114
65115
65116
65117
65118
65119
65120
65121
65122
65123
65124
65125
65126
65127
65128
65129
65130
65131
65132
65133
65134
65135
65136
65137
65138
65139
65140
65141
65142
65143
65144
65145
65146
65147
65148
65149
65150
65151
65152
65153
65154
65155
65156
65157
65158
65159
65160
65161
65162
65163
65164
65165
65166
65167
65168
65169
65170
65171
65172
65173
65174
65175
65176
65177
65178
65179
65180
65181
65182
65183
65184
65185
65186
65187
65188
65189
65190
65191
65192
65193
65194
65195
65196
65197
65198
65199
65200
65201
65202
65203
65204
65205
65206
65207
65208
65209
65210
65211
65212
65213
65214
65215
65216
65217
65218
65219
65220
65221
65222
65223
65224
65225
65226
65227
65228
65229
65230
65231
65232
65233
65234
65235
65236
65237
65238
65239
65240
65241
65242
65243
65244
65245
65246
65247
65248
65249
65250
65251
65252
65253
65254
65255
65256
65257
65258
65259
65260
65261
65262
65263
65264
65265
65266
65267
65268
65269
65270
65271
65272
65273
65274
65275
65276
65277
65278
65279
65280
65281
65282
65283
65284
65285
65286
65287
65288
65289
65290
65291
65292
65293
65294
65295
65296
65297
65298
65299
65300
65301
65302
65303
65304
65305
65306
65307
65308
65309
65310
65311
65312
65313
65314
65315
65316
65317
65318
65319
65320
65321
65322
65323
65324
65325
65326
65327
65328
65329
65330
65331
65332
65333
65334
65335
65336
65337
65338
65339
65340
65341
65342
65343
65344
65345
65346
65347
65348
65349
65350
65351
65352
65353
65354
65355
65356
65357
65358
65359
65360
65361
65362
65363
65364
65365
65366
65367
65368
65369
65370
65371
65372
65373
65374
65375
65376
65377
65378
65379
65380
65381
65382
65383
65384
65385
65386
65387
65388
65389
65390
65391
65392
65393
65394
65395
65396
65397
65398
65399
65400
65401
65402
65403
65404
65405
65406
65407
65408
65409
65410
65411
65412
65413
65414
65415
65416
65417
65418
65419
65420
65421
65422
65423
65424
65425
65426
65427
65428
65429
65430
65431
65432
65433
65434
65435
65436
65437
65438
65439
65440
65441
65442
65443
65444
65445
65446
65447
65448
65449
65450
65451
65452
65453
65454
65455
65456
65457
65458
65459
65460
65461
65462
65463
65464
65465
65466
65467
65468
65469
65470
65471
65472
65473
65474
65475
65476
65477
65478
65479
65480
65481
65482
65483
65484
65485
65486
65487
65488
65489
65490
65491
65492
65493
65494
65495
65496
65497
65498
65499
65500
65501
65502
65503
65504
65505
65506
65507
65508
65509
65510
65511
65512
65513
65514
65515
65516
65517
65518
65519
65520
65521
65522
65523
65524
65525
65526
65527
65528
65529
65530
65531
65532
65533
65534
65535
65536
65537
65538
65539
65540
65541
65542
65543
65544
65545
65546
65547
65548
65549
65550
65551
65552
65553
65554
65555
65556
65557
65558
65559
65560
65561
65562
65563
65564
65565
65566
65567
65568
65569
65570
65571
65572
65573
65574
65575
65576
65577
65578
65579
65580
65581
65582
65583
65584
65585
65586
65587
65588
65589
65590
65591
65592
65593
65594
65595
65596
65597
65598
65599
65600
65601
65602
65603
65604
65605
65606
65607
65608
65609
65610
65611
65612
65613
65614
65615
65616
65617
65618
65619
65620
65621
65622
65623
65624
65625
65626
65627
65628
65629
65630
65631
65632
65633
65634
65635
65636
65637
65638
65639
65640
65641
65642
65643
65644
65645
65646
65647
65648
65649
65650
65651
65652
65653
65654
65655
65656
65657
65658
65659
65660
65661
65662
65663
65664
65665
65666
65667
65668
65669
65670
65671
65672
65673
65674
65675
65676
65677
65678
65679
65680
65681
65682
65683
65684
65685
65686
65687
65688
65689
65690
65691
65692
65693
65694
65695
65696
65697
65698
65699
65700
65701
65702
65703
65704
65705
65706
65707
65708
65709
65710
65711
65712
65713
65714
65715
65716
65717
65718
65719
65720
65721
65722
65723
65724
65725
65726
65727
65728
65729
65730
65731
65732
65733
65734
65735
65736
65737
65738
65739
65740
65741
65742
65743
65744
65745
65746
65747
65748
65749
65750
65751
65752
65753
65754
65755
65756
65757
65758
65759
65760
65761
65762
65763
65764
65765
65766
65767
65768
65769
65770
65771
65772
65773
65774
65775
65776
65777
65778
65779
65780
65781
65782
65783
65784
65785
65786
65787
65788
65789
65790
65791
65792
65793
65794
65795
65796
65797
65798
65799
65800
65801
65802
65803
65804
65805
65806
65807
65808
65809
65810
65811
65812
65813
65814
65815
65816
65817
65818
65819
65820
65821
65822
65823
65824
65825
65826
65827
65828
65829
65830
65831
65832
65833
65834
65835
65836
65837
65838
65839
65840
65841
65842
65843
65844
65845
65846
65847
65848
65849
65850
65851
65852
65853
65854
65855
65856
65857
65858
65859
65860
65861
65862
65863
65864
65865
65866
65867
65868
65869
65870
65871
65872
65873
65874
65875
65876
65877
65878
65879
65880
65881
65882
65883
65884
65885
65886
65887
65888
65889
65890
65891
65892
65893
65894
65895
65896
65897
65898
65899
65900
65901
65902
65903
65904
65905
65906
65907
65908
65909
65910
65911
65912
65913
65914
65915
65916
65917
65918
65919
65920
65921
65922
65923
65924
65925
65926
65927
65928
65929
65930
65931
65932
65933
65934
65935
65936
65937
65938
65939
65940
65941
65942
65943
65944
65945
65946
65947
65948
65949
65950
65951
65952
65953
65954
65955
65956
65957
65958
65959
65960
65961
65962
65963
65964
65965
65966
65967
65968
65969
65970
65971
65972
65973
65974
65975
65976
65977
65978
65979
65980
65981
65982
65983
65984
65985
65986
65987
65988
65989
65990
65991
65992
65993
65994
65995
65996
65997
65998
65999
66000
66001
66002
66003
66004
66005
66006
66007
66008
66009
66010
66011
66012
66013
66014
66015
66016
66017
66018
66019
66020
66021
66022
66023
66024
66025
66026
66027
66028
66029
66030
66031
66032
66033
66034
66035
66036
66037
66038
66039
66040
66041
66042
66043
66044
66045
66046
66047
66048
66049
66050
66051
66052
66053
66054
66055
66056
66057
66058
66059
66060
66061
66062
66063
66064
66065
66066
66067
66068
66069
66070
66071
66072
66073
66074
66075
66076
66077
66078
66079
66080
66081
66082
66083
66084
66085
66086
66087
66088
66089
66090
66091
66092
66093
66094
66095
66096
66097
66098
66099
66100
66101
66102
66103
66104
66105
66106
66107
66108
66109
66110
66111
66112
66113
66114
66115
66116
66117
66118
66119
66120
66121
66122
66123
66124
66125
66126
66127
66128
66129
66130
66131
66132
66133
66134
66135
66136
66137
66138
66139
66140
66141
66142
66143
66144
66145
66146
66147
66148
66149
66150
66151
66152
66153
66154
66155
66156
66157
66158
66159
66160
66161
66162
66163
66164
66165
66166
66167
66168
66169
66170
66171
66172
66173
66174
66175
66176
66177
66178
66179
66180
66181
66182
66183
66184
66185
66186
66187
66188
66189
66190
66191
66192
66193
66194
66195
66196
66197
66198
66199
66200
66201
66202
66203
66204
66205
66206
66207
66208
66209
66210
66211
66212
66213
66214
66215
66216
66217
66218
66219
66220
66221
66222
66223
66224
66225
66226
66227
66228
66229
66230
66231
66232
66233
66234
66235
66236
66237
66238
66239
66240
66241
66242
66243
66244
66245
66246
66247
66248
66249
66250
66251
66252
66253
66254
66255
66256
66257
66258
66259
66260
66261
66262
66263
66264
66265
66266
66267
66268
66269
66270
66271
66272
66273
66274
66275
66276
66277
66278
66279
66280
66281
66282
66283
66284
66285
66286
66287
66288
66289
66290
66291
66292
66293
66294
66295
66296
66297
66298
66299
66300
66301
66302
66303
66304
66305
66306
66307
66308
66309
66310
66311
66312
66313
66314
66315
66316
66317
66318
66319
66320
66321
66322
66323
66324
66325
66326
66327
66328
66329
66330
66331
66332
66333
66334
66335
66336
66337
66338
66339
66340
66341
66342
66343
66344
66345
66346
66347
66348
66349
66350
66351
66352
66353
66354
66355
66356
66357
66358
66359
66360
66361
66362
66363
66364
66365
66366
66367
66368
66369
66370
66371
66372
66373
66374
66375
66376
66377
66378
66379
66380
66381
66382
66383
66384
66385
66386
66387
66388
66389
66390
66391
66392
66393
66394
66395
66396
66397
66398
66399
66400
66401
66402
66403
66404
66405
66406
66407
66408
66409
66410
66411
66412
66413
66414
66415
66416
66417
66418
66419
66420
66421
66422
66423
66424
66425
66426
66427
66428
66429
66430
66431
66432
66433
66434
66435
66436
66437
66438
66439
66440
66441
66442
66443
66444
66445
66446
66447
66448
66449
66450
66451
66452
66453
66454
66455
66456
66457
66458
66459
66460
66461
66462
66463
66464
66465
66466
66467
66468
66469
66470
66471
66472
66473
66474
66475
66476
66477
66478
66479
66480
66481
66482
66483
66484
66485
66486
66487
66488
66489
66490
66491
66492
66493
66494
66495
66496
66497
66498
66499
66500
66501
66502
66503
66504
66505
66506
66507
66508
66509
66510
66511
66512
66513
66514
66515
66516
66517
66518
66519
66520
66521
66522
66523
66524
66525
66526
66527
66528
66529
66530
66531
66532
66533
66534
66535
66536
66537
66538
66539
66540
66541
66542
66543
66544
66545
66546
66547
66548
66549
66550
66551
66552
66553
66554
66555
66556
66557
66558
66559
66560
66561
66562
66563
66564
66565
66566
66567
66568
66569
66570
66571
66572
66573
66574
66575
66576
66577
66578
66579
66580
66581
66582
66583
66584
66585
66586
66587
66588
66589
66590
66591
66592
66593
66594
66595
66596
66597
66598
66599
66600
66601
66602
66603
66604
66605
66606
66607
66608
66609
66610
66611
66612
66613
66614
66615
66616
66617
66618
66619
66620
66621
66622
66623
66624
66625
66626
66627
66628
66629
66630
66631
66632
66633
66634
66635
66636
66637
66638
66639
66640
66641
66642
66643
66644
66645
66646
66647
66648
66649
66650
66651
66652
66653
66654
66655
66656
66657
66658
66659
66660
66661
66662
66663
66664
66665
66666
66667
66668
66669
66670
66671
66672
66673
66674
66675
66676
66677
66678
66679
66680
66681
66682
66683
66684
66685
66686
66687
66688
66689
66690
66691
66692
66693
66694
66695
66696
66697
66698
66699
66700
66701
66702
66703
66704
66705
66706
66707
66708
66709
66710
66711
66712
66713
66714
66715
66716
66717
66718
66719
66720
66721
66722
66723
66724
66725
66726
66727
66728
66729
66730
66731
66732
66733
66734
66735
66736
66737
66738
66739
66740
66741
66742
66743
66744
66745
66746
66747
66748
66749
66750
66751
66752
66753
66754
66755
66756
66757
66758
66759
66760
66761
66762
66763
66764
66765
66766
66767
66768
66769
66770
66771
66772
66773
66774
66775
66776
66777
66778
66779
66780
66781
66782
66783
66784
66785
66786
66787
66788
66789
66790
66791
66792
66793
66794
66795
66796
66797
66798
66799
66800
66801
66802
66803
66804
66805
66806
66807
66808
66809
66810
66811
66812
66813
66814
66815
66816
66817
66818
66819
66820
66821
66822
66823
66824
66825
66826
66827
66828
66829
66830
66831
66832
66833
66834
66835
66836
66837
66838
66839
66840
66841
66842
66843
66844
66845
66846
66847
66848
66849
66850
66851
66852
66853
66854
66855
66856
66857
66858
66859
66860
66861
66862
66863
66864
66865
66866
66867
66868
66869
66870
66871
66872
66873
66874
66875
66876
66877
66878
66879
66880
66881
66882
66883
66884
66885
66886
66887
66888
66889
66890
66891
66892
66893
66894
66895
66896
66897
66898
66899
66900
66901
66902
66903
66904
66905
66906
66907
66908
66909
66910
66911
66912
66913
66914
66915
66916
66917
66918
66919
66920
66921
66922
66923
66924
66925
66926
66927
66928
66929
66930
66931
66932
66933
66934
66935
66936
66937
66938
66939
66940
66941
66942
66943
66944
66945
66946
66947
66948
66949
66950
66951
66952
66953
66954
66955
66956
66957
66958
66959
66960
66961
66962
66963
66964
66965
66966
66967
66968
66969
66970
66971
66972
66973
66974
66975
66976
66977
66978
66979
66980
66981
66982
66983
66984
66985
66986
66987
66988
66989
66990
66991
66992
66993
66994
66995
66996
66997
66998
66999
67000
67001
67002
67003
67004
67005
67006
67007
67008
67009
67010
67011
67012
67013
67014
67015
67016
67017
67018
67019
67020
67021
67022
67023
67024
67025
67026
67027
67028
67029
67030
67031
67032
67033
67034
67035
67036
67037
67038
67039
67040
67041
67042
67043
67044
67045
67046
67047
67048
67049
67050
67051
67052
67053
67054
67055
67056
67057
67058
67059
67060
67061
67062
67063
67064
67065
67066
67067
67068
67069
67070
67071
67072
67073
67074
67075
67076
67077
67078
67079
67080
67081
67082
67083
67084
67085
67086
67087
67088
67089
67090
67091
67092
67093
67094
67095
67096
67097
67098
67099
67100
67101
67102
67103
67104
67105
67106
67107
67108
67109
67110
67111
67112
67113
67114
67115
67116
67117
67118
67119
67120
67121
67122
67123
67124
67125
67126
67127
67128
67129
67130
67131
67132
67133
67134
67135
67136
67137
67138
67139
67140
67141
67142
67143
67144
67145
67146
67147
67148
67149
67150
67151
67152
67153
67154
67155
67156
67157
67158
67159
67160
67161
67162
67163
67164
67165
67166
67167
67168
67169
67170
67171
67172
67173
67174
67175
67176
67177
67178
67179
67180
67181
67182
67183
67184
67185
67186
67187
67188
67189
67190
67191
67192
67193
67194
67195
67196
67197
67198
67199
67200
67201
67202
67203
67204
67205
67206
67207
67208
67209
67210
67211
67212
67213
67214
67215
67216
67217
67218
67219
67220
67221
67222
67223
67224
67225
67226
67227
67228
67229
67230
67231
67232
67233
67234
67235
67236
67237
67238
67239
67240
67241
67242
67243
67244
67245
67246
67247
67248
67249
67250
67251
67252
67253
67254
67255
67256
67257
67258
67259
67260
67261
67262
67263
67264
67265
67266
67267
67268
67269
67270
67271
67272
67273
67274
67275
67276
67277
67278
67279
67280
67281
67282
67283
67284
67285
67286
67287
67288
67289
67290
67291
67292
67293
67294
67295
67296
67297
67298
67299
67300
67301
67302
67303
67304
67305
67306
67307
67308
67309
67310
67311
67312
67313
67314
67315
67316
67317
67318
67319
67320
67321
67322
67323
67324
67325
67326
67327
67328
67329
67330
67331
67332
67333
67334
67335
67336
67337
67338
67339
67340
67341
67342
67343
67344
67345
67346
67347
67348
67349
67350
67351
67352
67353
67354
67355
67356
67357
67358
67359
67360
67361
67362
67363
67364
67365
67366
67367
67368
67369
67370
67371
67372
67373
67374
67375
67376
67377
67378
67379
67380
67381
67382
67383
67384
67385
67386
67387
67388
67389
67390
67391
67392
67393
67394
67395
67396
67397
67398
67399
67400
67401
67402
67403
67404
67405
67406
67407
67408
67409
67410
67411
67412
67413
67414
67415
67416
67417
67418
67419
67420
67421
67422
67423
67424
67425
67426
67427
67428
67429
67430
67431
67432
67433
67434
67435
67436
67437
67438
67439
67440
67441
67442
67443
67444
67445
67446
67447
67448
67449
67450
67451
67452
67453
67454
67455
67456
67457
67458
67459
67460
67461
67462
67463
67464
67465
67466
67467
67468
67469
67470
67471
67472
67473
67474
67475
67476
67477
67478
67479
67480
67481
67482
67483
67484
67485
67486
67487
67488
67489
67490
67491
67492
67493
67494
67495
67496
67497
67498
67499
67500
67501
67502
67503
67504
67505
67506
67507
67508
67509
67510
67511
67512
67513
67514
67515
67516
67517
67518
67519
67520
67521
67522
67523
67524
67525
67526
67527
67528
67529
67530
67531
67532
67533
67534
67535
67536
67537
67538
67539
67540
67541
67542
67543
67544
67545
67546
67547
67548
67549
67550
67551
67552
67553
67554
67555
67556
67557
67558
67559
67560
67561
67562
67563
67564
67565
67566
67567
67568
67569
67570
67571
67572
67573
67574
67575
67576
67577
67578
67579
67580
67581
67582
67583
67584
67585
67586
67587
67588
67589
67590
67591
67592
67593
67594
67595
67596
67597
67598
67599
67600
67601
67602
67603
67604
67605
67606
67607
67608
67609
67610
67611
67612
67613
67614
67615
67616
67617
67618
67619
67620
67621
67622
67623
67624
67625
67626
67627
67628
67629
67630
67631
67632
67633
67634
67635
67636
67637
67638
67639
67640
67641
67642
67643
67644
67645
67646
67647
67648
67649
67650
67651
67652
67653
67654
67655
67656
67657
67658
67659
67660
67661
67662
67663
67664
67665
67666
67667
67668
67669
67670
67671
67672
67673
67674
67675
67676
67677
67678
67679
67680
67681
67682
67683
67684
67685
67686
67687
67688
67689
67690
67691
67692
67693
67694
67695
67696
67697
67698
67699
67700
67701
67702
67703
67704
67705
67706
67707
67708
67709
67710
67711
67712
67713
67714
67715
67716
67717
67718
67719
67720
67721
67722
67723
67724
67725
67726
67727
67728
67729
67730
67731
67732
67733
67734
67735
67736
67737
67738
67739
67740
67741
67742
67743
67744
67745
67746
67747
67748
67749
67750
67751
67752
67753
67754
67755
67756
67757
67758
67759
67760
67761
67762
67763
67764
67765
67766
67767
67768
67769
67770
67771
67772
67773
67774
67775
67776
67777
67778
67779
67780
67781
67782
67783
67784
67785
67786
67787
67788
67789
67790
67791
67792
67793
67794
67795
67796
67797
67798
67799
67800
67801
67802
67803
67804
67805
67806
67807
67808
67809
67810
67811
67812
67813
67814
67815
67816
67817
67818
67819
67820
67821
67822
67823
67824
67825
67826
67827
67828
67829
67830
67831
67832
67833
67834
67835
67836
67837
67838
67839
67840
67841
67842
67843
67844
67845
67846
67847
67848
67849
67850
67851
67852
67853
67854
67855
67856
67857
67858
67859
67860
67861
67862
67863
67864
67865
67866
67867
67868
67869
67870
67871
67872
67873
67874
67875
67876
67877
67878
67879
67880
67881
67882
67883
67884
67885
67886
67887
67888
67889
67890
67891
67892
67893
67894
67895
67896
67897
67898
67899
67900
67901
67902
67903
67904
67905
67906
67907
67908
67909
67910
67911
67912
67913
67914
67915
67916
67917
67918
67919
67920
67921
67922
67923
67924
67925
67926
67927
67928
67929
67930
67931
67932
67933
67934
67935
67936
67937
67938
67939
67940
67941
67942
67943
67944
67945
67946
67947
67948
67949
67950
67951
67952
67953
67954
67955
67956
67957
67958
67959
67960
67961
67962
67963
67964
67965
67966
67967
67968
67969
67970
67971
67972
67973
67974
67975
67976
67977
67978
67979
67980
67981
67982
67983
67984
67985
67986
67987
67988
67989
67990
67991
67992
67993
67994
67995
67996
67997
67998
67999
68000
68001
68002
68003
68004
68005
68006
68007
68008
68009
68010
68011
68012
68013
68014
68015
68016
68017
68018
68019
68020
68021
68022
68023
68024
68025
68026
68027
68028
68029
68030
68031
68032
68033
68034
68035
68036
68037
68038
68039
68040
68041
68042
68043
68044
68045
68046
68047
68048
68049
68050
68051
68052
68053
68054
68055
68056
68057
68058
68059
68060
68061
68062
68063
68064
68065
68066
68067
68068
68069
68070
68071
68072
68073
68074
68075
68076
68077
68078
68079
68080
68081
68082
68083
68084
68085
68086
68087
68088
68089
68090
68091
68092
68093
68094
68095
68096
68097
68098
68099
68100
68101
68102
68103
68104
68105
68106
68107
68108
68109
68110
68111
68112
68113
68114
68115
68116
68117
68118
68119
68120
68121
68122
68123
68124
68125
68126
68127
68128
68129
68130
68131
68132
68133
68134
68135
68136
68137
68138
68139
68140
68141
68142
68143
68144
68145
68146
68147
68148
68149
68150
68151
68152
68153
68154
68155
68156
68157
68158
68159
68160
68161
68162
68163
68164
68165
68166
68167
68168
68169
68170
68171
68172
68173
68174
68175
68176
68177
68178
68179
68180
68181
68182
68183
68184
68185
68186
68187
68188
68189
68190
68191
68192
68193
68194
68195
68196
68197
68198
68199
68200
68201
68202
68203
68204
68205
68206
68207
68208
68209
68210
68211
68212
68213
68214
68215
68216
68217
68218
68219
68220
68221
68222
68223
68224
68225
68226
68227
68228
68229
68230
68231
68232
68233
68234
68235
68236
68237
68238
68239
68240
68241
68242
68243
68244
68245
68246
68247
68248
68249
68250
68251
68252
68253
68254
68255
68256
68257
68258
68259
68260
68261
68262
68263
68264
68265
68266
68267
68268
68269
68270
68271
68272
68273
68274
68275
68276
68277
68278
68279
68280
68281
68282
68283
68284
68285
68286
68287
68288
68289
68290
68291
68292
68293
68294
68295
68296
68297
68298
68299
68300
68301
68302
68303
68304
68305
68306
68307
68308
68309
68310
68311
68312
68313
68314
68315
68316
68317
68318
68319
68320
68321
68322
68323
68324
68325
68326
68327
68328
68329
68330
68331
68332
68333
68334
68335
68336
68337
68338
68339
68340
68341
68342
68343
68344
68345
68346
68347
68348
68349
68350
68351
68352
68353
68354
68355
68356
68357
68358
68359
68360
68361
68362
68363
68364
68365
68366
68367
68368
68369
68370
68371
68372
68373
68374
68375
68376
68377
68378
68379
68380
68381
68382
68383
68384
68385
68386
68387
68388
68389
68390
68391
68392
68393
68394
68395
68396
68397
68398
68399
68400
68401
68402
68403
68404
68405
68406
68407
68408
68409
68410
68411
68412
68413
68414
68415
68416
68417
68418
68419
68420
68421
68422
68423
68424
68425
68426
68427
68428
68429
68430
68431
68432
68433
68434
68435
68436
68437
68438
68439
68440
68441
68442
68443
68444
68445
68446
68447
68448
68449
68450
68451
68452
68453
68454
68455
68456
68457
68458
68459
68460
68461
68462
68463
68464
68465
68466
68467
68468
68469
68470
68471
68472
68473
68474
68475
68476
68477
68478
68479
68480
68481
68482
68483
68484
68485
68486
68487
68488
68489
68490
68491
68492
68493
68494
68495
68496
68497
68498
68499
68500
68501
68502
68503
68504
68505
68506
68507
68508
68509
68510
68511
68512
68513
68514
68515
68516
68517
68518
68519
68520
68521
68522
68523
68524
68525
68526
68527
68528
68529
68530
68531
68532
68533
68534
68535
68536
68537
68538
68539
68540
68541
68542
68543
68544
68545
68546
68547
68548
68549
68550
68551
68552
68553
68554
68555
68556
68557
68558
68559
68560
68561
68562
68563
68564
68565
68566
68567
68568
68569
68570
68571
68572
68573
68574
68575
68576
68577
68578
68579
68580
68581
68582
68583
68584
68585
68586
68587
68588
68589
68590
68591
68592
68593
68594
68595
68596
68597
68598
68599
68600
68601
68602
68603
68604
68605
68606
68607
68608
68609
68610
68611
68612
68613
68614
68615
68616
68617
68618
68619
68620
68621
68622
68623
68624
68625
68626
68627
68628
68629
68630
68631
68632
68633
68634
68635
68636
68637
68638
68639
68640
68641
68642
68643
68644
68645
68646
68647
68648
68649
68650
68651
68652
68653
68654
68655
68656
68657
68658
68659
68660
68661
68662
68663
68664
68665
68666
68667
68668
68669
68670
68671
68672
68673
68674
68675
68676
68677
68678
68679
68680
68681
68682
68683
68684
68685
68686
68687
68688
68689
68690
68691
68692
68693
68694
68695
68696
68697
68698
68699
68700
68701
68702
68703
68704
68705
68706
68707
68708
68709
68710
68711
68712
68713
68714
68715
68716
68717
68718
68719
68720
68721
68722
68723
68724
68725
68726
68727
68728
68729
68730
68731
68732
68733
68734
68735
68736
68737
68738
68739
68740
68741
68742
68743
68744
68745
68746
68747
68748
68749
68750
68751
68752
68753
68754
68755
68756
68757
68758
68759
68760
68761
68762
68763
68764
68765
68766
68767
68768
68769
68770
68771
68772
68773
68774
68775
68776
68777
68778
68779
68780
68781
68782
68783
68784
68785
68786
68787
68788
68789
68790
68791
68792
68793
68794
68795
68796
68797
68798
68799
68800
68801
68802
68803
68804
68805
68806
68807
68808
68809
68810
68811
68812
68813
68814
68815
68816
68817
68818
68819
68820
68821
68822
68823
68824
68825
68826
68827
68828
68829
68830
68831
68832
68833
68834
68835
68836
68837
68838
68839
68840
68841
68842
68843
68844
68845
68846
68847
68848
68849
68850
68851
68852
68853
68854
68855
68856
68857
68858
68859
68860
68861
68862
68863
68864
68865
68866
68867
68868
68869
68870
68871
68872
68873
68874
68875
68876
68877
68878
68879
68880
68881
68882
68883
68884
68885
68886
68887
68888
68889
68890
68891
68892
68893
68894
68895
68896
68897
68898
68899
68900
68901
68902
68903
68904
68905
68906
68907
68908
68909
68910
68911
68912
68913
68914
68915
68916
68917
68918
68919
68920
68921
68922
68923
68924
68925
68926
68927
68928
68929
68930
68931
68932
68933
68934
68935
68936
68937
68938
68939
68940
68941
68942
68943
68944
68945
68946
68947
68948
68949
68950
68951
68952
68953
68954
68955
68956
68957
68958
68959
68960
68961
68962
68963
68964
68965
68966
68967
68968
68969
68970
68971
68972
68973
68974
68975
68976
68977
68978
68979
68980
68981
68982
68983
68984
68985
68986
68987
68988
68989
68990
68991
68992
68993
68994
68995
68996
68997
68998
68999
69000
69001
69002
69003
69004
69005
69006
69007
69008
69009
69010
69011
69012
69013
69014
69015
69016
69017
69018
69019
69020
69021
69022
69023
69024
69025
69026
69027
69028
69029
69030
69031
69032
69033
69034
69035
69036
69037
69038
69039
69040
69041
69042
69043
69044
69045
69046
69047
69048
69049
69050
69051
69052
69053
69054
69055
69056
69057
69058
69059
69060
69061
69062
69063
69064
69065
69066
69067
69068
69069
69070
69071
69072
69073
69074
69075
69076
69077
69078
69079
69080
69081
69082
69083
69084
69085
69086
69087
69088
69089
69090
69091
69092
69093
69094
69095
69096
69097
69098
69099
69100
69101
69102
69103
69104
69105
69106
69107
69108
69109
69110
69111
69112
69113
69114
69115
69116
69117
69118
69119
69120
69121
69122
69123
69124
69125
69126
69127
69128
69129
69130
69131
69132
69133
69134
69135
69136
69137
69138
69139
69140
69141
69142
69143
69144
69145
69146
69147
69148
69149
69150
69151
69152
69153
69154
69155
69156
69157
69158
69159
69160
69161
69162
69163
69164
69165
69166
69167
69168
69169
69170
69171
69172
69173
69174
69175
69176
69177
69178
69179
69180
69181
69182
69183
69184
69185
69186
69187
69188
69189
69190
69191
69192
69193
69194
69195
69196
69197
69198
69199
69200
69201
69202
69203
69204
69205
69206
69207
69208
69209
69210
69211
69212
69213
69214
69215
69216
69217
69218
69219
69220
69221
69222
69223
69224
69225
69226
69227
69228
69229
69230
69231
69232
69233
69234
69235
69236
69237
69238
69239
69240
69241
69242
69243
69244
69245
69246
69247
69248
69249
69250
69251
69252
69253
69254
69255
69256
69257
69258
69259
69260
69261
69262
69263
69264
69265
69266
69267
69268
69269
69270
69271
69272
69273
69274
69275
69276
69277
69278
69279
69280
69281
69282
69283
69284
69285
69286
69287
69288
69289
69290
69291
69292
69293
69294
69295
69296
69297
69298
69299
69300
69301
69302
69303
69304
69305
69306
69307
69308
69309
69310
69311
69312
69313
69314
69315
69316
69317
69318
69319
69320
69321
69322
69323
69324
69325
69326
69327
69328
69329
69330
69331
69332
69333
69334
69335
69336
69337
69338
69339
69340
69341
69342
69343
69344
69345
69346
69347
69348
69349
69350
69351
69352
69353
69354
69355
69356
69357
69358
69359
69360
69361
69362
69363
69364
69365
69366
69367
69368
69369
69370
69371
69372
69373
69374
69375
69376
69377
69378
69379
69380
69381
69382
69383
69384
69385
69386
69387
69388
69389
69390
69391
69392
69393
69394
69395
69396
69397
69398
69399
69400
69401
69402
69403
69404
69405
69406
69407
69408
69409
69410
69411
69412
69413
69414
69415
69416
69417
69418
69419
69420
69421
69422
69423
69424
69425
69426
69427
69428
69429
69430
69431
69432
69433
69434
69435
69436
69437
69438
69439
69440
69441
69442
69443
69444
69445
69446
69447
69448
69449
69450
69451
69452
69453
69454
69455
69456
69457
69458
69459
69460
69461
69462
69463
69464
69465
69466
69467
69468
69469
69470
69471
69472
69473
69474
69475
69476
69477
69478
69479
69480
69481
69482
69483
69484
69485
69486
69487
69488
69489
69490
69491
69492
69493
69494
69495
69496
69497
69498
69499
69500
69501
69502
69503
69504
69505
69506
69507
69508
69509
69510
69511
69512
69513
69514
69515
69516
69517
69518
69519
69520
69521
69522
69523
69524
69525
69526
69527
69528
69529
69530
69531
69532
69533
69534
69535
69536
69537
69538
69539
69540
69541
69542
69543
69544
69545
69546
69547
69548
69549
69550
69551
69552
69553
69554
69555
69556
69557
69558
69559
69560
69561
69562
69563
69564
69565
69566
69567
69568
69569
69570
69571
69572
69573
69574
69575
69576
69577
69578
69579
69580
69581
69582
69583
69584
69585
69586
69587
69588
69589
69590
69591
69592
69593
69594
69595
69596
69597
69598
69599
69600
69601
69602
69603
69604
69605
69606
69607
69608
69609
69610
69611
69612
69613
69614
69615
69616
69617
69618
69619
69620
69621
69622
69623
69624
69625
69626
69627
69628
69629
69630
69631
69632
69633
69634
69635
69636
69637
69638
69639
69640
69641
69642
69643
69644
69645
69646
69647
69648
69649
69650
69651
69652
69653
69654
69655
69656
69657
69658
69659
69660
69661
69662
69663
69664
69665
69666
69667
69668
69669
69670
69671
69672
69673
69674
69675
69676
69677
69678
69679
69680
69681
69682
69683
69684
69685
69686
69687
69688
69689
69690
69691
69692
69693
69694
69695
69696
69697
69698
69699
69700
69701
69702
69703
69704
69705
69706
69707
69708
69709
69710
69711
69712
69713
69714
69715
69716
69717
69718
69719
69720
69721
69722
69723
69724
69725
69726
69727
69728
69729
69730
69731
69732
69733
69734
69735
69736
69737
69738
69739
69740
69741
69742
69743
69744
69745
69746
69747
69748
69749
69750
69751
69752
69753
69754
69755
69756
69757
69758
69759
69760
69761
69762
69763
69764
69765
69766
69767
69768
69769
69770
69771
69772
69773
69774
69775
69776
69777
69778
69779
69780
69781
69782
69783
69784
69785
69786
69787
69788
69789
69790
69791
69792
69793
69794
69795
69796
69797
69798
69799
69800
69801
69802
69803
69804
69805
69806
69807
69808
69809
69810
69811
69812
69813
69814
69815
69816
69817
69818
69819
69820
69821
69822
69823
69824
69825
69826
69827
69828
69829
69830
69831
69832
69833
69834
69835
69836
69837
69838
69839
69840
69841
69842
69843
69844
69845
69846
69847
69848
69849
69850
69851
69852
69853
69854
69855
69856
69857
69858
69859
69860
69861
69862
69863
69864
69865
69866
69867
69868
69869
69870
69871
69872
69873
69874
69875
69876
69877
69878
69879
69880
69881
69882
69883
69884
69885
69886
69887
69888
69889
69890
69891
69892
69893
69894
69895
69896
69897
69898
69899
69900
69901
69902
69903
69904
69905
69906
69907
69908
69909
69910
69911
69912
69913
69914
69915
69916
69917
69918
69919
69920
69921
69922
69923
69924
69925
69926
69927
69928
69929
69930
69931
69932
69933
69934
69935
69936
69937
69938
69939
69940
69941
69942
69943
69944
69945
69946
69947
69948
69949
69950
69951
69952
69953
69954
69955
69956
69957
69958
69959
69960
69961
69962
69963
69964
69965
69966
69967
69968
69969
69970
69971
69972
69973
69974
69975
69976
69977
69978
69979
69980
69981
69982
69983
69984
69985
69986
69987
69988
69989
69990
69991
69992
69993
69994
69995
69996
69997
69998
69999
70000
70001
70002
70003
70004
70005
70006
70007
70008
70009
70010
70011
70012
70013
70014
70015
70016
70017
70018
70019
70020
70021
70022
70023
70024
70025
70026
70027
70028
70029
70030
70031
70032
70033
70034
70035
70036
70037
70038
70039
70040
70041
70042
70043
70044
70045
70046
70047
70048
70049
70050
70051
70052
70053
70054
70055
70056
70057
70058
70059
70060
70061
70062
70063
70064
70065
70066
70067
70068
70069
70070
70071
70072
70073
70074
70075
70076
70077
70078
70079
70080
70081
70082
70083
70084
70085
70086
70087
70088
70089
70090
70091
70092
70093
70094
70095
70096
70097
70098
70099
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70300
70301
70302
70303
70304
70305
70306
70307
70308
70309
70310
70311
70312
70313
70314
70315
70316
70317
70318
70319
70320
70321
70322
70323
70324
70325
70326
70327
70328
70329
70330
70331
70332
70333
70334
70335
70336
70337
70338
70339
70340
70341
70342
70343
70344
70345
70346
70347
70348
70349
70350
70351
70352
70353
70354
70355
70356
70357
70358
70359
70360
70361
70362
70363
70364
70365
70366
70367
70368
70369
70370
70371
70372
70373
70374
70375
70376
70377
70378
70379
70380
70381
70382
70383
70384
70385
70386
70387
70388
70389
70390
70391
70392
70393
70394
70395
70396
70397
70398
70399
70400
70401
70402
70403
70404
70405
70406
70407
70408
70409
70410
70411
70412
70413
70414
70415
70416
70417
70418
70419
70420
70421
70422
70423
70424
70425
70426
70427
70428
70429
70430
70431
70432
70433
70434
70435
70436
70437
70438
70439
70440
70441
70442
70443
70444
70445
70446
70447
70448
70449
70450
70451
70452
70453
70454
70455
70456
70457
70458
70459
70460
70461
70462
70463
70464
70465
70466
70467
70468
70469
70470
70471
70472
70473
70474
70475
70476
70477
70478
70479
70480
70481
70482
70483
70484
70485
70486
70487
70488
70489
70490
70491
70492
70493
70494
70495
70496
70497
70498
70499
70500
70501
70502
70503
70504
70505
70506
70507
70508
70509
70510
70511
70512
70513
70514
70515
70516
70517
70518
70519
70520
70521
70522
70523
70524
70525
70526
70527
70528
70529
70530
70531
70532
70533
70534
70535
70536
70537
70538
70539
70540
70541
70542
70543
70544
70545
70546
70547
70548
70549
70550
70551
70552
70553
70554
70555
70556
70557
70558
70559
70560
70561
70562
70563
70564
70565
70566
70567
70568
70569
70570
70571
70572
70573
70574
70575
70576
70577
70578
70579
70580
70581
70582
70583
70584
70585
70586
70587
70588
70589
70590
70591
70592
70593
70594
70595
70596
70597
70598
70599
70600
70601
70602
70603
70604
70605
70606
70607
70608
70609
70610
70611
70612
70613
70614
70615
70616
70617
70618
70619
70620
70621
70622
70623
70624
70625
70626
70627
70628
70629
70630
70631
70632
70633
70634
70635
70636
70637
70638
70639
70640
70641
70642
70643
70644
70645
70646
70647
70648
70649
70650
70651
70652
70653
70654
70655
70656
70657
70658
70659
70660
70661
70662
70663
70664
70665
70666
70667
70668
70669
70670
70671
70672
70673
70674
70675
70676
70677
70678
70679
70680
70681
70682
70683
70684
70685
70686
70687
70688
70689
70690
70691
70692
70693
70694
70695
70696
70697
70698
70699
70700
70701
70702
70703
70704
70705
70706
70707
70708
70709
70710
70711
70712
70713
70714
70715
70716
70717
70718
70719
70720
70721
70722
70723
70724
70725
70726
70727
70728
70729
70730
70731
70732
70733
70734
70735
70736
70737
70738
70739
70740
70741
70742
70743
70744
70745
70746
70747
70748
70749
70750
70751
70752
70753
70754
70755
70756
70757
70758
70759
70760
70761
70762
70763
70764
70765
70766
70767
70768
70769
70770
70771
70772
70773
70774
70775
70776
70777
70778
70779
70780
70781
70782
70783
70784
70785
70786
70787
70788
70789
70790
70791
70792
70793
70794
70795
70796
70797
70798
70799
70800
70801
70802
70803
70804
70805
70806
70807
70808
70809
70810
70811
70812
70813
70814
70815
70816
70817
70818
70819
70820
70821
70822
70823
70824
70825
70826
70827
70828
70829
70830
70831
70832
70833
70834
70835
70836
70837
70838
70839
70840
70841
70842
70843
70844
70845
70846
70847
70848
70849
70850
70851
70852
70853
70854
70855
70856
70857
70858
70859
70860
70861
70862
70863
70864
70865
70866
70867
70868
70869
70870
70871
70872
70873
70874
70875
70876
70877
70878
70879
70880
70881
70882
70883
70884
70885
70886
70887
70888
70889
70890
70891
70892
70893
70894
70895
70896
70897
70898
70899
70900
70901
70902
70903
70904
70905
70906
70907
70908
70909
70910
70911
70912
70913
70914
70915
70916
70917
70918
70919
70920
70921
70922
70923
70924
70925
70926
70927
70928
70929
70930
70931
70932
70933
70934
70935
70936
70937
70938
70939
70940
70941
70942
70943
70944
70945
70946
70947
70948
70949
70950
70951
70952
70953
70954
70955
70956
70957
70958
70959
70960
70961
70962
70963
70964
70965
70966
70967
70968
70969
70970
70971
70972
70973
70974
70975
70976
70977
70978
70979
70980
70981
70982
70983
70984
70985
70986
70987
70988
70989
70990
70991
70992
70993
70994
70995
70996
70997
70998
70999
71000
71001
71002
71003
71004
71005
71006
71007
71008
71009
71010
71011
71012
71013
71014
71015
71016
71017
71018
71019
71020
71021
71022
71023
71024
71025
71026
71027
71028
71029
71030
71031
71032
71033
71034
71035
71036
71037
71038
71039
71040
71041
71042
71043
71044
71045
71046
71047
71048
71049
71050
71051
71052
71053
71054
71055
71056
71057
71058
71059
71060
71061
71062
71063
71064
71065
71066
71067
71068
71069
71070
71071
71072
71073
71074
71075
71076
71077
71078
71079
71080
71081
71082
71083
71084
71085
71086
71087
71088
71089
71090
71091
71092
71093
71094
71095
71096
71097
71098
71099
71100
71101
71102
71103
71104
71105
71106
71107
71108
71109
71110
71111
71112
71113
71114
71115
71116
71117
71118
71119
71120
71121
71122
71123
71124
71125
71126
71127
71128
71129
71130
71131
71132
71133
71134
71135
71136
71137
71138
71139
71140
71141
71142
71143
71144
71145
71146
71147
71148
71149
71150
71151
71152
71153
71154
71155
71156
71157
71158
71159
71160
71161
71162
71163
71164
71165
71166
71167
71168
71169
71170
71171
71172
71173
71174
71175
71176
71177
71178
71179
71180
71181
71182
71183
71184
71185
71186
71187
71188
71189
71190
71191
71192
71193
71194
71195
71196
71197
71198
71199
71200
71201
71202
71203
71204
71205
71206
71207
71208
71209
71210
71211
71212
71213
71214
71215
71216
71217
71218
71219
71220
71221
71222
71223
71224
71225
71226
71227
71228
71229
71230
71231
71232
71233
71234
71235
71236
71237
71238
71239
71240
71241
71242
71243
71244
71245
71246
71247
71248
71249
71250
71251
71252
71253
71254
71255
71256
71257
71258
71259
71260
71261
71262
71263
71264
71265
71266
71267
71268
71269
71270
71271
71272
71273
71274
71275
71276
71277
71278
71279
71280
71281
71282
71283
71284
71285
71286
71287
71288
71289
71290
71291
71292
71293
71294
71295
71296
71297
71298
71299
71300
71301
71302
71303
71304
71305
71306
71307
71308
71309
71310
71311
71312
71313
71314
71315
71316
71317
71318
71319
71320
71321
71322
71323
71324
71325
71326
71327
71328
71329
71330
71331
71332
71333
71334
71335
71336
71337
71338
71339
71340
71341
71342
71343
71344
71345
71346
71347
71348
71349
71350
71351
71352
71353
71354
71355
71356
71357
71358
71359
71360
71361
71362
71363
71364
71365
71366
71367
71368
71369
71370
71371
71372
71373
71374
71375
71376
71377
71378
71379
71380
71381
71382
71383
71384
71385
71386
71387
71388
71389
71390
71391
71392
71393
71394
71395
71396
71397
71398
71399
71400
71401
71402
71403
71404
71405
71406
71407
71408
71409
71410
71411
71412
71413
71414
71415
71416
71417
71418
71419
71420
71421
71422
71423
71424
71425
71426
71427
71428
71429
71430
71431
71432
71433
71434
71435
71436
71437
71438
71439
71440
71441
71442
71443
71444
71445
71446
71447
71448
71449
71450
71451
71452
71453
71454
71455
71456
71457
71458
71459
71460
71461
71462
71463
71464
71465
71466
71467
71468
71469
71470
71471
71472
71473
71474
71475
71476
71477
71478
71479
71480
71481
71482
71483
71484
71485
71486
71487
71488
71489
71490
71491
71492
71493
71494
71495
71496
71497
71498
71499
71500
71501
71502
71503
71504
71505
71506
71507
71508
71509
71510
71511
71512
71513
71514
71515
71516
71517
71518
71519
71520
71521
71522
71523
71524
71525
71526
71527
71528
71529
71530
71531
71532
71533
71534
71535
71536
71537
71538
71539
71540
71541
71542
71543
71544
71545
71546
71547
71548
71549
71550
71551
71552
71553
71554
71555
71556
71557
71558
71559
71560
71561
71562
71563
71564
71565
71566
71567
71568
71569
71570
71571
71572
71573
71574
71575
71576
71577
71578
71579
71580
71581
71582
71583
71584
71585
71586
71587
71588
71589
71590
71591
71592
71593
71594
71595
71596
71597
71598
71599
71600
71601
71602
71603
71604
71605
71606
71607
71608
71609
71610
71611
71612
71613
71614
71615
71616
71617
71618
71619
71620
71621
71622
71623
71624
71625
71626
71627
71628
71629
71630
71631
71632
71633
71634
71635
71636
71637
71638
71639
71640
71641
71642
71643
71644
71645
71646
71647
71648
71649
71650
71651
71652
71653
71654
71655
71656
71657
71658
71659
71660
71661
71662
71663
71664
71665
71666
71667
71668
71669
71670
71671
71672
71673
71674
71675
71676
71677
71678
71679
71680
71681
71682
71683
71684
71685
71686
71687
71688
71689
71690
71691
71692
71693
71694
71695
71696
71697
71698
71699
71700
71701
71702
71703
71704
71705
71706
71707
71708
71709
71710
71711
71712
71713
71714
71715
71716
71717
71718
71719
71720
71721
71722
71723
71724
71725
71726
71727
71728
71729
71730
71731
71732
71733
71734
71735
71736
71737
71738
71739
71740
71741
71742
71743
71744
71745
71746
71747
71748
71749
71750
71751
71752
71753
71754
71755
71756
71757
71758
71759
71760
71761
71762
71763
71764
71765
71766
71767
71768
71769
71770
71771
71772
71773
71774
71775
71776
71777
71778
71779
71780
71781
71782
71783
71784
71785
71786
71787
71788
71789
71790
71791
71792
71793
71794
71795
71796
71797
71798
71799
71800
71801
71802
71803
71804
71805
71806
71807
71808
71809
71810
71811
71812
71813
71814
71815
71816
71817
71818
71819
71820
71821
71822
71823
71824
71825
71826
71827
71828
71829
71830
71831
71832
71833
71834
71835
71836
71837
71838
71839
71840
71841
71842
71843
71844
71845
71846
71847
71848
71849
71850
71851
71852
71853
71854
71855
71856
71857
71858
71859
71860
71861
71862
71863
71864
71865
71866
71867
71868
71869
71870
71871
71872
71873
71874
71875
71876
71877
71878
71879
71880
71881
71882
71883
71884
71885
71886
71887
71888
71889
71890
71891
71892
71893
71894
71895
71896
71897
71898
71899
71900
71901
71902
71903
71904
71905
71906
71907
71908
71909
71910
71911
71912
71913
71914
71915
71916
71917
71918
71919
71920
71921
71922
71923
71924
71925
71926
71927
71928
71929
71930
71931
71932
71933
71934
71935
71936
71937
71938
71939
71940
71941
71942
71943
71944
71945
71946
71947
71948
71949
71950
71951
71952
71953
71954
71955
71956
71957
71958
71959
71960
71961
71962
71963
71964
71965
71966
71967
71968
71969
71970
71971
71972
71973
71974
71975
71976
71977
71978
71979
71980
71981
71982
71983
71984
71985
71986
71987
71988
71989
71990
71991
71992
71993
71994
71995
71996
71997
71998
71999
72000
72001
72002
72003
72004
72005
72006
72007
72008
72009
72010
72011
72012
72013
72014
72015
72016
72017
72018
72019
72020
72021
72022
72023
72024
72025
72026
72027
72028
72029
72030
72031
72032
72033
72034
72035
72036
72037
72038
72039
72040
72041
72042
72043
72044
72045
72046
72047
72048
72049
72050
72051
72052
72053
72054
72055
72056
72057
72058
72059
72060
72061
72062
72063
72064
72065
72066
72067
72068
72069
72070
72071
72072
72073
72074
72075
72076
72077
72078
72079
72080
72081
72082
72083
72084
72085
72086
72087
72088
72089
72090
72091
72092
72093
72094
72095
72096
72097
72098
72099
72100
72101
72102
72103
72104
72105
72106
72107
72108
72109
72110
72111
72112
72113
72114
72115
72116
72117
72118
72119
72120
72121
72122
72123
72124
72125
72126
72127
72128
72129
72130
72131
72132
72133
72134
72135
72136
72137
72138
72139
72140
72141
72142
72143
72144
72145
72146
72147
72148
72149
72150
72151
72152
72153
72154
72155
72156
72157
72158
72159
72160
72161
72162
72163
72164
72165
72166
72167
72168
72169
72170
72171
72172
72173
72174
72175
72176
72177
72178
72179
72180
72181
72182
72183
72184
72185
72186
72187
72188
72189
72190
72191
72192
72193
72194
72195
72196
72197
72198
72199
72200
72201
72202
72203
72204
72205
72206
72207
72208
72209
72210
72211
72212
72213
72214
72215
72216
72217
72218
72219
72220
72221
72222
72223
72224
72225
72226
72227
72228
72229
72230
72231
72232
72233
72234
72235
72236
72237
72238
72239
72240
72241
72242
72243
72244
72245
72246
72247
72248
72249
72250
72251
72252
72253
72254
72255
72256
72257
72258
72259
72260
72261
72262
72263
72264
72265
72266
72267
72268
72269
72270
72271
72272
72273
72274
72275
72276
72277
72278
72279
72280
72281
72282
72283
72284
72285
72286
72287
72288
72289
72290
72291
72292
72293
72294
72295
72296
72297
72298
72299
72300
72301
72302
72303
72304
72305
72306
72307
72308
72309
72310
72311
72312
72313
72314
72315
72316
72317
72318
72319
72320
72321
72322
72323
72324
72325
72326
72327
72328
72329
72330
72331
72332
72333
72334
72335
72336
72337
72338
72339
72340
72341
72342
72343
72344
72345
72346
72347
72348
72349
72350
72351
72352
72353
72354
72355
72356
72357
72358
72359
72360
72361
72362
72363
72364
72365
72366
72367
72368
72369
72370
72371
72372
72373
72374
72375
72376
72377
72378
72379
72380
72381
72382
72383
72384
72385
72386
72387
72388
72389
72390
72391
72392
72393
72394
72395
72396
72397
72398
72399
72400
72401
72402
72403
72404
72405
72406
72407
72408
72409
72410
72411
72412
72413
72414
72415
72416
72417
72418
72419
72420
72421
72422
72423
72424
72425
72426
72427
72428
72429
72430
72431
72432
72433
72434
72435
72436
72437
72438
72439
72440
72441
72442
72443
72444
72445
72446
72447
72448
72449
72450
72451
72452
72453
72454
72455
72456
72457
72458
72459
72460
72461
72462
72463
72464
72465
72466
72467
72468
72469
72470
72471
72472
72473
72474
72475
72476
72477
72478
72479
72480
72481
72482
72483
72484
72485
72486
72487
72488
72489
72490
72491
72492
72493
72494
72495
72496
72497
72498
72499
72500
72501
72502
72503
72504
72505
72506
72507
72508
72509
72510
72511
72512
72513
72514
72515
72516
72517
72518
72519
72520
72521
72522
72523
72524
72525
72526
72527
72528
72529
72530
72531
72532
72533
72534
72535
72536
72537
72538
72539
72540
72541
72542
72543
72544
72545
72546
72547
72548
72549
72550
72551
72552
72553
72554
72555
72556
72557
72558
72559
72560
72561
72562
72563
72564
72565
72566
72567
72568
72569
72570
72571
72572
72573
72574
72575
72576
72577
72578
72579
72580
72581
72582
72583
72584
72585
72586
72587
72588
72589
72590
72591
72592
72593
72594
72595
72596
72597
72598
72599
72600
72601
72602
72603
72604
72605
72606
72607
72608
72609
72610
72611
72612
72613
72614
72615
72616
72617
72618
72619
72620
72621
72622
72623
72624
72625
72626
72627
72628
72629
72630
72631
72632
72633
72634
72635
72636
72637
72638
72639
72640
72641
72642
72643
72644
72645
72646
72647
72648
72649
72650
72651
72652
72653
72654
72655
72656
72657
72658
72659
72660
72661
72662
72663
72664
72665
72666
72667
72668
72669
72670
72671
72672
72673
72674
72675
72676
72677
72678
72679
72680
72681
72682
72683
72684
72685
72686
72687
72688
72689
72690
72691
72692
72693
72694
72695
72696
72697
72698
72699
72700
72701
72702
72703
72704
72705
72706
72707
72708
72709
72710
72711
72712
72713
72714
72715
72716
72717
72718
72719
72720
72721
72722
72723
72724
72725
72726
72727
72728
72729
72730
72731
72732
72733
72734
72735
72736
72737
72738
72739
72740
72741
72742
72743
72744
72745
72746
72747
72748
72749
72750
72751
72752
72753
72754
72755
72756
72757
72758
72759
72760
72761
72762
72763
72764
72765
72766
72767
72768
72769
72770
72771
72772
72773
72774
72775
72776
72777
72778
72779
72780
72781
72782
72783
72784
72785
72786
72787
72788
72789
72790
72791
72792
72793
72794
72795
72796
72797
72798
72799
72800
72801
72802
72803
72804
72805
72806
72807
72808
72809
72810
72811
72812
72813
72814
72815
72816
72817
72818
72819
72820
72821
72822
72823
72824
72825
72826
72827
72828
72829
72830
72831
72832
72833
72834
72835
72836
72837
72838
72839
72840
72841
72842
72843
72844
72845
72846
72847
72848
72849
72850
72851
72852
72853
72854
72855
72856
72857
72858
72859
72860
72861
72862
72863
72864
72865
72866
72867
72868
72869
72870
72871
72872
72873
72874
72875
72876
72877
72878
72879
72880
72881
72882
72883
72884
72885
72886
72887
72888
72889
72890
72891
72892
72893
72894
72895
72896
72897
72898
72899
72900
72901
72902
72903
72904
72905
72906
72907
72908
72909
72910
72911
72912
72913
72914
72915
72916
72917
72918
72919
72920
72921
72922
72923
72924
72925
72926
72927
72928
72929
72930
72931
72932
72933
72934
72935
72936
72937
72938
72939
72940
72941
72942
72943
72944
72945
72946
72947
72948
72949
72950
72951
72952
72953
72954
72955
72956
72957
72958
72959
72960
72961
72962
72963
72964
72965
72966
72967
72968
72969
72970
72971
72972
72973
72974
72975
72976
72977
72978
72979
72980
72981
72982
72983
72984
72985
72986
72987
72988
72989
72990
72991
72992
72993
72994
72995
72996
72997
72998
72999
73000
73001
73002
73003
73004
73005
73006
73007
73008
73009
73010
73011
73012
73013
73014
73015
73016
73017
73018
73019
73020
73021
73022
73023
73024
73025
73026
73027
73028
73029
73030
73031
73032
73033
73034
73035
73036
73037
73038
73039
73040
73041
73042
73043
73044
73045
73046
73047
73048
73049
73050
73051
73052
73053
73054
73055
73056
73057
73058
73059
73060
73061
73062
73063
73064
73065
73066
73067
73068
73069
73070
73071
73072
73073
73074
73075
73076
73077
73078
73079
73080
73081
73082
73083
73084
73085
73086
73087
73088
73089
73090
73091
73092
73093
73094
73095
73096
73097
73098
73099
73100
73101
73102
73103
73104
73105
73106
73107
73108
73109
73110
73111
73112
73113
73114
73115
73116
73117
73118
73119
73120
73121
73122
73123
73124
73125
73126
73127
73128
73129
73130
73131
73132
73133
73134
73135
73136
73137
73138
73139
73140
73141
73142
73143
73144
73145
73146
73147
73148
73149
73150
73151
73152
73153
73154
73155
73156
73157
73158
73159
73160
73161
73162
73163
73164
73165
73166
73167
73168
73169
73170
73171
73172
73173
73174
73175
73176
73177
73178
73179
73180
73181
73182
73183
73184
73185
73186
73187
73188
73189
73190
73191
73192
73193
73194
73195
73196
73197
73198
73199
73200
73201
73202
73203
73204
73205
73206
73207
73208
73209
73210
73211
73212
73213
73214
73215
73216
73217
73218
73219
73220
73221
73222
73223
73224
73225
73226
73227
73228
73229
73230
73231
73232
73233
73234
73235
73236
73237
73238
73239
73240
73241
73242
73243
73244
73245
73246
73247
73248
73249
73250
73251
73252
73253
73254
73255
73256
73257
73258
73259
73260
73261
73262
73263
73264
73265
73266
73267
73268
73269
73270
73271
73272
73273
73274
73275
73276
73277
73278
73279
73280
73281
73282
73283
73284
73285
73286
73287
73288
73289
73290
73291
73292
73293
73294
73295
73296
73297
73298
73299
73300
73301
73302
73303
73304
73305
73306
73307
73308
73309
73310
73311
73312
73313
73314
73315
73316
73317
73318
73319
73320
73321
73322
73323
73324
73325
73326
73327
73328
73329
73330
73331
73332
73333
73334
73335
73336
73337
73338
73339
73340
73341
73342
73343
73344
73345
73346
73347
73348
73349
73350
73351
73352
73353
73354
73355
73356
73357
73358
73359
73360
73361
73362
73363
73364
73365
73366
73367
73368
73369
73370
73371
73372
73373
73374
73375
73376
73377
73378
73379
73380
73381
73382
73383
73384
73385
73386
73387
73388
73389
73390
73391
73392
73393
73394
73395
73396
73397
73398
73399
73400
73401
73402
73403
73404
73405
73406
73407
73408
73409
73410
73411
73412
73413
73414
73415
73416
73417
73418
73419
73420
73421
73422
73423
73424
73425
73426
73427
73428
73429
73430
73431
73432
73433
73434
73435
73436
73437
73438
73439
73440
73441
73442
73443
73444
73445
73446
73447
73448
73449
73450
73451
73452
73453
73454
73455
73456
73457
73458
73459
73460
73461
73462
73463
73464
73465
73466
73467
73468
73469
73470
73471
73472
73473
73474
73475
73476
73477
73478
73479
73480
73481
73482
73483
73484
73485
73486
73487
73488
73489
73490
73491
73492
73493
73494
73495
73496
73497
73498
73499
73500
73501
73502
73503
73504
73505
73506
73507
73508
73509
73510
73511
73512
73513
73514
73515
73516
73517
73518
73519
73520
73521
73522
73523
73524
73525
73526
73527
73528
73529
73530
73531
73532
73533
73534
73535
73536
73537
73538
73539
73540
73541
73542
73543
73544
73545
73546
73547
73548
73549
73550
73551
73552
73553
73554
73555
73556
73557
73558
73559
73560
73561
73562
73563
73564
73565
73566
73567
73568
73569
73570
73571
73572
73573
73574
73575
73576
73577
73578
73579
73580
73581
73582
73583
73584
73585
73586
73587
73588
73589
73590
73591
73592
73593
73594
73595
73596
73597
73598
73599
73600
73601
73602
73603
73604
73605
73606
73607
73608
73609
73610
73611
73612
73613
73614
73615
73616
73617
73618
73619
73620
73621
73622
73623
73624
73625
73626
73627
73628
73629
73630
73631
73632
73633
73634
73635
73636
73637
73638
73639
73640
73641
73642
73643
73644
73645
73646
73647
73648
73649
73650
73651
73652
73653
73654
73655
73656
73657
73658
73659
73660
73661
73662
73663
73664
73665
73666
73667
73668
73669
73670
73671
73672
73673
73674
73675
73676
73677
73678
73679
73680
73681
73682
73683
73684
73685
73686
73687
73688
73689
73690
73691
73692
73693
73694
73695
73696
73697
73698
73699
73700
73701
73702
73703
73704
73705
73706
73707
73708
73709
73710
73711
73712
73713
73714
73715
73716
73717
73718
73719
73720
73721
73722
73723
73724
73725
73726
73727
73728
73729
73730
73731
73732
73733
73734
73735
73736
73737
73738
73739
73740
73741
73742
73743
73744
73745
73746
73747
73748
73749
73750
73751
73752
73753
73754
73755
73756
73757
73758
73759
73760
73761
73762
73763
73764
73765
73766
73767
73768
73769
73770
73771
73772
73773
73774
73775
73776
73777
73778
73779
73780
73781
73782
73783
73784
73785
73786
73787
73788
73789
73790
73791
73792
73793
73794
73795
73796
73797
73798
73799
73800
73801
73802
73803
73804
73805
73806
73807
73808
73809
73810
73811
73812
73813
73814
73815
73816
73817
73818
73819
73820
73821
73822
73823
73824
73825
73826
73827
73828
73829
73830
73831
73832
73833
73834
73835
73836
73837
73838
73839
73840
73841
73842
73843
73844
73845
73846
73847
73848
73849
73850
73851
73852
73853
73854
73855
73856
73857
73858
73859
73860
73861
73862
73863
73864
73865
73866
73867
73868
73869
73870
73871
73872
73873
73874
73875
73876
73877
73878
73879
73880
73881
73882
73883
73884
73885
73886
73887
73888
73889
73890
73891
73892
73893
73894
73895
73896
73897
73898
73899
73900
73901
73902
73903
73904
73905
73906
73907
73908
73909
73910
73911
73912
73913
73914
73915
73916
73917
73918
73919
73920
73921
73922
73923
73924
73925
73926
73927
73928
73929
73930
73931
73932
73933
73934
73935
73936
73937
73938
73939
73940
73941
73942
73943
73944
73945
73946
73947
73948
73949
73950
73951
73952
73953
73954
73955
73956
73957
73958
73959
73960
73961
73962
73963
73964
73965
73966
73967
73968
73969
73970
73971
73972
73973
73974
73975
73976
73977
73978
73979
73980
73981
73982
73983
73984
73985
73986
73987
73988
73989
73990
73991
73992
73993
73994
73995
73996
73997
73998
73999
74000
74001
74002
74003
74004
74005
74006
74007
74008
74009
74010
74011
74012
74013
74014
74015
74016
74017
74018
74019
74020
74021
74022
74023
74024
74025
74026
74027
74028
74029
74030
74031
74032
74033
74034
74035
74036
74037
74038
74039
74040
74041
74042
74043
74044
74045
74046
74047
74048
74049
74050
74051
74052
74053
74054
74055
74056
74057
74058
74059
74060
74061
74062
74063
74064
74065
74066
74067
74068
74069
74070
74071
74072
74073
74074
74075
74076
74077
74078
74079
74080
74081
74082
74083
74084
74085
74086
74087
74088
74089
74090
74091
74092
74093
74094
74095
74096
74097
74098
74099
74100
74101
74102
74103
74104
74105
74106
74107
74108
74109
74110
74111
74112
74113
74114
74115
74116
74117
74118
74119
74120
74121
74122
74123
74124
74125
74126
74127
74128
74129
74130
74131
74132
74133
74134
74135
74136
74137
74138
74139
74140
74141
74142
74143
74144
74145
74146
74147
74148
74149
74150
74151
74152
74153
74154
74155
74156
74157
74158
74159
74160
74161
74162
74163
74164
74165
74166
74167
74168
74169
74170
74171
74172
74173
74174
74175
74176
74177
74178
74179
74180
74181
74182
74183
74184
74185
74186
74187
74188
74189
74190
74191
74192
74193
74194
74195
74196
74197
74198
74199
74200
74201
74202
74203
74204
74205
74206
74207
74208
74209
74210
74211
74212
74213
74214
74215
74216
74217
74218
74219
74220
74221
74222
74223
74224
74225
74226
74227
74228
74229
74230
74231
74232
74233
74234
74235
74236
74237
74238
74239
74240
74241
74242
74243
74244
74245
74246
74247
74248
74249
74250
74251
74252
74253
74254
74255
74256
74257
74258
74259
74260
74261
74262
74263
74264
74265
74266
74267
74268
74269
74270
74271
74272
74273
74274
74275
74276
74277
74278
74279
74280
74281
74282
74283
74284
74285
74286
74287
74288
74289
74290
74291
74292
74293
74294
74295
74296
74297
74298
74299
74300
74301
74302
74303
74304
74305
74306
74307
74308
74309
74310
74311
74312
74313
74314
74315
74316
74317
74318
74319
74320
74321
74322
74323
74324
74325
74326
74327
74328
74329
74330
74331
74332
74333
74334
74335
74336
74337
74338
74339
74340
74341
74342
74343
74344
74345
74346
74347
74348
74349
74350
74351
74352
74353
74354
74355
74356
74357
74358
74359
74360
74361
74362
74363
74364
74365
74366
74367
74368
74369
74370
74371
74372
74373
74374
74375
74376
74377
74378
74379
74380
74381
74382
74383
74384
74385
74386
74387
74388
74389
74390
74391
74392
74393
74394
74395
74396
74397
74398
74399
74400
74401
74402
74403
74404
74405
74406
74407
74408
74409
74410
74411
74412
74413
74414
74415
74416
74417
74418
74419
74420
74421
74422
74423
74424
74425
74426
74427
74428
74429
74430
74431
74432
74433
74434
74435
74436
74437
74438
74439
74440
74441
74442
74443
74444
74445
74446
74447
74448
74449
74450
74451
74452
74453
74454
74455
74456
74457
74458
74459
74460
74461
74462
74463
74464
74465
74466
74467
74468
74469
74470
74471
74472
74473
74474
74475
74476
74477
74478
74479
74480
74481
74482
74483
74484
74485
74486
74487
74488
74489
74490
74491
74492
74493
74494
74495
74496
74497
74498
74499
74500
74501
74502
74503
74504
74505
74506
74507
74508
74509
74510
74511
74512
74513
74514
74515
74516
74517
74518
74519
74520
74521
74522
74523
74524
74525
74526
74527
74528
74529
74530
74531
74532
74533
74534
74535
74536
74537
74538
74539
74540
74541
74542
74543
74544
74545
74546
74547
74548
74549
74550
74551
74552
74553
74554
74555
74556
74557
74558
74559
74560
74561
74562
74563
74564
74565
74566
74567
74568
74569
74570
74571
74572
74573
74574
74575
74576
74577
74578
74579
74580
74581
74582
74583
74584
74585
74586
74587
74588
74589
74590
74591
74592
74593
74594
74595
74596
74597
74598
74599
74600
74601
74602
74603
74604
74605
74606
74607
74608
74609
74610
74611
74612
74613
74614
74615
74616
74617
74618
74619
74620
74621
74622
74623
74624
74625
74626
74627
74628
74629
74630
74631
74632
74633
74634
74635
74636
74637
74638
74639
74640
74641
74642
74643
74644
74645
74646
74647
74648
74649
74650
74651
74652
74653
74654
74655
74656
74657
74658
74659
74660
74661
74662
74663
74664
74665
74666
74667
74668
74669
74670
74671
74672
74673
74674
74675
74676
74677
74678
74679
74680
74681
74682
74683
74684
74685
74686
74687
74688
74689
74690
74691
74692
74693
74694
74695
74696
74697
74698
74699
74700
74701
74702
74703
74704
74705
74706
74707
74708
74709
74710
74711
74712
74713
74714
74715
74716
74717
74718
74719
74720
74721
74722
74723
74724
74725
74726
74727
74728
74729
74730
74731
74732
74733
74734
74735
74736
74737
74738
74739
74740
74741
74742
74743
74744
74745
74746
74747
74748
74749
74750
74751
74752
74753
74754
74755
74756
74757
74758
74759
74760
74761
74762
74763
74764
74765
74766
74767
74768
74769
74770
74771
74772
74773
74774
74775
74776
74777
74778
74779
74780
74781
74782
74783
74784
74785
74786
74787
74788
74789
74790
74791
74792
74793
74794
74795
74796
74797
74798
74799
74800
74801
74802
74803
74804
74805
74806
74807
74808
74809
74810
74811
74812
74813
74814
74815
74816
74817
74818
74819
74820
74821
74822
74823
74824
74825
74826
74827
74828
74829
74830
74831
74832
74833
74834
74835
74836
74837
74838
74839
74840
74841
74842
74843
74844
74845
74846
74847
74848
74849
74850
74851
74852
74853
74854
74855
74856
74857
74858
74859
74860
74861
74862
74863
74864
74865
74866
74867
74868
74869
74870
74871
74872
74873
74874
74875
74876
74877
74878
74879
74880
74881
74882
74883
74884
74885
74886
74887
74888
74889
74890
74891
74892
74893
74894
74895
74896
74897
74898
74899
74900
74901
74902
74903
74904
74905
74906
74907
74908
74909
74910
74911
74912
74913
74914
74915
74916
74917
74918
74919
74920
74921
74922
74923
74924
74925
74926
74927
74928
74929
74930
74931
74932
74933
74934
74935
74936
74937
74938
74939
74940
74941
74942
74943
74944
74945
74946
74947
74948
74949
74950
74951
74952
74953
74954
74955
74956
74957
74958
74959
74960
74961
74962
74963
74964
74965
74966
74967
74968
74969
74970
74971
74972
74973
74974
74975
74976
74977
74978
74979
74980
74981
74982
74983
74984
74985
74986
74987
74988
74989
74990
74991
74992
74993
74994
74995
74996
74997
74998
74999
75000
75001
75002
75003
75004
75005
75006
75007
75008
75009
75010
75011
75012
75013
75014
75015
75016
75017
75018
75019
75020
75021
75022
75023
75024
75025
75026
75027
75028
75029
75030
75031
75032
75033
75034
75035
75036
75037
75038
75039
75040
75041
75042
75043
75044
75045
75046
75047
75048
75049
75050
75051
75052
75053
75054
75055
75056
75057
75058
75059
75060
75061
75062
75063
75064
75065
75066
75067
75068
75069
75070
75071
75072
75073
75074
75075
75076
75077
75078
75079
75080
75081
75082
75083
75084
75085
75086
75087
75088
75089
75090
75091
75092
75093
75094
75095
75096
75097
75098
75099
75100
75101
75102
75103
75104
75105
75106
75107
75108
75109
75110
75111
75112
75113
75114
75115
75116
75117
75118
75119
75120
75121
75122
75123
75124
75125
75126
75127
75128
75129
75130
75131
75132
75133
75134
75135
75136
75137
75138
75139
75140
75141
75142
75143
75144
75145
75146
75147
75148
75149
75150
75151
75152
75153
75154
75155
75156
75157
75158
75159
75160
75161
75162
75163
75164
75165
75166
75167
75168
75169
75170
75171
75172
75173
75174
75175
75176
75177
75178
75179
75180
75181
75182
75183
75184
75185
75186
75187
75188
75189
75190
75191
75192
75193
75194
75195
75196
75197
75198
75199
75200
75201
75202
75203
75204
75205
75206
75207
75208
75209
75210
75211
75212
75213
75214
75215
75216
75217
75218
75219
75220
75221
75222
75223
75224
75225
75226
75227
75228
75229
75230
75231
75232
75233
75234
75235
75236
75237
75238
75239
75240
75241
75242
75243
75244
75245
75246
75247
75248
75249
75250
75251
75252
75253
75254
75255
75256
75257
75258
75259
75260
75261
75262
75263
75264
75265
75266
75267
75268
75269
75270
75271
75272
75273
75274
75275
75276
75277
75278
75279
75280
75281
75282
75283
75284
75285
75286
75287
75288
75289
75290
75291
75292
75293
75294
75295
75296
75297
75298
75299
75300
75301
75302
75303
75304
75305
75306
75307
75308
75309
75310
75311
75312
75313
75314
75315
75316
75317
75318
75319
75320
75321
75322
75323
75324
75325
75326
75327
75328
75329
75330
75331
75332
75333
75334
75335
75336
75337
75338
75339
75340
75341
75342
75343
75344
75345
75346
75347
75348
75349
75350
75351
75352
75353
75354
75355
75356
75357
75358
75359
75360
75361
75362
75363
75364
75365
75366
75367
75368
75369
75370
75371
75372
75373
75374
75375
75376
75377
75378
75379
75380
75381
75382
75383
75384
75385
75386
75387
75388
75389
75390
75391
75392
75393
75394
75395
75396
75397
75398
75399
75400
75401
75402
75403
75404
75405
75406
75407
75408
75409
75410
75411
75412
75413
75414
75415
75416
75417
75418
75419
75420
75421
75422
75423
75424
75425
75426
75427
75428
75429
75430
75431
75432
75433
75434
75435
75436
75437
75438
75439
75440
75441
75442
75443
75444
75445
75446
75447
75448
75449
75450
75451
75452
75453
75454
75455
75456
75457
75458
75459
75460
75461
75462
75463
75464
75465
75466
75467
75468
75469
75470
75471
75472
75473
75474
75475
75476
75477
75478
75479
75480
75481
75482
75483
75484
75485
75486
75487
75488
75489
75490
75491
75492
75493
75494
75495
75496
75497
75498
75499
75500
75501
75502
75503
75504
75505
75506
75507
75508
75509
75510
75511
75512
75513
75514
75515
75516
75517
75518
75519
75520
75521
75522
75523
75524
75525
75526
75527
75528
75529
75530
75531
75532
75533
75534
75535
75536
75537
75538
75539
75540
75541
75542
75543
75544
75545
75546
75547
75548
75549
75550
75551
75552
75553
75554
75555
75556
75557
75558
75559
75560
75561
75562
75563
75564
75565
75566
75567
75568
75569
75570
75571
75572
75573
75574
75575
75576
75577
75578
75579
75580
75581
75582
75583
75584
75585
75586
75587
75588
75589
75590
75591
75592
75593
75594
75595
75596
75597
75598
75599
75600
75601
75602
75603
75604
75605
75606
75607
75608
75609
75610
75611
75612
75613
75614
75615
75616
75617
75618
75619
75620
75621
75622
75623
75624
75625
75626
75627
75628
75629
75630
75631
75632
75633
75634
75635
75636
75637
75638
75639
75640
75641
75642
75643
75644
75645
75646
75647
75648
75649
75650
75651
75652
75653
75654
75655
75656
75657
75658
75659
75660
75661
75662
75663
75664
75665
75666
75667
75668
75669
75670
75671
75672
75673
75674
75675
75676
75677
75678
75679
75680
75681
75682
75683
75684
75685
75686
75687
75688
75689
75690
75691
75692
75693
75694
75695
75696
75697
75698
75699
75700
75701
75702
75703
75704
75705
75706
75707
75708
75709
75710
75711
75712
75713
75714
75715
75716
75717
75718
75719
75720
75721
75722
75723
75724
75725
75726
75727
75728
75729
75730
75731
75732
75733
75734
75735
75736
75737
75738
75739
75740
75741
75742
75743
75744
75745
75746
75747
75748
75749
75750
75751
75752
75753
75754
75755
75756
75757
75758
75759
75760
75761
75762
75763
75764
75765
75766
75767
75768
75769
75770
75771
75772
75773
75774
75775
75776
75777
75778
75779
75780
75781
75782
75783
75784
75785
75786
75787
75788
75789
75790
75791
75792
75793
75794
75795
75796
75797
75798
75799
75800
75801
75802
75803
75804
75805
75806
75807
75808
75809
75810
75811
75812
75813
75814
75815
75816
75817
75818
75819
75820
75821
75822
75823
75824
75825
75826
75827
75828
75829
75830
75831
75832
75833
75834
75835
75836
75837
75838
75839
75840
75841
75842
75843
75844
75845
75846
75847
75848
75849
75850
75851
75852
75853
75854
75855
75856
75857
75858
75859
75860
75861
75862
75863
75864
75865
75866
75867
75868
75869
75870
75871
75872
75873
75874
75875
75876
75877
75878
75879
75880
75881
75882
75883
75884
75885
75886
75887
75888
75889
75890
75891
75892
75893
75894
75895
75896
75897
75898
75899
75900
75901
75902
75903
75904
75905
75906
75907
75908
75909
75910
75911
75912
75913
75914
75915
75916
75917
75918
75919
75920
75921
75922
75923
75924
75925
75926
75927
75928
75929
75930
75931
75932
75933
75934
75935
75936
75937
75938
75939
75940
75941
75942
75943
75944
75945
75946
75947
75948
75949
75950
75951
75952
75953
75954
75955
75956
75957
75958
75959
75960
75961
75962
75963
75964
75965
75966
75967
75968
75969
75970
75971
75972
75973
75974
75975
75976
75977
75978
75979
75980
75981
75982
75983
75984
75985
75986
75987
75988
75989
75990
75991
75992
75993
75994
75995
75996
75997
75998
75999
76000
76001
76002
76003
76004
76005
76006
76007
76008
76009
76010
76011
76012
76013
76014
76015
76016
76017
76018
76019
76020
76021
76022
76023
76024
76025
76026
76027
76028
76029
76030
76031
76032
76033
76034
76035
76036
76037
76038
76039
76040
76041
76042
76043
76044
76045
76046
76047
76048
76049
76050
76051
76052
76053
76054
76055
76056
76057
76058
76059
76060
76061
76062
76063
76064
76065
76066
76067
76068
76069
76070
76071
76072
76073
76074
76075
76076
76077
76078
76079
76080
76081
76082
76083
76084
76085
76086
76087
76088
76089
76090
76091
76092
76093
76094
76095
76096
76097
76098
76099
76100
76101
76102
76103
76104
76105
76106
76107
76108
76109
76110
76111
76112
76113
76114
76115
76116
76117
76118
76119
76120
76121
76122
76123
76124
76125
76126
76127
76128
76129
76130
76131
76132
76133
76134
76135
76136
76137
76138
76139
76140
76141
76142
76143
76144
76145
76146
76147
76148
76149
76150
76151
76152
76153
76154
76155
76156
76157
76158
76159
76160
76161
76162
76163
76164
76165
76166
76167
76168
76169
76170
76171
76172
76173
76174
76175
76176
76177
76178
76179
76180
76181
76182
76183
76184
76185
76186
76187
76188
76189
76190
76191
76192
76193
76194
76195
76196
76197
76198
76199
76200
76201
76202
76203
76204
76205
76206
76207
76208
76209
76210
76211
76212
76213
76214
76215
76216
76217
76218
76219
76220
76221
76222
76223
76224
76225
76226
76227
76228
76229
76230
76231
76232
76233
76234
76235
76236
76237
76238
76239
76240
76241
76242
76243
76244
76245
76246
76247
76248
76249
76250
76251
76252
76253
76254
76255
76256
76257
76258
76259
76260
76261
76262
76263
76264
76265
76266
76267
76268
76269
76270
76271
76272
76273
76274
76275
76276
76277
76278
76279
76280
76281
76282
76283
76284
76285
76286
76287
76288
76289
76290
76291
76292
76293
76294
76295
76296
76297
76298
76299
76300
76301
76302
76303
76304
76305
76306
76307
76308
76309
76310
76311
76312
76313
76314
76315
76316
76317
76318
76319
76320
76321
76322
76323
76324
76325
76326
76327
76328
76329
76330
76331
76332
76333
76334
76335
76336
76337
76338
76339
76340
76341
76342
76343
76344
76345
76346
76347
76348
76349
76350
76351
76352
76353
76354
76355
76356
76357
76358
76359
76360
76361
76362
76363
76364
76365
76366
76367
76368
76369
76370
76371
76372
76373
76374
76375
76376
76377
76378
76379
76380
76381
76382
76383
76384
76385
76386
76387
76388
76389
76390
76391
76392
76393
76394
76395
76396
76397
76398
76399
76400
76401
76402
76403
76404
76405
76406
76407
76408
76409
76410
76411
76412
76413
76414
76415
76416
76417
76418
76419
76420
76421
76422
76423
76424
76425
76426
76427
76428
76429
76430
76431
76432
76433
76434
76435
76436
76437
76438
76439
76440
76441
76442
76443
76444
76445
76446
76447
76448
76449
76450
76451
76452
76453
76454
76455
76456
76457
76458
76459
76460
76461
76462
76463
76464
76465
76466
76467
76468
76469
76470
76471
76472
76473
76474
76475
76476
76477
76478
76479
76480
76481
76482
76483
76484
76485
76486
76487
76488
76489
76490
76491
76492
76493
76494
76495
76496
76497
76498
76499
76500
76501
76502
76503
76504
76505
76506
76507
76508
76509
76510
76511
76512
76513
76514
76515
76516
76517
76518
76519
76520
76521
76522
76523
76524
76525
76526
76527
76528
76529
76530
76531
76532
76533
76534
76535
76536
76537
76538
76539
76540
76541
76542
76543
76544
76545
76546
76547
76548
76549
76550
76551
76552
76553
76554
76555
76556
76557
76558
76559
76560
76561
76562
76563
76564
76565
76566
76567
76568
76569
76570
76571
76572
76573
76574
76575
76576
76577
76578
76579
76580
76581
76582
76583
76584
76585
76586
76587
76588
76589
76590
76591
76592
76593
76594
76595
76596
76597
76598
76599
76600
76601
76602
76603
76604
76605
76606
76607
76608
76609
76610
76611
76612
76613
76614
76615
76616
76617
76618
76619
76620
76621
76622
76623
76624
76625
76626
76627
76628
76629
76630
76631
76632
76633
76634
76635
76636
76637
76638
76639
76640
76641
76642
76643
76644
76645
76646
76647
76648
76649
76650
76651
76652
76653
76654
76655
76656
76657
76658
76659
76660
76661
76662
76663
76664
76665
76666
76667
76668
76669
76670
76671
76672
76673
76674
76675
76676
76677
76678
76679
76680
76681
76682
76683
76684
76685
76686
76687
76688
76689
76690
76691
76692
76693
76694
76695
76696
76697
76698
76699
76700
76701
76702
76703
76704
76705
76706
76707
76708
76709
76710
76711
76712
76713
76714
76715
76716
76717
76718
76719
76720
76721
76722
76723
76724
76725
76726
76727
76728
76729
76730
76731
76732
76733
76734
76735
76736
76737
76738
76739
76740
76741
76742
76743
76744
76745
76746
76747
76748
76749
76750
76751
76752
76753
76754
76755
76756
76757
76758
76759
|
.\" t '\" vim:set syntax=groff:
.\" Copyright (C) 2009-2020 Kaz Kylheku <kaz@kylheku.com>.
.\" All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions are met:
.\"
.\" 1. Redistributions of source code must retain the above copyright notice, this
.\" list of conditions and the following disclaimer.
.\"
.\" 2. Redistributions in binary form must reproduce the above copyright notice,
.\" this list of conditions and the following disclaimer in the documentation
.\" and/or other materials provided with the distribution.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
.\" WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
.\" DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
.\" SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
.\" CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
.\" OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
.\" OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
.\"
.\" Useful groff definitions.
.\"
.\" Some constants that depend on troff/nroff mode:
.ie n \{\
.ds vspc 1
.\}
.el \{\
.ds vspc 0.5
.\}
.\" Mount numeric fonts when not running under man2html
.if !\n(M2 \{\
. fp 4 CR
. fp 5 CI
.\}
.\" Base font
.nr fsav 1
.\" start of code block: switch to monospace font and no format
.de verb
. ft 4
. nf
..
.\" end of code block: restore font and formatting
.de brev
. fi
. ft 1
..
.\" switch to mono font
.de mono
. ft 4
..
.\" switch back from mon font
.de onom
. ft 1
..
.\" typeset argument in monospace
.\" .code x -> \f[CR]x\f[]
.de code
\f[4]\\$1\f[]
..
.\" like .code typesets meta-syntax
.\" which is done in angle brackets + italic in nroff or oblique
.\" courier in PDF/HTML.
.de meta
. ie n \{\
\fI<\\$1>\fP
. \}
. el \{\
\f[5]\\$1\f[]
. \}
..
.\" like .meta but tack on second argument with no space.
.de metn
. ie n \{\
\fI<\\$1>\fP\\$2
. \}
. el \{\
\f[5]\\$1\f[]\\$2
. \}
..
.\" like .code but wraps in quotes
.\" .str x y z -> \f[CR]"x y z"\f[].
.de str
\f[4]"\\$*"\f[]
..
.\" wrap first argument in quotes, tack no second one with no space
.\" .strn x y -> \f[CR]"x"\f[]y.
.de strn
\f[4]"\\$1"\f[]\\$2
..
.\" like .IP but use monospace too
.de coIP
. IP "\\f[4]\\$*\\f[]"
..
.\" Directive heading
.de dir
. NP* The \f[4]\\$1\f[] directive
..
.\" Multiple directive heading
.de dirs
. ds s "
. while (\\n[.$]>2) \{\
. as s \f[4]\\$1\f[],
. shift
. \}
. if (\\n[.$]>1) \{\
. as s \f[4]\\$1\f[]
. shift
. \}
. if (\\n[.$]>0) \{\
. as s and \f[4]\\$1\f[]
. \}
. NP* The \\*s directives
..
.\" heading with code in position 1
.de c1NP
. ds s \\f[4]\\$1\\f[]
. shift
. as s " \\$*
. NP* \\*s
..
.\" utility macro for gathering material into "s" string.
.\" a pair of arguments "@ arg" becomes arg set in code
.\" a pair of arguments "@, arg" becomes "arg," where
.\" arg is set in code, followed by comma not in code.
.de gets
. ds s "
. while (\\n[.$]>0) \{\
. ie "\\$1"@" \{\
. shift
. as s \f[4]\\$1\f[]
. shift
. \}
. el \{\
. ie "\\$1"@," \{\
. shift
. as s \f[4]\\$1\f[],
. shift
. \}
. el \{\
. as s \\$1
. shift
. \}
. \}
. \}
..
.\" a macro for gathering material into "s"
.\" a pair of arguments "< arg" is typeset like
.\" .meta arg. "<< arg arg" is like .metn arg arg.
.ie n \{\
. de getm
. ds s "
. while (\\n[.$]>0) \{\
. ie "\\$1"<" \{\
. shift
. as s \fI<\\$1>\fP
. shift
. \}
. el \{\
. ie "\\$1"<<" \{\
. shift
. as s \fI<\\$1>\fP\\$2
. shift
. shift
. \}
. el \{\
. ie "\\$1">>" \{\
. shift
. as s \\$1\fI<\\$2>\fP
. shift
. shift
. \}
. el \{\
. ie "\\$1"<>" \{\
. shift
. as s \\$1\fI<\\$2>\fP\\$3
. shift
. shift
. shift
. \}
. el \{\
. ie "\\$1"><" \{\
. shift
. as s \fI<\\$1>\fP\\$2\fI<\\$3>\fP
. shift
. shift
. shift
. \}
. el \{\
. as s \\$1
. shift
. \}
. \}
. \}
. \}
. \}
. \}
. .
.\}
.el \{\
. de getm
. ds s "
. while (\\n[.$]>0) \{\
. ie "\\$1"<" \{\
. shift
. as s \\f5\\$1\\f4
. shift
. \}
. el \{\
. ie "\\$1"<<" \{\
. shift
. as s \\f5\\$1\\f4\\$2
. shift
. shift
. \}
. el \{\
. ie "\\$1">>" \{\
. shift
. as s \\$1\\f5\\$2\\f4
. shift
. shift
. \}
. el \{\
. ie "\\$1"<>" \{\
. shift
. as s \\$1\\f5\\$2\\f4\\$3
. shift
. shift
. shift
. \}
. el \{\
. ie "\\$1"><" \{\
. shift
. as s \\f5\\$1\\f4\\$2\f5\\$3\\f4
. shift
. shift
. shift
. \}
. el \{\
. as s \\$1
. shift
. \}
. \}
. \}
. \}
. \}
. \}
. .
.\}
.\" typeset left argument in monospace, then right one
.\" in previous font, with no space between.
.\" .codn x y \f[CR]x\f[]y
.de codn
\f[4]\\$1\f[]\\$2
..
.\" .cod1 a b c -> abc where a is typeset as code
.de cod1
\&\\$1\f[4]\\$2\f[]\$3
..
.\" .cod2 a b -> ab where b is typeset as code
.de cod2
\&\\$1\f[4]\\$2\f[]
..
.\" .cod3 a b c -> abc where a and c are typeset as code
.de cod3
\f[4]\\$1\f[]\\$2\f[4]\\$3\f[]
..
.\" Syntax section markup
.de synb
. TP* Syntax:
. mono
..
.de syne
. onom
..
.\" Used for meta-variables in syntax blocks
.de mets
. nr fsav \\n[.f]
. getm \\$*
. \"workaround for man2html:
. as s \\f\\n[fsav]
\\*s
. ft \\n[fsav]
..
.\" Used for meta-variables in inline blocks
.de meti
. nr fsav \\n[.f]
. getm \\$*
. \"workaround for man2html:
. as s \\f\\n[fsav]
\&\\*s
. ft \\n[fsav]
..
.\" Used for meta-variables in .coIP
.de meIP
. nr fsav \\n[.f]
. getm \\$*
. \"workaround for man2html:
. as s \\f\\n[fsav]
.coIP \\*s
. ft \\n[fsav]
..
.\" Description section
.de desc
. TP* Description:
..
.\" Section counters: heading, section, paragraph.
.nr shco 0 1
.nr ssco 0 1
.nr spco 0 1
.\" wrapper for .SH
.de SH*
. SH \\n+[shco] \\$*
. rs
. nr ssco 0
. nr spco 0
. sp \*[vspc]
. ns
..
.\" wrapper for .SS
.de SS*
. SS \\n[shco].\\n+[ssco] \\$*
. rs
. nr spco 0
. sp \*[vspc]
. ns
..
.\" wrapper for .TP
.de TP*
. ds s \\$1
. shift
. TP \\$*
\&\\*s
. sp \*[vspc]
. ns
..
.\" numbered paragraph
.de NP*
. ie \n(M2 \{\
. M2SS 2 h4 "\\n[shco].\\n[ssco].\\n+[spco] \\$*"
. \}
. el \{\
. TP* "\f[B]\\n[shco].\\n[ssco].\\n+[spco] \\$*\f[]"
. \}
. PP
..
.\" process arguments using .gets so that some material
.\" is typeset as code. Then pass to .SS* section macro.
.de coSS
. gets \\$*
. SS* \\*s
..
.\" like coSS but targeting NP*
.de coNP
. gets \\$*
. NP* \\*s
..
.\" like coSS but use monospace IP
.de ccIP
. gets \\$*
. IP "\\*s"
..
.\" TXR name
.ds TX \f[B]TXR\f[]
.ds TL \f[B]TXR Lisp\f[]
.\" Start of man page:
.TH TXR 1 2020-10-10 "Utility Commands" "TXR Programming Language" "Kaz Kylheku"
.SH* NAME
\*(TX \- Programming Language (Version 244)
.SH* SYNOPSIS
.mono
.meti txr [ < options ] [ < script-file [ < data-files ... ]]
.onom
.SH* DESCRIPTION
\*(TX is a general-purpose, multi-paradigm programming language.
It comprises two languages integrated into a single tool: a text
scanning and extraction language referred to as the \*(TX Pattern Language
(sometimes just "TXR"), and a general-purpose dialect of Lisp called \*(TL.
\*(TX can be used for everything from "one liner" data transformation tasks at
the command line, to data scanning and extracting scripts, to full
application development in a wide-range of areas.
A script written in the \*(TX Pattern Language, also referred to in this
document as a
.IR query ,
specifies a pattern which matches one or more sources of inputs, such
as text files. Patterns can consist of large chunks of multi-line free-form
text, which is matched literally against material in the input sources. Free
variables occurring in the pattern (denoted by the
.code @
symbol) are bound to the pieces of text occurring in the
corresponding positions. Patterns can be arbitrarily complex,
and can be broken down into named pattern functions, which may be mutually
recursive.
In addition to embedded variables which implicitly match text, the
\*(TX pattern language supports a number of directives, for matching text using
regular expressions, for continuing a match in another file, for searching
through a file for the place where an entire sub-query matches, for collecting
lists, and for combining sub-queries using logical conjunction, disjunction and
negation, and numerous others.
Patterns can contain actions which transform data and generate output.
These actions can be embedded anywhere within the pattern matching logic.
A common structure for small \*(TX scripts is to perform a complete matching
session in the at the top of the script, and then deal with processing
and reporting at the bottom.
The \*(TL language can be used from within \*(TX scripts as an
embedded language, or completely stand-alone. It supports functional,
imperative and object-oriented programming, and provides numerous data types
such as symbols, strings, vectors, hash tables with weak reference support,
lazy lists, and arbitrary-precision ("bignum") integers. It has expressive
foreign function interface (FFI) for calling into libraries and other software
components that support C-language-style calls.
\*(TL source files as well as individual functions can be optionally compiled
for execution on a virtual machine that is built into \*(TX. Compiled files
execute and load faster, and resist reverse-engineering. Stand-alone
application delivery is possible.
\*(TX is free software offered under the two-clause BSD license which
places almost no restrictions on redistribution, and allows every conceivable
use, of the whole software or any constituent part, royalty-free, free of
charge, and free of any restrictions.
.SH* ARGUMENTS AND OPTIONS
If \*(TX is given no arguments, it will enter into an interactive
mode. See the INTERACTIVE LISTENER section for a
description of this mode. When \*(TX enters interactive mode this
way, it prints a one-line banner is printed announcing the program
name and version, and one line of help text instructing the user
how to exit.
Options which don't take an argument may be combined together.
The
.code -v
and
.code -q
options are mutually exclusive. Of these two, the one which
occurs in the rightmost position in the argument list dominates.
The
.code -c
and
.code -f
options are also mutually exclusive; if both are specified,
it is a fatal error.
.meIP >> -D var=value
Bind the variable
.meta var
to the value
.meta value
prior to processing the query. The name is in scope over the entire
query, so that all occurrence of the variable are substituted and
match the equivalent text. If the value contains commas, these
are interpreted as separators, which give rise to a list value.
For instance
.code -Da,b,c
creates a list of the strings
.strn "a" ,
.str "b"
and
.strn "c" .
(See Collect Directive bellow). List variables provide a multiple
match. That is to say, if a list variable occurs in a query, a successful
match occurs if any of its values matches the text. If more than one
value matches the text, the first one is taken.
.meIP >> -D var
Binds the variable
.meta var
to an empty string value prior to processing the query.
.coIP -q
Quiet operation during matching. Certain error messages are not reported on the
standard error device (but the if the situations occur, they still fail the
query). This option does not suppress error generation during the parsing
of the query, only during its execution.
.coIP -i
If this option is present, then \*(TX will enter into an interactive
interpretation mode after processing all options, and the input query
if one is present. See the INTERACTIVE LISTENER section for a
description of this mode.
.coIP -d
.coIP --debugger
Invoke the interactive \*(TX debugger. See the DEBUGGER section.
Implies
.codn --backtrace .
.coIP --backtrace
Turns on the establishment of backtrace frames for function calls so that a
backtrace can be produced when an unhandled exception occurs, and in other
situations. Backtraces are helpful in identifying the causes of errors, but
require extra stack space and slow down execution.
.coIP -n
.coIP --noninteractive
This option affects behavior related to \*(TX's
.code *stdin*
stream. It also has a another, unrelated effect, on the
behavior of the interactive listener; see below.
Normally, if this stream is connected to a terminal device, it is
automatically marked as having the real-time property when \*(TX starts up (see
the functions
.code stream-set-prop
and
.codn real-time-stream-p ).
The
.code -n
option suppresses this behavior; the
.code *stdin*
stream remains ordinary.
The \*(TX pattern language reads standard input via
a lazy list, created by applying the
.code lazy-stream-cons
function to the
.code *stdin*
stream. If that stream is marked real-time, then the lazy list which is
returned by that function has behaviors that are better suited for scanning
interactive input. A more detailed explanation is given under the description
of this function.
If the
.code -n
option is effect and \*(TX enters into the interactive listener,
the listener operates in
.IR "plain mode" .
The listener reads buffered lines
from the operating system without any character-based editing features
or history navigation. In plain mode, no prompts appear and no
terminal control escape sequences are generated. The only output is
the results of evaluation, related diagnostic messages, and any output
generated by the evaluated expressions themselves.
.coIP -v
Verbose operation. Detailed logging is enabled.
.coIP -b
This option binds a Lisp global lexical variable (as if by the
.code defparml
function) to an object described by Lisp syntax. It requires an argument
of the form
.meta sym=value
where
.code sym
must be, syntactically, a token denoting a bindable symbol, and
.meta value
is arbitrary \*(TL syntax. The
.meta sym
syntax is converted to the symbol it denotes, which is bound as a global
lexical variable, if it is not already a variable.
The
.meta value
syntax is parsed to the Lisp object it denotes. This object is not subject
to evaluation; the object itself is stored into the variable binding denoted
by
.metn sym .
Note that if
.meta sym
already exists as a global variable, then it is simply overwritten. If
.meta sym
is marked special, then it stays special.
.coIP -B
If the query is successful, print the variable bindings as a sequence
of assignments in shell syntax that can be
.IR eval -ed
by a POSIX shell.
II the query fails, print the word "false". Evaluation of this word
by the shell has the effect of producing an unsuccessful termination
status from the shell's
.I eval
command.
.coIP "-l or --lisp-bindings"
This option implies
.codn -B .
Print the variable bindings in Lisp syntax instead of
shell syntax.
.meIP -a < num
This option implies
.codn -B .
The decimal integer argument
.meta num
specifies the maximum
number of array dimensions to use for list-valued variable bindings.
The default is 1. Additional dimensions are expressed using numeric suffixes
in the generated variable names.
For instance, consider the three-dimensional list arising out of a triply
nested collect:
.mono
((("a" "b") ("c" "d")) (("e" "f") ("g" "h"))).
.onom
Suppose this is bound to a variable V. With
.codn "-a 1" ,
this will be
reported as:
.verb
V_0_0[0]="a"
V_0_1[0]="b"
V_1_0[0]="c"
V_1_1[0]="d"
V_0_0[1]="e"
V_0_1[1]="f"
V_1_0[1]="g"
V_1_1[1]="h"
.brev
With
.codn "-a 2" ,
it comes out as:
.verb
V_0[0][0]="a"
V_1[0][0]="b"
V_0[0][1]="c"
V_1[0][1]="d"
V_0[1][0]="e"
V_1[1][0]="f"
V_0[1][1]="g"
V_1[1][1]="h"
.brev
The leftmost bracketed index is the most major index. That is to say,
the dimension order is:
.codn "NAME_m_m+1_..._n[1][2]...[m-1]" .
.meIP -c < query
Specifies the query in the form of a command line argument. If this option is
used, the
.meta script-file
argument is omitted. The first non-option argument,
if there is one, now specifies the first input source rather than a query.
Unlike queries read from a file, (non-empty) queries specified as arguments
using -c do not have to properly end in a newline. Internally,
\*(TX adds the missing newline before parsing the query. Thus
.code -c
.str @a
is a valid query which matches a line.
Example:
Shell script which uses \*(TX to read two lines
.str 1
and
.str 2
from standard input,
binding them to variables
.code a
and
.codn b .
Standard
input is specified as
.code -
and the data
comes from shell "here document" redirection:
.RS
.IP code:
.mono
\ #!/bin/sh
txr -B -c "@a
@b" - <<!
1
2
!
.onom
.IP output:
.mono
\ a=1
b=2
.onom
.PP
The
.code @;
comment syntax can be used for better formatting:
.verb
txr -B -c "@;
@a
@b"
.brev
.RE
.meIP -f < script-file
Specifies the file from which the query is to be read, instead of the
.meta script-file
argument. This is useful in
.code #!
("hash bang") scripts. (See Hash Bang Support below).
.meIP -e < expression
Evaluates a \*(TL expression for its side effects, without printing
its value. Can be specified more than once. The
.meta script-file
argument becomes optional if
.code -e
is used at least once. If the evaluation of every
.meta expression
evaluated this way terminates normally, and there is no
.meta script-file
argument, then \*(TX terminates with a successful status.
.meIP -p < expression
Just like
.code -e
but prints the value of
.meta expression
using the
.code prinl
function.
.meIP -P < expression
Like
.code -p
but prints using the
.code pprinl
function.
.meIP -t < expression
Like
.code -p
but prints using the
.code tprint
function.
.meIP -C < number
.meIP >> --compat= number
Requests \*(TX to behave in a manner that is compatible with the specified
version of \*(TX. This makes a difference in situations when a release of
\*(TX breaks backward compatibility. If some version N+1 deliberately introduces
a change which is backward incompatible, then
.code "-C N"
can be used to request the old behavior.
The requested value of N can be too low, in which case \*(TX will
complain and exit with an unsuccessful termination status. This indicates
that \*(TX refuses to be compatible with such an old version. Users requiring
the behavior of that version will have to install an older version of \*(TX which
supports that behavior, or even that exact version.
If the option is specified more than once, the behavior is not specified.
Compatibility can also be requested via the
.code TXR_COMPAT
environment variable instead of the
.code -C
option.
For more information, see the COMPATIBILITY section.
.meIP >> --gc-delta= number
The
.meta number
argument to this option must be a decimal integer. It represents
a megabyte value, the "GC delta": one megabyte is 1048576 bytes. The "GC
delta" controls an aspect of the garbage collector behavior.
See the
.code gc-set-delta
function for a description.
.meIP --debug-autoload
This option turns on debugging, like
.code --debugger
but also requests stepping into the auto-load processing of
\*(TL library code. Normally, debugging through the evaluations
triggered by auto-loading is suppressed.
Implies
.codn --backtrace .
.meIP --debug-expansion
This option turns on debugging, like
.code --debugger
but also requests stepping into the parse-time macro-expansion
of \*(TL code embedded in \*(TX queries. Normally, this is suppressed.
Implies
.codn --backtrace .
.coIP --help
Prints usage summary on standard output, and terminates successfully.
.coIP --license
Prints the software license. This depends on the software being
installed such that the LICENSE file is in the data directory.
Use of \*(TX implies agreement with the liability disclaimer in the license.
.coIP --version
Prints program version standard output, and terminates successfully.
.coIP --args
The
.code --args
option provides a way to encode multiple arguments as a single
argument, which is useful on some systems which have limitations in
their implementation of the "hash bang" mechanism. For details about
its special syntax, See Hash Bang Support below. It is also useful in
stand-alone application deployment. See the section
STAND-ALONE APPLICATION SUPPORT, in which example uses of
.code --args
are shown.
.coIP --eargs
The
.code --eargs
option (extended
.codn --args )
is like
.code --args
but must be followed by an argument. The argument is removed from
the argument list and substituted in place of occurrences of
.code {}
among the arguments expanded from the
.code --eargs
syntax.
.coIP --lisp
.coIP --compiled
These options influences the treatment of query files which do not have
a suffix indicating their type. The
.code --lisp
option causes an unsuffixed file to be treated as Lisp source; and
.code --compiled
causes it to be treated as a compile file.
Moreover, if
.code --lisp
is specified, and an unsuffixed file does not exist, then \*(TX
will add the
.str .tl
suffix and try the file again; and
.code --compiled
will similarly add the
.str .tlo
suffix and try opening the file again.
In the same situation, if neither
.code --lisp
nor
.code --compiled
has been specified, \*(TX will first try adding the
.str .txr
suffix. If that fails,
then the
.str .tlo
suffix will be tried and finally
.strn .tl .
Note that
.code --lisp
and
.code --compiled
influence how the argument of the
.code -f
option is treated, but only they precedes that option.
.coIP --reexec
On platforms which support the POSIX
.code exec
family of functions, this option causes \*(TX to re-execute itself.
The re-executed image receives the remaining arguments which follow
the
.code --reexec
argument. Note: this option is useful for supporting setuid operation in
"hash hang" scripts. On some platforms, the interpreter designated by
a "hash bang" script runs without altered privilege, even if that
interpreter is installed setuid. If the interpreter is executed directly,
then setuid applies to it, but not if it is executed via "hash bang".
If the
.code --reexec
option is used in the interpreter command line of such a script, the
interpreter will re-execute itself, thereby gaining the setuid privilege.
The re-executed image will then obtain the script name from the arguments
which are passed to it and determine whether that script will run setuid.
See the section SETUID/SETGID OPERATION.
.coIP --gc-debug
This option enables a behavior which stresses the garbage collector with
frequent garbage collection requests. The purpose is to make it more likely
to reproduce certain kinds of bugs. Use of this option severely degrades
the performance of \*(TX.
.coIP --vg-debug
If \*(TX is enabled with Valgrind support, then this option is available.
It enables code which uses the Valgrind API to integrate with the Valgrind
debugger, for more accurate tracking of garbage collected objects. For
example, objects which have been reclaimed by the garbage collector
are marked as inaccessible, and marked as uninitialized when they are
allocated again.
.coIP --dv-regex
If this option is used, then regular expressions are all treated using the
derivative-based back-end. The NFA-based regex implementation is disabled.
Normally, only regular expressions which require the intersection and
complement operators are handled using the derivative back-end.
This option makes it possible to test that back-end on test cases that it
wouldn't normally receive.
.coIP --
Signifies the end of the option list.
.coIP -
This argument is not interpreted as an option, but treated as a filename
argument. After the first such argument, no more options are recognized. Even
if another argument looks like an option, it is treated as a name.
This special argument
.code -
means "read from standard input" instead of a file.
The
.metn script-file ,
or any of the data files, may be specified using this option.
If two or more files are specified as
.codn - ,
the behavior is system-dependent.
It may be possible to indicate EOF from the interactive terminal, and
then specify more input which is interpreted as the second file, and so forth.
.PP
After the options, the remaining arguments are files. The first file argument
specifies the script file, and is mandatory if the
.code -f
option has not been specified, and \*(TX isn't operating in interactive
mode or evaluating expressions from the command line via
.code -e
or one of the related options. A file argument consisting of a single
.code -
means to read the standard input instead of opening a file.
Specifying standard input as a source with an explicit
.code -
argument is unnecessary. If no data source arguments are present, then
\*(TX scans standard input by default. This was not true in versions of \*(TX
prior to 171; see the COMPATIBILITY section.
.PP
\*(TX begins by reading the script. In the case of the \*(TX pattern language,
the entire query is scanned, internalized and then begins executing, if it is
free of syntax errors. (\*(TL is processed differently, form by form). On the
other hand, the pattern language reads data files in a lazy manner. A file
isn't opened until the query demands material from that file, and then the
contents are read on demand, not all at once.
The suffix of the
.meta script-file
is significant. If the name has no suffix, or if it has a
.str .txr
suffix, then it is assumed to be in the \*(TX pattern language. If it has
the
.str .tl
suffix, then it is assumed to be \*(TL. The
.code --lisp
option changes the treatment of unsuffixed script file names, causing them
to be interpreted as \*(TL .
If an unsuffixed script file name is specified, and cannot be opened, then
\*(TX will add the
.str .txr
suffix and try again. If that fails, it will be tried with the
.str .tl
suffix, and treated as \*(TL .
If the
.code --lisp
option has been specified, then \*(TX tries only the
.str .tl
suffix.
A \*(TL file is processed as if by the
.code load
macro: forms from the file are read and evaluated. If the forms do not terminate
the \*(TX process or throw an exception, and there are no syntax errors, then
\*(TX terminates successfully after evaluating the last form. If syntax errors
are encountered in a form, then \*(TX terminates unsuccessfully.
\*(TL is documented in the section TXR LISP.
If a query file is specified, but no file arguments,
it is up to the query to open a file, pipe or standard input via the
.code @(next)
directive
prior to attempting to make a match. If a query attempts to match text,
but has run out of files to process, the match fails.
.SH* STATUS AND ERROR REPORTING
\*(TX sends errors and verbose logs to the standard error device. The following
paragraphs apply when \*(TX is run without enabling verbose mode with
.codn -v ,
or the printing of variable
bindings with
.code -B
or
.codn -a .
If the command line arguments are incorrect, \*(TX issues an error diagnostic
and terminates with a failed status.
If the
.meta script-file
specifies a query, and the query has a malformed syntax, \*(TX likewise
issues error diagnostics and terminates with a failed status.
If the query fails due to a mismatch, \*(TX terminates
with a failed status. No diagnostics are issued.
If the query is well-formed, and matches, then \*(TX issues
no diagnostics, and terminates with a successful status.
In verbose mode (option
.codn -v ),
\*(TX issues diagnostics on the standard error device even in situations which
are not erroneous.
In bindings-printing mode (options
.code -B
or
.codn -a) ,
\*(TX prints the word
.code false
if the query fails, and exits with a failed
termination status. If the query succeeds, the variable bindings, if any,
are output on standard output.
If the
.meta script-file
is \*(TL, then it is processed form by form. Each top-level Lisp form
is evaluated after it is read. If any form is syntactically malformed,
\*(TX issues diagnostics and terminates unsuccessfully. This is somewhat
different from how the pattern language is treated: a script in the pattern
language is parsed in its entirety before being executed.
.SH* BASIC TXR SYNTAX
.SS* Comments
A query may contain comments which are delimited by the sequence
.code @;
and extend to the end of the line. Whitespace can occur between the
.code @
and
.codn ; .
A comment which begins on a line swallows that entire line, as well as the
newline which terminates it. In essence, the entire comment line disappears.
If the comment follows some material in a line, then it does not consume
the newline. Thus, the following two queries are equivalent:
.IP 1.
.mono
\ @a@; comment: match whole line against variable @a
@; this comment disappears entirely
@b
.onom
.IP 2.
.mono
\ @a
@b
.onom
.PP
The comment after the
.code @a
does not consume the newline, but the
comment which follows does. Without this intuitive behavior,
line comment would give rise to empty lines that must match empty
lines in the data, leading to spurious mismatches.
Instead of the
.code ;
character, the
.code #
character can be used. This is an obsolescent feature.
.SS* Hash Bang Support
\*(TX has several features which support use of the "hash bang" convention
for creating apparently stand-alone executable programs.
.NP* Basic Hash Bang
Special processing is applied to \*(TX query or \*(TL script files that are
specified on the command line via the
.code -f
option or as the first non-option argument. If the first line of such
a file begins with the characters
.codn #! ,
that entire line is consumed and processed specially.
This removal
for \*(TX queries to be turned into standalone executable programs in the POSIX
environment using the "hash bang" mechanism. Unlike most interpreters,
\*(TX applies special processing to the
.code #!
line, which is described below, in the section
.BR "Argument Generation with the Null Hack" .
Shell session example: create a simple executable program called
.str "twoline.txr"
and
run it. This assumes \*(TX is installed in
.codn /usr/bin .
.verb
$ cat > hello.txr
#!/usr/bin/txr
@(bind a "Hey")
@(output)
Hello, world!
@(end)
$ chmod a+x hello.txr
$ ./hello.txr
Hello, world!
.brev
When this plain hash bang line is used, \*(TX receives the name of the script
as an argument. Therefore, it is not possible to pass additional options
to \*(TX. For instance, if the above script is invoked like this
.verb
$ ./hello.txr -B
.brev
the -B option isn't processed by \*(TX, but treated as an additional argument,
just as if
.mono
.meti txr < scriptname -B
.onom
had been executed directly.
This behavior is useful if the script author wants not to expose the
\*(TX options to the user of the script.
However, the hash bang line can use the
.code -f
option:
.verb
#!/usr/bin/txr -f
.brev
Now, the name of the script is passed as an argument to the
.code -f
option, and \*(TX will look for more options after that, so that the resulting
program appears to accept \*(TX options. Now we can run
.verb
$ ./hello.txr -B
Hello, world!
a="Hey"
.brev
The
.code -B
option is honored.
.coNP Argument Generation with @ --args and @ --eargs
On some operating systems, it is not possible to pass more than one
argument through the hash bang mechanism. That is to say, this will
not work.
.verb
#!/usr/bin/txr -B -f
.brev
To support systems like this, \*(TX supports the special argument
.codn --args ,
as well as as an extended version,
.codn --eargs .
With
.codn --args ,
it is possible to encode multiple arguments
into one argument. The
.code --args
option must be followed by a separator
character, chosen by the programmer. The characters after that are
split into multiple arguments on the separator character. The
.code --args
option is then removed from the argument list and replaced with these
arguments, which are processed in its place.
Example:
.verb
#!/usr/bin/txr --args:-B:-f
.brev
The above has the same behavior as
.verb
#!/usr/bin/txr -B -f
.brev
on a system which supports multiple arguments in hash bang.
The separator character is the colon, and so the remainder
of that argument,
.codn -B:-f ,
is split into the two arguments
.codn "-B -f" .
The
.code --eargs
mechanism allows an additional flexibility. An
.code --eargs
argument must be followed by one more argument.
After
.code --eargs
performs the argument splitting in the same manner as
.codn --args ,
any of the arguments which it produces which are the
two-character sequence
.code {}
are replaced with that following argument. Whether
or not the replacement occurs, that following argument
is then removed.
Example:
.verb
#!/usr/bin/txr --eargs:-B:{}:--foo:42
.brev
This has an effect which cannot be replicated in any known
implementation of the hash bang mechanism. Suppose
that this hash bang line is placed in a script called
.codn script.txr .
When this script is invoked with arguments, as in:
.verb
script.txr a b c
.brev
then \*(TX is invoked similarly to:
.verb
/usr/bin/txr --eargs:-B:{}:--foo:42 script.txr a b c
.brev
Then, when
.code --eargs
processing takes place, firstly the argument sequence
.verb
-B {} --foo 42
.brev
is produced by splitting into four fields using the
.code :
character as the separator. Then, within these four fields, all occurrences of
.code {}
are replaced with the following argument
.codn script.txr ,
resulting in:
.verb
-B script.txr --foo 42
.brev
Furthermore, that
.code script.txr
argument is removed from the remaining argument list.
The four arguments are then substituted in place of the original
.code --eargs:-B:{}:--foo:42
syntax.
The resulting \*(TX invocation is, therefore:
.verb
/usr/bin/txr -B script.txr --foo 42 a b c
.brev
Thus,
.code --eargs
allows some arguments to be encoded into the interpreter script, such that
script name is inserted anywhere among them, possibly multiple times. Arguments
for the interpreter can be encoded, as well as arguments to be processed by the
script.
.coNP Argument Generation with the Null Hack
The
.code --args
and
.code --eargs
mechanisms do not solve the following problem: the POSIX
.code env
utility is often exploited for its
.code PATH
searching capability, and used to express hash bang scripts in the following
way:
.verb
#!/usr/bin/env txr
.brev
Here, the
.code env
utility searches for the
.code txr
program in the directories indicated by the
.code PATH
variable, which liberates the script from having encode the exact location
where the program is installed. However, if the operating system allows only
one argument in the hash bang mechanism, then no arguments can be passed
to the program.
To mitigate this problem,
\*(TX
supports a special feature in its hash bang support. If the hash bang
.code #!
line contains a null byte, then text after the null byte, to the end of the
line, is split into fields using the space character as a separator, and these
fields are inserted into the command line. This manipulation happens during
command line processing, prior to the execution of the file, which happens
after command-line processing. If this processing is applied to a file
that is specified using the
.code -f
option, then the arguments which arise from the special processing
are inserted after that option and its argument. If this processing is
applied to the file which is the first non-option argument, then the
options are inserted before that argument. However, care is taken not
to process that argument a second time.
In either situation, processing of the command line options continues, and the
arguments which are processed next are the ones which were just inserted. This
is true even if the options had been inserted as a result of processing the
first non-option argument, which would ordinarily signal the termination of
option processing.
In the following examples, it is assumed that the script is
named, and invoked, as
.codn /home/jenny/foo.txr ,
and is given arguments
.codn "--bar abc" ,
and that
.code txr
resolves to
.codn /usr/bin/txr .
The
.code <NUL>
code indicates a literal ASCII NUL character, or zero bytes.
Basic example:
.verb
#!/usr/bin/env txr<NUL>-a 3
.brev
Here,
.code env
searches for
.codn txr ,
finding it in
.codn /usr/bin .
Thus, including the executable name, \*(TX receives this full argument list:
.verb
/usr/bin/txr /home/jenny/foo.txr --bar abc
.brev
The first non-option argument is the name of the script. \*(TX opens
the script, and notices that it begins with a hash bang line.
It consumes the hash bang line and finds the null byte inside it,
retrieving the character string after it, which is
.strn "-a 3" .
This is split into the two arguments
.code -a
and
.codn 3 ,
which are then inserted into the command line ahead of the
the script name. The effective command line then becomes:
.verb
/usr/bin/txr -a 3 /home/jenny/foo.txr --bar abc
.brev
Command line option processing continues, beginning with the
.code -a
option. After the option is processed,
.code /home/jenny/foo.txr
is encountered again. This time it is not opened a second time;
it signals the end of option processing, exactly as it would immediately
do if it hadn't triggered the insertion of any arguments.
Advanced example: use
.code env
to invoke
.code txr
passing options to interpreter and to the script:
.verb
#!/usr/bin/env txr<NUL>--eargs:-C:175:{}:--debug
.brev
This example shows how
.code --eargs
can be used in conjunction with the null hack. When
.code txr
begins executing, it receives the arguments
.verb
/usr/bin/txr /home/jenny/foo.txr
.brev
The script file is opened, and the arguments delimited by the
null character in the hash bang line are inserted, resulting
in the effective command line:
.verb
/usr/bin/txr --eargs:-C:175:{}:--debug /home/jenny/foo.txr
.brev
Next,
.code --eargs
is processed in the ordinary way, transforming the command line
into:
.verb
/usr/bin/txr -C 175 /home/jenny/foo.txr --debug
.brev
The name of the script file is encountered, and signals the end
of option processing. Thus
.code txr
receives the
.code -C
option, instructing it to emulate some behaviors from version 175,
and the
.code /home/jenny/foo.txr
script receives
.code --debug
as
.B its
argument: it executes with the
.code *args*
list containing one element, the character string
.strn --debug .
The hash bang null hack feature was introduced in \*(TX 177.
Previous versions ignore the hash bang line, performing no special
processing. Where a risk exists that programs which depend on the
feature might be executed by an older version of \*(TX, care must
be taken to detect and handle that situation, either by means of the
.code txr-version
variable, or else by some logic which infers that the processing of the hash
bang line hadn't been performed.
.coNP Passing Options to \*(TX via Hash Bang Null Hack
It is possible to use the Hash Bang Null Hack, such that the resulting
executable program recognizes \*(TX options. This is made possible by
a special behavior in the processing of the
.code -f
option.
For instance, suppose that the effect of the following familiar hash bang line
is required:
.verb
#!/path/to/txr -f
.brev
However, suppose there is also a requirement to use the
.code env
utility to find \*(TX. Furthermore, the operation system allows only one hash
bang argument. Using the Null Hack, this is rewritten as:
.verb
#!/usr/bin/env txr<NUL>-f
.brev
then if the script is invoked with arguments
.codn "-a b c" ,
the command line will ultimately be transformed into:
.verb
/path/to/txr -f /path/to/scriptfile -i a b c
.brev
which allows \*(TX to process the
.code -i
option, leaving
.codn a ,
.code b
and
.code c
as arguments for the script.
However, note that there is a subtle issue with the
.code -f
option that has been inserted via the Null Hack: namely, this
insertion happens after
\*(TX has opened the script file and read the hash bang line from it.
This means that when the inserted
.code -f
option is being processed, the script file is already open.
A special behavior occurs. The
.code -f
option processing notices that the argument to
.code -f
is identical to the path name of name of the script file that \*(TX has
already opened for processing. The
.code -f
option and its argument are then skipped.
.NP* Hash Bang and Setuid
\*(TX supports setuid hash bang scripting, even on platforms that do not
support setuid and setgid attributes on hash bang scripts. On such
platforms, \*(TX has to be installed setuid/setgid. See the section
SETUID/SETGID OPERATION. On some platforms, it may also be necessary to
to use the
.code --reexec
option.
.SS* Whitespace
Outside of directives, whitespace is significant in \*(TX queries, and represents
a pattern match for whitespace in the input. An extent of text consisting of
an undivided mixture of tabs and spaces is a whitespace token.
Whitespace tokens match a precisely identical piece of whitespace in the input,
with one exception: a whitespace token consisting of precisely one space has a
special meaning. It is equivalent to the regular expression
.codn "@/[ ]+/" :
match an extent of one or more spaces (but not tabs!). Multiple consecutive
spaces do not have this meaning.
Thus, the query line
.str "a b"
(one space between
.code a
and
.codn b )
matches
.str "a b"
with any number of spaces between the two letters.
For matching a single space, the syntax
.code "@\e "
can be used (backslash-escaped space).
It is more often necessary to match multiple spaces than to exactly
match one space, so this rule simplifies many queries and adds inconvenience
to only few.
In output clauses, string and character literals and quasiliterals, a space
token denotes a space.
.SS* Text
Query material which is not escaped by the special character
.code @
is literal text, which matches input character for character. Text which occurs at
the beginning of a line matches the beginning of a line. Text which starts in
the middle of a line, other than following a variable, must match exactly at
the current position, where the previous match left off. Moreover, if the text
is the last element in the line, its match is anchored to the end of the line.
An empty query line matches an empty line in the input. Note that an
empty input stream does not contain any lines, and therefore is not matched
by an empty line. An empty line in the input is represented by a newline
character which is either the first character of the file, or follows
a previous newline-terminated line.
Input streams which end without terminating their last line with a newline are
tolerated, and are treated as if they had the terminator.
Text which follows a variable has special semantics, described in the
section Variables below.
A query may not leave a line of input partially matched. If any portion of a
line of input is matched, it must be entirely matched, otherwise a matching
failure results. However, a query may leave unmatched lines. Matching only
four lines of a ten line file is not a matching failure. The
.code eof
directive can be used to explicitly match the end of a file.
In the following example, the query matches the text, even though
the text has an extra line.
.IP code:
.mono
\ Four score and seven
years ago our
.onom
.IP data:
.mono
\ Four score and seven
years ago our
forefathers
.onom
.PP
In the following example, the query
.B fails
to match the text, because the text has extra material on one
line that is not matched:
.IP code:
.mono
\ I can carry nearly eighty gigs
in my head
.onom
.IP data:
.mono
\ I can carry nearly eighty gigs of data
in my head
.onom
.PP
Needless to say, if the text has insufficient material relative
to the query, that is a failure also.
To match arbitrary material from the current position to the end
of a line, the "match any sequence of characters, including empty"
regular expression
.code @/.*/
can be used. Example:
.IP code:
.mono
\ I can carry nearly eighty gigs@/.*/
.onom
.IP data:
.mono
\ I can carry nearly eighty gigs of data
.onom
.PP
In this example, the query matches, since the regular expression
matches the string "of data". (See Regular Expressions section below).
Another way to do this is:
.IP code:
.mono
\ I can carry nearly eighty gigs@(skip)
.onom
.SS* Special Characters in Text
Control characters may be embedded directly in a query (with the exception of
newline characters). An alternative to embedding is to use escape syntax.
The following escapes are supported:
.meIP >> @\e newline
A backslash immediately followed by a newline introduces a physical line
break without breaking up the logical line. Material following this sequence
continues to be interpreted as a continuation of the previous line, so
that indentation can be introduced to show the continuation without appearing
in the data.
.meIP >> @\e space
A backslash followed by a space encodes a space. This is useful in line
continuations when it is necessary for some or all of the leading spaces to be
preserved. For instance the two line sequence
.verb
abcd@\e
@\e efg
.brev
is equivalent to the line
.verb
abcd efg
.brev
The two spaces before the
.code @\e
in the second line are consumed. The spaces after are preserved.
.coIP @\ea
Alert character (ASCII 7, BEL).
.coIP @\eb
Backspace (ASCII 8, BS).
.coIP @\et
Horizontal tab (ASCII 9, HT).
.coIP @\en
Line feed (ASCII 10, LF). Serves as abstract newline on POSIX systems.
.coIP @\ev
Vertical tab (ASCII 11, VT).
.coIP @\ef
Form feed (ASCII 12, FF). This character clears the screen on many
kinds of terminals, or ejects a page of text from a line printer.
.coIP @\er
Carriage return (ASCII 13, CR).
.coIP @\ee
Escape (ASCII 27, ESC)
.meIP @\ex < hex-digits
A
.code @\ex
immediately followed by a sequence of hex digits is interpreted as a hexadecimal
numeric character code. For instance
.code @\ex41
is the ASCII character A. If a semicolon character immediately follows the
hex digits, it is consumed, and characters which follow are not considered
part of the hex escape even if they are hex digits.
.meIP @\e < octal-digits
A
.code @\e
immediately followed by a sequence of octal digits (0 through 7) is interpreted
as an octal character code. For instance
.code @\e010
is character 8, same as
.codn @\eb .
If a semicolon character immediately follows the octal digits, it is consumed,
and subsequent characters are not treated as part of the octal escape,
even if they are octal digits.
.PP
Note that if a newline is embedded into a query line with
.code @\en,
this does not split the line into two; it's embedded into the line and thus
cannot match anything. However,
.code @\en
may be useful in the
.code @(cat)
directive and
in
.codn @(output) .
.SS* Character Handling and International Characters
\*(TX represents text internally using wide characters, which are used to
represent Unicode code points. Script source code, as well as all data sources,
are assumed to be in the UTF-8 encoding. In \*(TX and \*(TL source, extended
characters can be used directly in comments, literal text, string literals,
quasiliterals and regular expressions. Extended characters can also be
expressed indirectly using hexadecimal or octal escapes.
On some platforms, wide characters may be restricted to 16 bits, so that
\*(TX can only work with characters in the BMP (Basic Multilingual Plane)
subset of Unicode.
\*(TX does not use the localization features of the system library;
its handling of extended characters is not affected by environment variables
like
.code LANG
and
.codn L_CTYPE .
The program reads and writes only the UTF-8 encoding.
If
\*(TX encounters an invalid bytes in the UTF-8 input, what happens depends on
the context in which this occurs. In a query, comments are read without regard
for encoding, so invalid encoding bytes in comments are not detected. A comment
is simply a sequence of bytes terminated by a newline. In lexical elements
which represent text, such as string literals, invalid or unexpected encoding
bytes are treated as syntax errors. The scanner issues an error message,
then discards a byte and resumes scanning. Certain sequences pass through the
scanner without triggering an error, namely some UTF-8 overlong sequences.
These are caught when when the lexeme is subject to UTF-8 decoding, and treated
in the same manner as other UTF-8 data, described in the following paragraph.
Invalid bytes in data are treated as follows. When an invalid byte is
encountered in the middle of a multibyte character, or if the input
ends in the middle of a multibyte character, or if a character is extracted
which is encoded as an overlong form, the UTF-8 decoder returns to the starting
byte of the ill-formed multibyte character, and extracts just that byte,
mapping it to the Unicode character range U+DC00 through U+DCFF. The decoding
resumes afresh at the following byte, expecting that byte to be the start
of a UTF-8 code.
Furthermore, because \*(TX internally uses a null-terminated character
representation of strings which easily interoperates with C language
interfaces, when a null character is read from a stream, \*(TX converts it to
the code U+DC00. On output, this code converts back to a null byte,
as explained in the previous paragraph. By means of this representational
trick, \*(TX can handle textual data containing null bytes.
.SS* Regular Expression Directives
In place of a piece of text (see section Text above), a regular expression
directive may be used, which has the following syntax:
.verb
@/RE/
.brev
where the RE part enclosed in slashes represents regular expression
syntax (described in the section Regular Expressions below).
Long regular expressions can be broken into multiple lines using a
backslash-newline sequence. Whitespace before the sequence or after the
sequence is not significant, so the following two are equivalent:
.verb
@/reg \e
ular/
@/regular/
.brev
There may not be whitespace between the backslash and newline.
Whereas literal text simply represents itself, regular expression denotes a
(potentially infinite) set of texts. The regular expression directive
matches the longest piece of text (possibly empty) which belongs to the set
denoted by the regular expression. The match is anchored to the current
position; thus if the directive is the first element of a line, the match is
anchored to the start of a line. If the regular expression directive is the
last element of a line, it is anchored to the end of the line also: the regular
expression must match the text from the current position to the end of the
line.
Even if the regular expression matches the empty string, the match will fail if
the input is empty, or has run out of data. For instance suppose the third line
of the query is the regular expression
.codn @/.*/ ,
but the input is a file which has
only two lines. This will fail: the data has no line for the regular expression to
match. A line containing no characters is not the same thing as the absence of
a line, even though both abstractions imply an absence of characters.
Like text which follows a variable, a regular expression directive which
follows a variable has special semantics, described in the section Variables
below.
.SS* Variables
Much of the query syntax consists of arbitrary text, which matches file data
character for character. Embedded within the query may be variables and
directives which are introduced by a
.code @
character. Two consecutive
.code @@
characters encode a literal
.codn @ .
A variable matching or substitution directive is written in one of several
ways:
.mono
.mets >> @ sident
.mets <> @{ bident }
.mets >> @* sident
.mets <> @*{ bident }
.mets >> @{ bident <> / regex /}
.mets >> @{ bident >> ( fun >> [ arg ... ])}
.mets >> @{ bident << number }
.onom
The forms with an
.code *
indicate a long match, see Longest Match below.
The last three forms with the embedded regexp
.mono
.meti <> / regex /
.onom
or
.meta number
or function
have special semantics; see Positive Match below.
The identifier
.code t
cannot be used as a name; it is a reserved symbol which
denotes the value true. An attempt to use the variable
.code @t
will result in an exception. The symbol
.code nil
can be used where a variable name is required syntactically,
but it has special semantics, described in a section below.
A
.meta sident
is a "simple identifier" form which is not delimited by
braces.
A
.meta sident
consists of any combination of
one or more letters, numbers, and underscores. It may not look like a number,
so that for instance
.code 123
is not a valid
.metn sident ,
but
.code 12A
is valid. Case is
sensitive, so that
.code FOO
is different from
.codn foo ,
which is different from
.codn Foo .
The braces around an identifier can be used when material which follows would
otherwise be interpreted as being part of the identifier. When a name is
enclosed in braces it is a
.metn bident .
The following additional characters may be used as part of
.meta bident
which are not allowed in a
.metn sident :
.verb
! $ % & * + - < = > ? \e ~
.brev
Moreover, most Unicode characters beyond U+007F may appear in a
.metn bident ,
with certain exceptions. A character may not be used if it is any of the
Unicode space characters, a member of the high or low surrogate region,
a member of any Unicode private use area, or is one of the two characters
U+FFFE or U+FFFF.
The rule still holds that a name cannot look like a number so
.code +123
is not a valid
.meta bident
but these are valid:
.codn a->b ,
.codn *xyz* ,
.codn foo-bar .
The syntax
.code @FOO_bar
introduces the name
.codn FOO_bar ,
whereas
.code @{FOO}_bar
means the
variable named
.str FOO
followed by the text
.strn _bar .
There may be whitespace
between the
.code @
and the name, or opening brace. Whitespace is also allowed in the
interior of the braces. It is not significant.
If a variable has no prior binding, then it specifies a match. The
match is determined from some current position in the data: the
character which immediately follows all that has been matched previously.
If a variable occurs at the start of a line, it matches some text
at the start of the line. If it occurs at the end of a line, it matches
everything from the current position to the end of the line.
.SS* Negative Match
If a variable is one of the plain forms
.mono
.mets >> @ sident
.mets <> @{ bident }
.mets >> @* sident
.mets <> @*{ bident }
.onom
then this is a "negative match". The extent of the matched text (the text
bound to the variable) is determined by looking at what follows the variable,
and ranges from the current position to some position where the following
material finds a match. This is why this is called a "negative match": the
spanned text which ends up bound to the variable is that in which the match for
the trailing material did not occur.
A variable may be followed by a piece of text, a regular expression directive,
a function call, a directive, another variable, or nothing (i.e. occurs at the
end of a line). These cases are described in detail below.
.NP* Variable Followed by Nothing
If the variable is followed by nothing, the negative match extends from the
current position in the data, to the end of the line. Example:
.IP code:
.mono
\ a b c @FOO
.onom
.IP data:
.mono
\ a b c defghijk
.onom
.IP result:
.mono
\ FOO="defghijk"
.onom
.NP* Variable Followed by Text
For the purposes of determining the negative match, text is defined as a
sequence of literal text and regular expressions, not divided by a directive.
So for instance in this example:
.verb
@a:@/foo/bcd e@(maybe)f@(end)
.brev
.PP
the variable @a is considered to be followed by
.strn ":@/foo/bcd e" .
If a variable is followed by text, then the extent of the negative match is
determined by searching for the first occurrence of that text within the line,
starting at the current position.
The variable matches everything between the current position and the matching
position (not including the matching position). Any whitespace which follows
the variable (and is not enclosed inside braces that surround the variable
name) is part of the text. For example:
.IP code:
.mono
\ a b @FOO e f
.onom
.IP data:
.mono
\ a b c d e f
.onom
.IP result:
.mono
\ FOO="c d"
.onom
.PP
In the above example, the pattern text
.str "a b "
matches the
data
.strn "a b " .
So when the
.code @FOO
variable is processed, the data being
matched is the remaining
.strn "c d e f" .
The text which follows
.code @FOO
is
.strn " e f" .
This is found within the data
.str "c d e f"
at position 3 (counting from 0). So positions 0-2
.mono
("c d")
.onom
constitute the matching text which is bound to FOO.
.NP* Variable Followed by a Function Call or Directive
If the variable is followed by a function call, or a directive, the extent is
determined by scanning the text for the first position where a match occurs
for the entire remainder of the line. (For a description of functions,
see Functions.)
For example:
.verb
@foo@(bind a "abc")xyz
.brev
Here,
.code foo
will match the text from the current position to where
.str "xyz"
occurs, even though there is a
.code @(bind)
directive. Furthermore, if
more material is added after the xyz, it is part of the search.
Note the difference between the following two:
.verb
@foo@/abc/@(func)
@foo@(func)@/abc/
.brev
In the first example, the variable foo matches the text from the current
position until the match for the regular expression abc.
.code @(func)
is not
considered when processing
.codn @foo .
In the second example, the variable foo
matches the text from the current position until the position which matches
the function call, followed by a match for the regular expression.
The entire sequence
.code @(func)@/abc/
is considered.
.NP* Consecutive Variables
If an unbound variable specifies a fixed-width match or a regular expression,
then the issue of consecutive variables does not arise. Such a variable
consumes text regardless of any context which follows it.
However, what if an unbound variable with no modifier is followed by another
variable? The behavior depends on the nature of the other variable.
If the other variable is also unbound, and also has no modifier, this is a
semantic error which will cause the query to fail. A diagnostic message will
be issued, unless operating in quiet mode via
.codn -q .
The reason is that there is no way to bind two
consecutive variables to an extent of text; this is an ambiguous situation,
since there is no matching criterion for dividing the text between two
variables. (In theory, a repetition of the same variable, like
.codn @FOO@FOO ,
could find a solution by dividing the match extent in half, which would work
only in the case when it contains an even number of characters. This behavior
seems to have dubious value).
An unbound variable may be followed by one which is bound. The bound
variable is effectively replaced by the text which it denotes, and the logic
proceeds accordingly.
It is possible for a variable to be bound to a regular expression.
If
.code x
is an unbound variable and
.code y
is bound to a regular expression
.codn RE ,
then
.code @x@y
means
.codn @x@/RE/ .
A variable
.code v
can be bound to a regular expression using, for example,
.codn "@(bind v #/RE/)" .
The
.code @*
syntax for longest match is available. Example:
.IP code:
.mono
\ @FOO:@BAR@FOO
.onom
.IP data:
.mono
\ xyz:defxyz
.onom
.IP result:
.mono
\ FOO=xyz, BAR=def
.onom
.PP
Here,
.code FOO
is matched with
.strn "xyz" ,
based on the delimiting around the
colon. The colon in the pattern then matches the colon in the data,
so that
.code BAR
is considered for matching against
.strn "defxyz" .
.code BAR
is followed by
.codn FOO ,
which is already bound to
.strn "xyz" .
Thus
.str "xyz"
is located in the
.str "defxyz"
data following
.strn "def" ,
and so BAR is bound to
.strn "def" .
If an unbound variable is followed by a variable which is bound to a list, or
nested list, then each character string in the list is tried in turn to produce
a match. The first match is taken.
An unbound variable may be followed by another unbound variable which specifies
a regular expression or function call match. This is a special case called a
"double variable match". What happens is that the text is searched using the
regular expression or function. If the search fails, than neither variable is
bound: it is a matching failure. If the search succeeds, than the first
variable is bound to the text which is skipped by the search. The second
variable is bound to the text matched by the regular expression or function.
Examples:
.IP code:
.mono
\ @foo@{bar /abc/}
.onom
.IP data:
.mono
\ xyz@#abc
.onom
.IP result:
.mono
\ foo="xyz@#", BAR="abc"
.onom
.PP
.NP* Consecutive Variables Via Directive
Two variables can be
.I de facto
consecutive in a manner shown in the
following example:
.verb
@var1@(all)@var2@(end)
.brev
This is treated just like the variable followed by directive. No semantic
error is identified, even if both variables are unbound. Here,
.code @var2
matches everything at the current position, and so
.code @var1
ends up bound to the empty string.
Example 1:
.code b
matches at position 0 and
.code a
binds the empty string:
.IP code:
.mono
\ @a@(all)@b@(end)
.onom
.IP data:
.mono
\ abc
.onom
.IP result:
.mono
\ a=""
b="abc"
.onom
.PP
Example 2:
.code *a
specifies longest match (see Longest Match below), and so it takes
everything:
.IP code:
.mono
\ @*a@(all)@b@(end)
.onom
.IP data:
.mono
\ abc
.onom
.IP result:
.mono
\ a="abc"
b=""
.onom
.PP
.NP* Longest Match
The closest-match behavior for the negative match can be overridden to longest
match behavior. A special syntax is provided for this: an asterisk between the
.code @
and the variable, e.g:
.IP code:
.mono
\ a @*{FOO}cd
.onom
.IP data:
.mono
\ a b cdcdcdcd
.onom
.IP result:
.mono
\ FOO="b cdcdcd"
.onom
.PP
.IP code:
.mono
\ a @{FOO}cd
.onom
.IP data:
.mono
\ a b cdcdcd
.onom
.IP result:
.mono
\ FOO="b "
b=""
.onom
.PP
In the former example, the match extends to the rightmost occurrence of
.strn "cd" ,
and so
.code FOO
receives
.strn "b cdcdcd" .
In the latter example, the
.code *
syntax isn't used, and so a leftmost match takes place. The extent
covers only the
.strn "b " ,
stopping at the first
.str "cd"
occurrence.
.SS* Positive Match
There are syntactic variants of variable syntax which have an embedded expression
enclosed with the variable in braces:
.mono
.mets >> @{ bident <> / regex /}
.mets >> @{ bident >> ( fun >> [args ...])}
.mets >> @{ bident << number }
.mets >> @{ bident << bident }
.onom
These specify a variable binding that is driven by a positive match derived
from a regular expression, function or character count, rather than from
trailing material (which is regarded as a "negative" match, since the
variable is bound to material which is
.B skipped
in order to match the trailing material). In the
.mono
.meti <> / regex /
.onom
form, the match
extends over all characters from the current position which match
the regular expression
.metn regex .
(see Regular Expressions section below).
In the
.mono
.meti >> ( fun >> [ args ...])
.onom
form, the match extends over characters which
are matched by the call to the function, if the call
succeeds. Thus
.code "@{x (y z w)}"
is just like
.codn "@(y z w)" ,
except that the region of
text skipped over by
.code "@(y z w)"
is also bound to the variable
.codn x .
See Functions below.
In the
.meta number
form, the match processes a field of text which
consists of the specified number of characters, which must be non-negative
number. If the data line doesn't have that many characters starting at the
current position, the match fails. A match for zero characters produces an
empty string. The text which is actually bound to the variable
is all text within the specified field, but excluding leading and
trailing whitespace. If the field contains only spaces, then an empty
string is extracted.
This syntax is processed without consideration of what other
syntax follows. A positive match may be directly followed by an unbound
variable.
The
.mono
.mets >> @{ bident << bident }
.onom
syntax allows the
.meta number
or
.meta regex
modifier to come from a variable. The variable must be bound and contain
a non-negative integer or regular expression.
For example,
.code "@{x y}"
behaves like
.code "@{x 3}"
if
.code y
is bound to the integer 3. It is an error if
.code y
is unbound.
.coSS Special Symbols @ nil and @ t
Just like in the Common Lisp language, the names
.code nil
and
.code t
are special.
.code nil
symbol stands for the empty
list object, an object which marks the end of a list, and Boolean false. It is
synonymous with the syntax
.code ()
which may be used interchangeably with
.code nil
in most constructs.
In \*(TL,
.code nil
and
.code t
cannot be used as variables. When evaluated, they evaluate to themselves.
In the \*(TX pattern language,
.code nil
can be used in the variable binding syntax, but does not create a binding;
it has a special meaning. It allows the variable matching syntax to be used to
skip material, in ways similar to the
.code skip
directive.
The
.code nil
symbol is also used as a
.code block
name, both in the \*(TX pattern language and in \*(TL.
A block named
.code nil
is considered to be anonymous.
.SS* Keyword Symbols
Names whose names begin with the
.code :
character are keyword symbols. These also
may not be used as variables either and stand for themselves. Keywords are
useful for labeling information and situations.
.SS* Regular Expressions
Regular expressions are a language for specifying sets of character strings.
Through the use of pattern matching elements, regular expression is
able to denote an infinite set of texts.
\*(TX contains an original implementation of regular expressions, which
supports the following syntax:
.coIP .
The period is a "wildcard" that matches any character.
.coIP []
Character class: matches a single character, from the set specified by
special syntax written between the square brackets.
This supports basic regexp character class syntax. POSIX
notation like
.code [:digit:]
is not supported.
The regex tokens
.codn \es ,
.code \ed
and
.code \ew
are permitted in character classes, but not their complementing counterparts.
These tokens simply contribute their characters to the class.
The class
.code [a-zA-Z]
means match an uppercase
or lowercase letter; the class
.code [0-9a-f]
means match a digit or
a lowercase letter; the class
.code [^0-9]
means match a non-digit, and so forth.
There are no locale-specific behaviors in \*(TX regular expressions;
.code [A-Z]
denotes an ASCII/Unicode range of characters.
The class
.code [\ed.]
means match a digit or the period character.
A
.code ]
or
.code -
can be used within a character class, but must be escaped
with a backslash. A
.code ^
in the first position denotes a complemented
class, unless it is escaped by backslash. In any other position, it denotes
itself. Two backslashes code for one backslash. So for instance
.code [\e[\e-]
means match a
.code [
or
.code -
character,
.code [^^]
means match any character other
than
.codn ^ ,
and
.code [\e^\e\e]
means match either a
.code ^
or a backslash. Regex operators
such as
.codn * ,
.code +
and
.code &
appearing in a character class represent ordinary
characters. The characters
.codn - ,
.code ]
and
.code ^
occurring outside of a character class
are ordinary. Unescaped
.code /
characters can appear within a character class. The
empty character class
.code []
matches no character at all, and its complement
.code [^]
matches any character, and is treated as a synonym for the
.code .
(period) wildcard operator.
.ccIP @, \es @ \ew and @ \ed
These regex tokens each match a single character.
The
.code \es
regex token matches a wide variety of ASCII whitespace characters
and Unicode spaces. The
.code \ew
token matches alphabetic word characters; it
is equivalent to the character class
.codn [A-Za-z_] .
The
.code \ed
token matches a digit, and is equivalent to
.codn [0-9] .
.ccIP @, \eS @ \eW and @ \eD
These regex tokens are the complemented counterparts of
.codn \es ,
.code \ew
and
.codn \ed .
The
.code \eS
token matches all those characters which
.code \es
does not match,
.code \eW
matches all characters that
.code \ew
does not match and
.code \eD
matches nondigits.
.coIP empty
An empty expression is a regular expression. It represents the set of strings
consisting of the empty string; i.e. it matches just the empty string. The
empty regex can appear alone as a full regular expression (for instance the
\*(TX syntax
.code @//
with nothing between the slashes)
and can also be passed as a subexpression to operators, though this
may require the use of parentheses to make the empty regex explicit. For
example, the expression
.code a|
means: match either
.codn a ,
or nothing. The forms
.code *
and
.code (*)
are syntax errors; though not useful, the correct way to match the
empty expression zero or more times is the syntax
.codn ()* .
.coIP nomatch
The nomatch regular expression represents the
empty set: it matches no strings at all, not even the empty string.
There is no dedicated syntax to directly express nomatch in the regex language.
However, the empty character class
.code []
is equivalent to nomatch, and may be
considered to be a notation for it. Other representations of nomatch are
possible: for instance, the regex
.code ~.*
which is the complement of the regex that
denotes the set of all possible strings, and thus denotes the empty set. A
nomatch has uses; for instance, it can be used to temporarily "comment out"
regular expressions. The regex
.code ([]abc|xyz)
is equivalent to
.codn (xyz) ,
since the
.code []abc
branch cannot match anything. Using
.code []
to "block" a subexpression allows
you to leave it in place, then enable it later by removing the "block".
.coIP (R)
If
.code R
is a regular expression, then so is
.code (R).
The contents of parentheses denote one regular expression unit, so that for
instance in
.codn (RE)* ,
the
.code *
operator applies to the entire parenthesized group.
The syntax
.code ()
is valid and equivalent to the empty regular expression.
.coIP R?
Optionally match the preceding regular expression
.codn R .
.coIP R*
Match the expression
.code R
zero or more times. This
operator is sometimes called the "Kleene star", or "Kleene closure".
The Kleene closure favors the longest match. Roughly speaking, if there are two
or more ways in which
.code R1*R2
can match, than that match occurs in which
.code R1*
matches the longest possible text.
.coIP R+
Match the preceding expression
.code R
one or more times. Like
.codn R* ,
this favors the longest possible match:
.code R+
is equivalent to
.codn RR* .
.coIP R1%R2
Match
.code R1
zero or more times, then match
.codn R2 .
If this match can occur in
more than one way, then it occurs such that
.code R1
is matched the fewest
number of times, which is opposite from the behavior of
.codn R1*R2 .
Repetitions of
.code R1
terminate at the earliest
point in the text where a non-empty match for
.code R2
occurs. Because
it favors shorter matches,
.code %
is termed a non-greedy operator. If
.code R2
is the empty expression, or equivalent to it, then
.code R1%R2
reduces to
. codn R1* .
So for
instance
.code (R%)
is equivalent to
.codn (R*) ,
since the missing right operand is
interpreted as the empty regex. Note that whereas the expression
.code (R1*R2)
is equivalent to
.codn (R1*)R2 ,
the expression
.code (R1%R2)
is
.B not
equivalent to
.codn (R1%)R2 .
Also note that
.code A(XY%Z)B
is equivalent to
.codn AX(Y%Z)B .
This is because the precedence of
.code %
is higher than that of catenation on its left side; this rule prevents the given
syntax from expressing the
.code XY
catenation. The expression may be understood as:
.code A(X(Y%Z))B
where the inner parentheses clarify how the syntax surrounding the
.code %
operator is being parsed, and the outer parentheses are superfluous.
The correct way to assert catenation of
.code XY
as the left operand of
.code %
is
.codn A(XY)%ZB .
To specify
.code XY
as the left operand, and limit the right operand to just
.codn Z ,
the correct syntax is
.codn A((XY)%Z)B .
By contrast, the expression
.code A(X%YZ)B
is not equivalent to
.code A(X%Y)ZB
because the precedence of
.code %
is lower than that of catenation on its right side. The operator is
effectively "bi-precedential".
.coIP ~R
Match the opposite of the following expression
.codn R ;
that is, match exactly
those texts that
.code R
does not match. This operator is called complement,
or logical not.
.coIP R1R2
Two consecutive regular expressions denote catenation:
the left expression must match, and then the right.
.coIP R1|R2
match either the expression
.code R1
or
.codn R2 .
This operator is known by
a number of names: union, logical or, disjunction, branch, or alternative.
.coIP R1&R2
Match both the expression
.code R1
and
.code R2
simultaneously; i.e. the
matching text must be one of the texts which are in the intersection of the set
of texts matched by
.code R1
and the set matched by
.codn R2 .
This operator is called intersection, logical and, or conjunction.
.PP
Any character which is not a regular expression operator, a backslash escape,
or the slash delimiter, denotes one-position match of that character itself.
Any of the special characters, including the delimiting
.codn / ,
and the backslash, can be escaped with a backslash to suppress its
meaning and denote the character itself.
Furthermore, all of the same escapes as are described in the section Special
Characters in Text above are supported - the difference is that in regular
expressions, the
.code @
character is not required, so for example a tab is coded as
.code \et
rather than
.codn @\et .
Octal and hex character escapes can be optionally
terminated by a semicolon, which is useful if the following characters are
octal or hex digits not intended to be part of the escape.
Only the above escapes are supported. Unlike in some other regular expression
implementations, if a backlash appears before a character which isn't a regex
special character or one of the supported escape sequences, it is an error.
This wasn't true of historic versions of \*(TX. See the COMPATIBILITY section.
.IP "Precedence table, highest to lowest:"
.TS
tab(!);
l l l.
Operators!Class!Associativity
\f[4](R) []\f[]!primary!
\f[4]R? R+ R* R%...\f[]!postfix!left-to-right
\f[4]R1R2\f[]!catenation!left-to-right
\f[4]~R ...%R\f[]\f[]\f[]!unary!right-to-left
\f[4]R1&R2\f[]!intersection!left-to-right
\f[4]R1|R2\f[]!union!left-to-right
.TE
.PP
The
.code %
operator is like a postfix operator with respect to its left
operand, but like a unary operator with respect to its right operand.
Thus
.code a~b%c~d
is
.mono
a(~(b%(c(~d))))
.onom
, demonstrating right-to-left associativity,
where all of
.code b%
may be regarded as a unary operator being applied to
.codn c~d .
Similarly,
.code a?*+%b
means
.codn (((a?)*)+)%b ,
where the trailing
.code %b
behaves like a postfix operator.
In
\*(TX, regular expression matches do not span multiple lines. The regex
language has no feature for multi-line matching. However, the
.code @(freeform)
directive
allows the remaining portion of the input to be treated as one string
in which line terminators appear as explicit characters. Regular expressions
may freely match through this sequence.
It's possible for a regular expression to match an empty string.
For instance, if the next input character is
.codn z ,
facing a
the regular expression
.codn /a?/ ,
there is a zero-character match:
the regular expression's state machine can reach an acceptance
state without consuming any characters. Examples:
.IP code:
.mono
\ @A@/a?/@/.*/
.onom
.IP data:
.mono
\ zzzzz
.onom
.IP result:
.mono
\ A=""
.onom
.PP
.IP code:
.mono
\ @{A /a?/}@B
.onom
.IP data:
.mono
\ zzzzz
.onom
.IP result:
.mono
\ A="", B="zzzz"
.onom
.PP
.IP code:
.mono
\ @*A@/a?/
.onom
.IP data:
.mono
\ zzzzz
.onom
.IP result:
.mono
\ A="zzzzz"
.onom
.PP
In the first example, variable
.code @A
is followed by a regular expression
which can match an empty string. The expression faces the letter
.code "z"
at position 0 in the data line. A zero-character match occurs there,
therefore the variable
.code A
takes on the empty string. The
.code @/.*/
regular expression then consumes the line.
Similarly, in the second example, the
.code /a?/
regular expression faces a
.codn "z" ,
and thus yields an empty string which is bound to
.codn A .
Variable
.code @B
consumes the entire line.
The third example requests the longest match for the variable binding.
Thus, a search takes place for the rightmost position where the
regular expression matches. The regular expression matches anywhere,
including the empty string after the last character, which is
the rightmost place. Thus variable
.code A
fetches the entire line.
For additional information about the advanced regular expression
operators, NOTES ON EXOTIC REGULAR EXPRESSIONS below.
.SS* Compound Expressions
If the
.code @
escape character is followed by an open parenthesis or square bracket,
this is taken to be the start of a \*(TL compound expression.
The \*(TX language has the unusual property that its syntactic elements,
so-called
.IR directives ,
are Lisp compound expressions. These expressions not only enclose syntax, but
expressions which begin with certain symbols
.I de facto
behave as tokens in a phrase structure grammar. For instance, the expression
.code @(collect)
begins a block which must be terminated by the expression
.codn @(end) ,
otherwise there is a syntax error. The
.code collect
expression can contain arguments which modify the behavior of the construct,
for instance
.codn "@(collect :gap 0 :vars (a b))" .
In some ways, this situation might be compared to the HTML language, in which
an element such as
.code <a>
must be terminated by
.code </a>
and can have attributes such as
.codn "<a href=\(dq...\(dq>" .
Compound contain subexpressions: other compound expressions, or literal objects
of various kinds. Among these are: symbols, numbers, string literals, character
literals, quasiliterals and regular expressions. These are described in the
following sections. Additional kinds of literal objects exist, which are
discussed in the TXR LISP section of the manual.
Some examples of compound expressions are:
.verb
(banana)
(a b c (d e f))
( a (b (c d) (e ) ))
("apple" #\eb #\espace 3)
(a #/[a-z]*/ b)
(_ `@file.txt`)
.brev
Symbols occurring in a compound expression follow a slight more permissive
lexical syntax than the
.meta bident
in the syntax
.mono
.meti <> @{ bident }
.onom
introduced earlier. The
.code /
(slash) character may be part of an identifier, or even
constitute an entire identifier. In fact a symbol inside a
directive is a
.metn lident .
This is described in the Symbol Tokens section under TXR LISP.
A symbol must not be a number; tokens that look like numbers are treated as
numbers and not symbols.
.SS* Character Literals
Character literals are introduced by the
.code #\e
syntax, which is either
followed by a character name, the letter
.code x
followed by hex digits,
the letter
.code o
followed by octal digits, or a single character. Valid character
names are:
.verb
nul linefeed return
alarm newline esc
backspace vtab space
tab page pnul
.brev
For instance
.code #\eesc
denotes the escape character.
This convention for character literals is similar to that
of the Scheme language. Note that
.code #\elinefeed
and
.code #\enewline
are the same
character. The
.code #\epnul
character is specific to \*(TX and denotes the
.code U+DC00
code in Unicode; the name stands for "pseudo-null", which is related to
its special function. For more information about this, see the section
"Character Handling and International Characters".
.SS* String Literals
String literals are delimited by double quotes.
A double quote within a string literal is encoded using
.mono
\e"
.onom
and a backslash is encoded as
.codn \e\e .
Backslash escapes like
.code \en
and
.code \et
are recognized, as are hexadecimal escapes like
.code \exFF
or
.code \exxabc
and octal
escapes like
.codn \e123 .
Ambiguity between an escape and subsequent
text can be resolved by using trailing semicolon delimiter:
.str "\exabc;d"
is a string consisting of the character
.code "U+0ABC"
followed by
.strn "d" .
The semicolon
delimiter disappears. To write a literal semicolon immediately after a hex
or octal escape, write two semicolons, the first of which will be interpreted
as a delimiter. Thus,
.str "\ex21;;"
represents
.strn "!;" .
If the line ends in the middle of a literal, it is an error, unless the
last character is a backslash. This backslash is a special escape which does
not denote a character; rather, it indicates that the string literal continues
on the next line. The backslash is deleted, along with whitespace which
immediately precedes it, as well as leading whitespace in the following line.
The escape sequence
.str "\e "
(backslash space) can be used to encode a significant space.
Example:
.verb
"foo \e
bar"
"foo \e
\e bar"
"foo\e \e
bar"
.brev
The first string literal is the string
.strn "foobar" .
The second two are
.strn "foo bar" .
.SS* Word List Literals
A word list literal (WLL) provides a convenient way to write a list of strings
when such a list can be given as whitespace-delimited words.
There are two flavors of the WLL: the regular WLL which begins with
.mono
#"
.onom
(hash, double-quote) and the splicing list literal which begins with
.mono
#*"
.onom
(hash, star, double-quote).
Both types are terminated by a double quote, which may be escaped
as
.mono
\e"
.onom
in order to include it as a character. All the escaping conventions
used in string literals can be used in word literals.
Unlike in string literals, whitespace (tabs and spaces) is not
significant in word literals: it separates words. Whitespace may be
escaped with a backslash in order to include it as a literal character.
Just like in string literals, an unescaped newline character is not allowed.
A newline preceded by a backslash is permitted. Such an escaped backslash,
together with any leading and trailing unescaped whitespace, is removed
and replaced with a single space.
Example:
.verb
#"abc def ghi" --> notates ("abc" "def" "ghi")
#"abc def \e
ghi" --> notates ("abc" "def" "ghi")
#"abc\e def ghi" --> notates ("abc def" "ghi")
#"abc\e def\e \e
\e ghi" --> notates ("abc def " " ghi")
.brev
A splicing word literal differs from a word literal in that it does not
produce a list of string literals, but rather it produces a sequence of string
literals that is merged into the surrounding syntax. Thus, the following two
notations are equivalent:
.verb
(1 2 3 #*"abc def" 4 5 #"abc def")
(1 2 3 "abc" "def" 4 5 ("abc" "def"))
.brev
The regular WLL produced a single list object, but the splicing
WLL expanded into multiple string literal objects.
.SS* String Quasiliterals
Quasiliterals are similar to string literals, except that they may
contain variable references denoted by the usual
.code @
syntax. The quasiliteral
represents a string formed by substituting the values of those variables
into the literal template. If
.code a
is bound to
.str "apple"
and
.code b
to
.strn "banana" ,
the quasiliteral
.code "`one @a and two @{b}s`"
represents the string
.strn "one apple and two bananas" .
A backquote escaped by a backslash represents
itself. Unlike in directive syntax, two consecutive
.code @
characters do not code for a literal
.codn @ ,
but cause a syntax error. The reason for this is that compounding of the
.code @
syntax is meaningful.
Instead, there is a
.code \e@
escape for encoding a literal
.code @
character. Quasiliterals support the full output variable
syntax. Expressions within variable substitutions follow the evaluation rules
of \*(TL. This hasn't always been the case: see the COMPATIBILITY section.
Quasiliterals can be split into multiple lines in the same way as ordinary
string literals.
.SS* Quasiword List Literals
The quasiword list literals (QLL-s) are to quasiliterals what WLL-s are to
ordinary literals. (See the above section Word List Literals.)
A QLL combines the convenience of the WLL
with the power of quasistrings.
Just as in the case of WLL-s, there are two flavors of the
QLL: the regular QLL which begins with
.code #`
\ (hash, backquote) and the splicing QLL which begins with
.code #*`
\ (hash, star, backquote).
Both types are terminated by a backquote, which may be escaped
as
.code \e`
\ in order to include it as a character. All the escaping conventions
used in quasiliterals can be used in QLL.
Unlike in quasiliterals, whitespace (tabs and spaces) is not
significant in QLL: it separates words. Whitespace may be
escaped with a backslash in order to include it as a literal character.
A newline is not permitted unless escaped. An escaped newline works exactly the
same way as it does in word list literals (WLL-s).
Note that the delimiting into words is done before the variable
substitution. If the variable a contains spaces, then
.code #`@a`
nevertheless
expands into a list of one item: the string derived from
.codn a .
Examples:
.verb
#`abc @a ghi` --> notates (`abc` `@a` `ghi`)
#`abc @d@e@f \e
ghi` --> notates (`abc` `@d@e@f` `ghi`)
#`@a\e @b @c` --> notates (`@a @b` `@c`)
.brev
A splicing QLL differs from an ordinary QLL in that it does not produce a list
of quasiliterals, but rather it produces a sequence of quasiliterals that is
merged into the surrounding syntax.
.SS* Numbers
\*(TX supports integers and floating-point numbers.
An integer constant is made up of digits
.code 0
through
.codn 9 ,
optionally preceded by a
.code +
or
.code -
sign.
Examples:
.verb
123
-34
+0
-0
+234483527304983792384729384723234
.brev
An integer constant can also be specified in hexadecimal using the prefix
.code #x
followed by an optional sign, followed by hexadecimal digits:
.code 0
through
.code 9
and the upper or lower case letters
.code A
through
.codn F :
.verb
#xFF ;; 255
#x-ABC ;; -2748
.brev
Similarly, octal numbers are supported with the prefix
.code #o
followed by octal digits:
.verb
#o777 ;; 511
.brev
and binary numbers can be written with a
.code #b
prefix:
.verb
#b1110 ;; 14
.brev
Note that the
.code #b
prefix is also used for buffer literals.
A floating-point constant is marked by the inclusion of a decimal point, the
exponential "e notation", or both. It is an optional sign, followed
by a mantissa consisting of digits, a decimal point, more digits, and then an
optional exponential notation consisting of the letter
.code "e"
or
.codn "E" ,
an optional
.code +
or
.code -
sign, and then digits indicating the exponent value.
In the mantissa, the digits are not optional. At least one digit must either
precede the decimal point or follow. That is to say, a decimal point by itself
is not a floating-point constant.
Examples:
.verb
.123
123.
1E-3
20E40
.9E1
9.E19
-.5
+3E+3
1.E5
.brev
Examples which are not floating-point constant tokens:
.verb
. ;; dot token, not a number
123E ;; the symbol 123E
1.0E- ;; syntax error: invalid floating point constant
1.0E ;; syntax error: invalid floating point constant
1.E ;; syntax error: invalid floating point literal
.e ;; syntax error: dot token followed by symbol
.brev
In \*(TX there is a special "dotdot" token consisting of two consecutive periods.
An integer constant followed immediately by dotdot is recognized as such; it is
not treated as a floating constant followed by a dot. That is to say,
.code 123..
does not mean
.code "123. ."
(floating point
.code 123.0
value followed by dot token). It means
.code "123 .."
(integer
.code 123
followed by
.code ..
token).
Dialect note: unlike in Common Lisp,
.code 123.
is not an integer, but the floating-point number
.codn 123.0 .
.SS* Comments
Comments of the form
.code @;
were introduced earlier. Inside compound expressions, another convention for
comments exists: Lisp comments, which are introduced by the
.code ;
(semicolon) character and span to the end of the line.
Example:
.verb
@(foo ; this is a comment
bar ; this is another comment
)
.brev
This is equivalent to
.codn "@(foo bar)" .
.SH* DIRECTIVES
.SS* Overview
When a \*(TL compound expressions occurs in \*(TX preceded by a
.codn @ ,
it is a
.IR directive .
Directives which are based on certain symbols are, additionally,
involved in a phrase-structure syntax which uses Lisp expressions
as if they were tokens.
For instance, the directive
.verb
@(collect)
.brev
not only denotes a compound expression with the
.code collect
symbol in its head position, but it also introduces a syntactic phrase which
requires a matching
.code @(end)
directive. In other words,
.code @(collect)
is not only
an expression, but serves as a kind of token in a higher level phrase structure
grammar.
Effectively,
.code collect
is a reserved symbol in the \*(TX language. A \*(TX program cannot use
this symbol as the name of a pattern function, due to its role in the syntax.
The symbol has no reserved role in \*(TL.
Usually if this type of directive occurs alone in a line, not
preceded or followed by other material, it is involved in a "vertical" (or line
oriented) syntax.
If such a directive is embedded in a line (has preceding or trailing material)
then it is in a horizontal syntactic and semantic context (character-oriented).
There is an exception: the definition of a horizontal function looks like this:
.verb
@(define name (arg))body material@(end)
.brev
Yet, this is considered one vertical item, which means that it does not match
a line of data. (This is necessary because all horizontal syntax matches
something within a line of data, which is undesirable for definitions.)
Many directives exhibit both horizontal and vertical syntax, with different but
closely related semantics. A few are vertical only, and some are
horizontal only.
A summary of the available directives follows:
.coIP @(eof)
Explicitly match the end of file. Fails if unmatched data remains in
the input stream.
.coIP @(eol)
Explicitly match the end of line. Fails if the current position is not the
end of a line. Also fails if no data remains (there is no current line).
.coIP @(next)
Continue matching in another file or other data source.
.coIP @(block)
Groups together a sequence of directives into a logical name block,
which can be explicitly terminated from within using
the
.code @(accept)
and
.code @(fail)
directives.
Blocks are described in the section Blocks below.
.coIP @(skip)
Treat the remaining query as a subquery unit, and search the lines (or
characters) of the input file until that subquery matches somewhere. A skip is
also an anonymous block.
.coIP @(trailer)
Treat the remaining query or subquery as a match for a trailing context. That
is to say, if the remainder matches, the data position is not advanced.
.coIP @(freeform)
Treat the remainder of the input as one big string, and apply the following
query line to that string. The newline characters (or custom separators) appear
explicitly in that string.
.coIP @(fuzz)
The
.code fuzz
directive, inspired by the patch utility, specifies a partial
match for some lines.
.ccIP @ @(line) and @ @(chr)
These directives match a variable or expression against the current line
number or character position.
.coIP @(name)
Match a variable against the name of the current data source.
.coIP @(data)
Match a variable against the remaining data (lazy list of strings).
.coIP @(some)
Multiple clauses are each applied to the same input. Succeeds if at least one
of the clauses matches the input. The bindings established by earlier
successful clauses are visible to the later clauses.
.coIP @(all)
Multiple clauses are applied to the same input. Succeeds if and only if each
one of the clauses matches. The clauses are applied in sequence, and evaluation
stops on the first failure. The bindings established by earlier successful
clauses are visible to the later clauses.
.coIP @(none)
Multiple clauses are applied to the same input. Succeeds if and only if none of
them match. The clauses are applied in sequence, and evaluation stops on the
first success. No bindings are ever produced by this construct.
.coIP @(maybe)
Multiple clauses are applied to the same input. No failure occurs if none of
them match. The bindings established by earlier successful clauses are visible
to the later clauses.
.coIP @(cases)
Multiple clauses are applied to the same input. Evaluation stops on the
first successful clause.
.coIP @(require)
The
.code require
directive is similar to the
.code do
directive in that it evaluates one or more
\*(TL expressions. If the result of the rightmost expression is nil,
then require triggers a match failure. See the TXR LISP section far below.
.ccIP @, @(if) @, @(elif) and @ @(else)
The
.code if
directive with optional
.code elif
and
.code else
clauses allows one of multiple bodies of pattern matching directives to be
conditionally selected by testing the values of Lisp expressions. It is
also available inside
.code @(output)
for conditionally selecting output clauses.
.coIP @(choose)
Multiple clauses are applied to the same input. The one whose effect persists
is the one which maximizes or minimizes the length of a particular variable.
.coIP @(empty)
The
.code @(empty)
directive matches the empty string. It is useful in certain
situations, such as expressing an empty match in a directive that doesn't
accept an empty clause. The
.code @(empty)
syntax has another meaning in
.code @(output)
clauses, in conjunction with
.codn @(repeat) .
.meIP @(define < name >> ( args ...))
Introduces a function. Functions are described in the Functions section below.
.meIP @(call < expr << args *)
Performs function indirection. Evaluates
.metn expr ,
which must produce a symbol that names a pattern function. Then that
pattern function is invoked.
.coIP @(gather)
Searches text for matches for multiple clauses which may occur in arbitrary
order. For convenience, lines of the first clause are treated as separate
clauses.
.coIP @(collect)
Search the data for multiple matches of a clause. Collect the
bindings in the clause into lists, which are output as array variables.
The
.code @(collect)
directive is line oriented. It works with a multi-line
pattern and scans line by line. A similar directive called
.code @(coll)
works within one line.
A collect is an anonymous block.
.coIP @(and)
Separator of clauses for
.codn @(some) ,
.codn @(all) ,
.codn @(none) ,
.code @(maybe)
and
.codn @(cases) .
Equivalent to
.codn @(or) .
The choice is stylistic.
.coIP @(or)
Separator of clauses for
.codn @(some) ,
.codn @(all) ,
.codn @(none) ,
.code @(maybe)
and
.codn @(cases) .
Equivalent to
.codn @(and) .
The choice is stylistic.
.coIP @(end)
Required terminator for
.codn @(some) ,
.codn @(all) ,
.codn @(none) ,
.codn @(maybe) ,
.codn @(cases) ,
.codn @(if) ,
.codn @(collect) ,
.codn @(coll) ,
.codn @(output) ,
.codn @(repeat) ,
.codn @(rep) ,
.codn @(try) ,
.code @(block)
and
.codn @(define) .
.coIP @(fail)
Terminate the processing of a block, as if it were a failed match.
Blocks are described in the section Blocks below.
.coIP @(accept)
Terminate the processing of a block, as if it were a successful match.
What bindings emerge may depend on the kind of block: collect
has special semantics. Blocks are described in the section Blocks below.
.coIP @(try)
Indicates the start of a try block, which is related to exception
handling, described in the Exceptions section below.
.ccIP @ @(catch) and @ @(finally)
Special clauses within
.codn @(try) .
See Exceptions below.
.ccIP @ @(defex) and @ @(throw)
Define custom exception types; throw an exception. See Exceptions below.
.coIP @(assert)
The
.code assert
directive requires the following material to match, otherwise
it throws an exception. It is useful for catching mistakes or omissions
in parts of a query that are sure-fire matches.
.coIP @(flatten)
Normalizes a set of specified variables to one-dimensional lists. Those
variables which have scalar value are reduced to lists of that value.
Those which are lists of lists (to an arbitrary level of nesting) are converted
to flat lists of their leaf values.
.coIP @(merge)
Binds a new variable which is the result of merging two or more
other variables. Merging has somewhat complicated semantics.
.coIP @(cat)
Decimates a list (any number of dimensions) to a string, by catenating its
constituent strings, with an optional separator string between all of the
values.
.coIP @(bind)
Binds one or more variables against a value using a structural
pattern match. A limited form of unification takes place which can cause a
match to fail.
.coIP @(set)
Destructively assigns one or more existing variables using a structural
pattern, using syntax similar to bind. Assignment to unbound
variables triggers an error.
.coIP @(rebind)
Evaluates an expression in the current binding environment, and
then creates new bindings for the variables in the structural pattern.
Useful for temporarily overriding variable values in a scope.
.coIP @(forget)
Removes variable bindings.
.coIP @(local)
Synonym of
.codn @(forget) .
.coIP @(output)
A directive which encloses an output clause in the query. An output section
does not match text, but produces text. The directives above are not
understood in an output clause.
.coIP @(repeat)
A directive understood within an
.code @(output)
section, for repeating multi-line
text, with successive substitutions pulled from lists. The directive
.code @(rep)
produces iteration over lists horizontally within one line. These directives
have a different meaning in matching clauses, providing a shorthand
notation for
.code "@(collect :vars nil)"
and
.codn "@(coll :vars nil)" ,
respectively.
.coIP @(deffilter)
The
.code deffilter
directive is used for defining named filters, which are useful
for filtering variable substitutions in output blocks. Filters are useful
when data must be translated between different representations that
have different special characters or other syntax, requiring escaping
or similar treatment. Note that it is also possible to use a function
as a filter. See Function Filters below.
Named filters are stored in the hash table held in the Lisp special variable
.codn *filters* .
.coIP @(filter)
The
.code filter
directive passes one or more variables through a given
filter or chain or filters, updating them with the filtered values.
.ccIP @ @(load) and @ @(include)
The
.code load
and
.code include
directives allow \*(TX programs to be modularized. They bring in
code from a file, in two different ways.
.coIP @(do)
The
.code do
directive is used to evaluate \*(TL expressions, discarding their
result values. See the TXR LISP section far below.
.coIP @(mdo)
The
.code mdo
(macro
.codn do )
directive evaluates \*(TL expressions immediately, during the parsing
of the \*(TX syntax in which it occurs.
.coIP @(in-package)
The
.code in-package
directive is used to switch to a different symbol package.
It mirrors the \*(TL macro of the same name.
.PP
.SS* Subexpression Evaluation
Some directives contain subexpressions which are evaluated. Two distinct
styles of evaluations occur in \*(TX: bind expressions and Lisp expressions.
Which semantics applies to an expression depends on the syntactic
context in which it occurs: which position in which directive.
The evaluation of \*(TL expressions is described in the TXR LISP section of the manual.
Bind expressions are so named because they occur in the
.code @(bind)
directive. \*(TX pattern function invocations also treat argument expressions
as bind expressions.
The
.codn @(rebind) ,
.codn @(set) ,
.codn @(merge) ,
and
.code @(deffilter)
directives also use bind expression evaluation. Bind expression evaluation
also occurs in the argument position of the
.code :tlist
keyword in the
.code @(next)
directive.
Unlike Lisp expressions, bind expressions do not support operators. If a bind
expression is a nested list structure, it is a template denoting that
structure. Any symbol in any position of that structure is interpreted as a
variable. When the bind expression is evaluated, those corresponding positions
in the template are replaced by the values of the variables.
Anywhere where a variable can appear in a bind expression's nested list
structure, a Lisp expression can appear preceded by the
.code @
character. That Lisp expression is evaluated and its value is substituted
into the bind expression's template.
Moreover, a Lisp expression preceded by
.code @
can be used as an entire bind expression. The value of that Lisp
expression is then taken as the bind expression value.
Any object in a bind expression which is not a nested list structure containing
Lisp expressions or variables denotes itself literally.
.TP* Examples:
In the following examples, the variables
.code a
and
.code b
are assumed to have the string values
.str foo
and
.strn bar ,
respectively.
The
.code ->
notation indicates the value of each expression.
.verb
a -> "foo"
(a b) -> ("foo" "bar")
((a) ((b) b)) -> (("foo") (("bar") "bar"))
(list a b) -> error: unbound variable list
@(list a b) -> ("foo" "bar") ;; Lisp expression
(a @[b 1..:]) -> ("foo" "ar") ;; Lisp eval of [b 1..:]
(a @(+ 2 2)) -> ("foo" 4) ;; Lisp eval of (+ 2 2)
#(a b) -> (a b) ;; Vector literal, not list.
[a b] -> error: unbound variable dwim
.brev
The last example above
.code "[a b]"
is a notation equivalent to
.code "(dwim a b)"
and so follows similarly to the example involving
.codn list .
.SS* Input Scanning and Data Manipulation
.dir next
The
.code next
directive indicates that the remaining directives in the current block
are to be applied against a new input source.
It can only occur by itself as the only element in a query line,
and takes various arguments, according to these possibilities:
.mono
.mets @(next)
.mets @(next << source )
.mets @(next < source :nothrow)
.mets @(next :args)
.mets @(next :env)
.mets @(next :list << lisp-expr )
.mets @(next :tlist << bind-expr )
.mets @(next :string << lisp-expr )
.mets @(next :var << var )
.mets @(next nil)
.onom
The lone
.code @(next)
without arguments specifies that subsequent directives
will match inside the next file in the argument list which was passed
to \*(TX on the command line.
If
.meta source
is given, it must be a \*(TL expression which denotes an
input source. Its value may be a string or an input stream.
For instance, if variable
.code A
contains the text
.strn "data" ,
then
.code "@(next A)"
means switch to the file called
.strn "data" ,
and
.code "@(next `@A.txt`)"
means to switch to the file
.strn "data.txt" .
The directive
.code "@(next (open-command `git log`))"
switches to the input stream connected to the output of the
.code "git log"
command.
If the input source cannot be opened for whatever reason,
\*(TX throws an exception (see Exceptions below). An unhandled exception will
terminate the program. Often, such a drastic measure is inconvenient;
if
.code @(next)
is invoked with the
.code :nothrow
keyword, then if the input
source cannot be opened, the situation is treated as a simple
match failure.
The variant
.code "@(next :args)"
means that the remaining command line arguments are to
be treated as a data source. For this purpose, each argument is considered to
be a line of text. The argument list does include that argument which specifies
the file that is currently being processed or was most recently processed.
As the arguments are matched, they are consumed. This means that if a
.code @(next)
directive without
arguments is executed in the scope of
.codn "@(next :args)" ,
it opens the file named
by the first unconsumed argument.
To process arguments, and then continue with the original file and argument
list, wrap the argument processing in a
.codn @(block) .
When the block terminates, the input source and argument list are restored
to what they were before the block.
The variant
.code "@(next :env)"
means that the list of process environment variables
is treated as a source of data. It looks like a text file stream
consisting of lines of the form
.strn "name=value" .
If this feature is not available
on a given platform, an exception is thrown.
The syntax
.mono
.meti @(next :list << lisp-expr )
.onom
treats \*(TL expression
.meta lisp-expr
as a source of
text. The value of
.meta lisp-expr
is flattened to a simple list in a way similar to the
.code @(flatten)
directive. The resulting list is treated as if it were the
lines of a text file: each element of the list must be a string,
which represents a line. If the strings happen contain embedded newline
characters, they are a visible constituent of the line, and do not act as line
separators.
The syntax
.mono
.meti @(next :tlist << bind-expr )
.onom
is similar to
.code "@(next :list ...)"
except that
.meta bind-expr
is not a \*(TL expression, but a \*(TX bind expression.
The syntax
.mono
.meti @(next :var << var )
.onom
requires
.meta var
to be a previously bound variable. The value of the
variable is retrieved and treated like a list, in the
same manner as under
.codn "@(next :list ...)" .
Note that
.code "@(next :var x)"
is not always the same as
.codn "@(next :tlist x)" ,
because
.code ":var x"
strictly requires
.code x
to be a \*(TX variable, whereas the
.code x
in
.code ":tlist x"
is an expression which can potentially refer to Lisp variable.
The syntax
.mono
.meti @(next :string << lisp-expr )
.onom
treats expression
.meta lisp-expr
as a source of text. The value of the expression must be a string. Newlines in
the string are interpreted as line terminators.
A string which is not terminated by a newline is tolerated, so that:
.verb
@(next :string "abc")
@a
.brev
binds
.code a
to
.strn "abc" .
Likewise, this is also the case with input files and other
streams whose last line is not terminated by a newline.
However, watch out for empty strings, which are analogous to a correctly formed
empty file which contains no lines:
.verb
@(next :string "")
@a
.brev
This will not bind
.code a
to
.strn "" ;
it is a matching failure. The behavior of
.code :list
is
different. The query
.verb
@(next :list "")
@a
.brev
binds
.code a
to
.strn "" .
The reason is that under
.code :list
the string
.str ""
is flattened to
the list
.mono
("")
.onom
which is not an empty input stream, but a stream consisting of
one empty line.
The
.code "@(next nil)"
variant indicates that the following subquery is applied to empty data,
and the list of data sources from the command line is considered empty.
This directive is useful in front of \*(TX code which doesn't process data
sources from the command line, but takes command line arguments.
The
.code "@(next nil)"
incantation absolutely prevents \*(TX from trying to open the
first command line argument as a data source.
Note that the
.code @(next)
directive only redirects the source of input over the scope of subquery in which
the that directive appears. For
example, the following query looks for the line starting with
.str "xyz"
at the top of the file
.strn "foo.txt" ,
within a
.code some
directive. After the
.code @(end)
which terminates the
.codn @(some) ,
the
.str "abc"
is matched in the previous input stream which was in effect before
the
.code @(next)
directive:
.verb
@(some)
@(next "foo.txt")
xyz@suffix
@(end)
abc
.brev
However, if the
.code @(some)
subquery successfully matched
.str "xyz@suffix"
within the
file
.codn foo.text ,
there is now a binding for the
.code suffix
variable, which
is visible to the remainder of the entire query. The variable bindings
survive beyond the clause, but the data stream does not.
.dir skip
The
.code skip
directive considers the remainder of the query as a search
pattern. The remainder is no longer required to strictly match at the
current line in the current input stream. Rather, the current stream is searched,
starting with the current line, for the first line where the entire remainder
of the query will successfully match. If no such line is found, the
.code skip
directive fails. If a matching position is found, the remainder of
the query is processed from that point.
The remainder of the query can itself contain
.code skip
directives.
Each such directive performs a recursive subsearch.
Skip comes in vertical and horizontal flavors. For instance, skip and match the
last line:
.verb
@(skip)
@last
@(eof)
.brev
Skip and match the last character of the line:
.verb
@(skip)@{last 1}@(eol)
.brev
The
.code skip
directive has two optional arguments, which are evaluated as \*(TL
expressions. If the first argument evaluates to an integer,
its value limits the range of lines scanned for a match. Judicious use
of this feature can improve the performance of queries.
Example: scan until
.str "size: @SIZE"
matches, which must happen within
the next 15 lines:
.verb
@(skip 15)
size: @SIZE
.brev
Without the range limitation skip will keep searching until it consumes
the entire input source. In a horizontal
.codn skip ,
the range-limiting numeric argument is expressed in characters, so that
.verb
abc@(skip 5)def
.brev
means: there must be a match for
.str "abc"
at the start of the line, and then within the next five characters,
there must be a match for
.strn "def" .
Sometimes a skip is nested within a
.codn collect ,
or
following another skip. For instance, consider:
.verb
@(collect)
begin @BEG_SYMBOL
@(skip)
end @BEG_SYMBOL
@(end)
.brev
The above
.code collect
iterates over the entire input. But, potentially, so does
the embedded
.codn skip .
Suppose that
.str "begin x"
is matched, but the data has no
matching
.strn "end x" .
The skip will search in vain all the way to the end of the
data, and then the collect will try another iteration back at the
beginning, just one line down from the original starting point. If it is a
reasonable expectation that an
.code "end x"
occurs 15 lines of a
.strn "begin x" ,
this can be specified instead:
.verb
@(collect)
begin @BEG_SYMBOL
@(skip 15)
end @BEG_SYMBOL
@(end)
.brev
If the symbol
.code nil
is used in place of a number, it means to scan
an unlimited range of lines; thus,
.code "@(skip nil)"
is equivalent to
.codn @(skip) .
If the symbol
.code :greedy
is used, it changes the semantics of the skip
to longest match semantics. For instance, match the last three space-separated
tokens of the line:
.verb
@(skip :greedy) @a @b @c
.brev
Without
.codn :greedy ,
the variable
.code @c
will can match multiple tokens,
and end up with spaces in it, because nothing follows
.code @c
and so it matches from any position which follows a space to the
end of the line. Also note the space in front of
.codn @a .
Without this
space,
.code @a
will get an empty string.
A line oriented example of greedy skip: match the last line without
using
.codn @eof :
.verb
@(skip :greedy)
@last_line
.brev
There may be a second numeric argument. This specifies a minimum
number of lines to skip before looking for a match. For instance,
skip 15 lines and then search indefinitely for
.codn "begin ..." :
.verb
@(skip nil 15)
begin @BEG_SYMBOL
.brev
The two arguments may be used together. For instance, the following
matches if, and only if, the 15th line of input starts with
.codn "begin " :
.verb
@(skip 1 15)
begin @BEG_SYMBOL
.brev
Essentially,
.mono
.meti @(skip 1 << n )
.onom
means "hard skip by
.meta n
lines".
.code "@(skip 1 0)"
is the same as
.codn "@(skip 1)" ,
which is a noop, because it means: "the remainder of the query must match
starting on the next line", or, more briefly, "skip exactly zero lines",
which is the behavior if the
.code skip
directive is omitted altogether.
Here is one trick for grabbing the fourth line from the bottom of the input:
.verb
@(skip)
@fourth_from_bottom
@(skip 1 3)
@(eof)
.brev
Or using greedy skip:
.verb
@(skip :greedy)
@fourth_from_bottom
@(skip 1 3)
.brev
Nongreedy skip with the
.code @(eof)
has a slight advantage because the greedy skip
will keep scanning even though it has found the correct match, then backtrack
to the last good match once it runs out of data. The regular skip with explicit
.code @(eof)
will stop when the
.code @(eof)
matches.
.NP* Reducing Backtracking with Blocks
.code skip
can consume considerable CPU time when multiple skips are nested. Consider:
.verb
@(skip)
A
@(skip)
B
@(skip)
C
.brev
This is actually nesting: the second a third skips occur within the body of the
first one, and thus this creates nested iteration. \*(TX is searching for the
combination of skips which find match the pattern of lines
.codn A ,
.code B
and
.codn C ,
with
backtracking behavior. The outermost skip marches through the data until it
finds
.codn A ,
followed by a pattern match for the second skip. The second skip
iterates within to find
.codn B ,
followed by the third skip, and the third skip
iterates to find
.codn C .
If there is only one line
.codn A ,
and one
.codn B ,
then this is reasonably fast. But suppose there are many lines matching
.code A
and
.codn B ,
giving rise to a large number combinations of skips which match
.code A
and
.codn B ,
and yet do not find a match for
.codn C ,
triggering backtracking. The nested stepping which tries
the combinations of
.code A
and
.code B
can give rise to a considerable running time.
One way to deal with the problem is to unravel the nesting with the help of
blocks. For example:
.verb
@(block)
@ (skip)
A
@(end)
@(block)
@ (skip)
B
@(end)
@(skip)
C
.brev
Now the scope of each skip is just the remainder of the block in which it
occurs. The first skip finds
.codn A ,
and then the block ends. Control passes to the
next block, and backtracking will not take place to a block which completed
(unless all these blocks are enclosed in some larger construct which
backtracks, causing the blocks to be re-executed.
This rewrite is not equivalent, and cannot be used for instance
in backreferencing situations such as:
.verb
@;
@; Find three lines anywhere in the input which are identical.
@;
@(skip)
@line
@(skip)
@line
@(skip)
@line
.brev
This example depends on the nested search-within-search semantics.
.dir trailer
The
.code trailer
directive introduces a trailing portion of a query or subquery
which matches input material normally, but in the event of a successful match,
does not advance the current position. This can be used, for instance, to
cause
.code @(collect)
to match partially overlapping regions.
Trailer can be used in vertical context:
.mono
.mets @(trailer)
.mets < directives
.mets ...
.onom
or horizontal:
.mono
.mets @(trailer) < directives ...
.onom
A vertical
.code trailer
prevents the vertical input position from
advancing as it is matched by
.metn directives ,
whereas a horizontal
.code trailer
prevents the horizontal position from advancing. In other words,
.code trailer
performs matching without consuming the input, providing a
look-ahead mechanism.
Example:
.verb
@(collect)
@line
@(trailer)
@(skip)
@line
@(end)
.brev
This script collects each line which has a duplicate somewhere later
in the input. Without the
.code @(trailer)
directive, this does not work properly
for inputs like:
.verb
111
222
111
222
.brev
Without
.codn @(trailer) ,
the first duplicate pair constitutes a match which
spans over the
.codn 222 .
After that pair is found, the matching continues
after the second
.codn 111 .
With the
.code @(trailer)
directive in place, the collect body, on each
iteration, only consumes the lines matched prior to
.codn @(trailer) .
.dir freeform
The
.code freeform
directive provides a useful alternative to
\*(TX's line-oriented matching discipline. The
.code freeform
directive treats all
remaining input from the current input source as one big line. The query line
which immediately follows freeform is applied to that line.
The syntax variations are:
.verb
@(freeform)
... query line ..
.mets @(freeform << number )
... query line ..
.mets @(freeform << string )
... query line ..
.mets @(freeform < number << string )
... query line ..
.brev
where
.meta number
and
.meta string
denote \*(TL expressions which evaluate to an integer or string
value, respectively.
If
.meta number
and
.meta string
are both present, they may be given in either order.
If the
.meta number
argument is given, its value limits the range of lines which are combined
together. For instance
.code "@(freeform 5)"
means to only consider the next five lines
to to be one big line. Without this argument, freeform is "bottomless". It
can match the entire file, which creates the risk of allocating a large amount
of memory.
If the
.meta string
argument is given, it specifies a custom line terminator. The
default terminator is
.strn "\en" .
The terminator does not have to be one character long.
Freeform does not convert the entire remainder of the input into one big line
all at once, but does so in a dynamic, lazy fashion, which takes place as the
data is accessed. So at any time, only some prefix of the data exists as a flat
line in which newlines are replaced by the terminator string, and the remainder
of the data still remains as a list of lines.
After the subquery is applied to the virtual line, the unmatched remainder
of that line is broken up into multiple lines again, by looking for and
removing all occurrences of the terminator string within the flattened portion.
Care must be taken if the terminator is other than the default
.strn "\en" .
All occurrences of the terminator string are treated as line terminators in
the flattened portion of the data, so extra line breaks may be introduced.
Likewise, in the yet unflattened portion, no breaking takes place, even if
the text contains occurrences of the terminator string. The extent of data which
is flattened, and the amount of it which remains, depends entirely on the
query line underneath
.codn @(flatten) .
In the following example, lines of data are flattened using $ as the line
terminator.
.IP code:
.mono
\ @(freeform "$")
@a$@b:
@c
@d
.onom
.IP data:
.mono
\ 1
2:3
4
.onom
.IP "output (\f[4]-B\f[]):"
.mono
\ a="1"
b="2"
c="3"
d="4"
.onom
.PP
The data is turned into the virtual line
.codn 1$2:3$4$ .
The
.code @a$@b:
subquery matches
the
.code 1$2:
portion, binding
.code a
to
.strn 1 ,
and
.code b
to
.strn 2 .
The remaining portion
.code 3$4$
is then split into separate lines again according to the line terminator
.codn $i :
.verb
3
4
.brev
Thus the remainder of the query
.verb
@c
@d
.brev
faces these lines, binding
.code c
to
.code 3
and
.code d
to
.codn 4 .
Note that since the data
does not contain dollar signs, there is no ambiguity; the meaning may be
understood in terms of the entire data being flattened and split again.
In the following example,
.code freeform
is used to solve a tokenizing problem. The
Unix password file has fields separated by colons. Some fields may be empty.
Using freeform, we can join the password file using
.str ":"
as a terminator.
By restricting freeform to one line, we can obtain each line of the password
file with a terminating
.strn ":" ,
allowing for a simple tokenization, because
now the fields are colon-terminated rather than colon-separated.
Example:
.verb
@(next "/etc/passwd")
@(collect)
@(freeform 1 ":")
@(coll)@{token /[^:]*/}:@(end)
@(end)
.brev
.dir fuzz
The
.code fuzz
directive allows for an imperfect match spanning a set number of
lines. It takes two arguments, both of which are \*(TL expressions that should
evaluate to integers:
.mono
.meti @(fuzz m n)
...
.onom
This expresses that over the next
.meta n
query lines, the matching strictness
is relaxed a little bit. Only m out of those n lines have to match.
Afterward, the rest of the query follows normal, strict processing.
In the degenerate situation that there are fewer than n query lines following
the
.code fuzz
directive, then m of them must succeed nevertheless. (If there
are fewer than m, then this is impossible.)
.dirs line chr
The
.code line
and
.code chr
directives perform binding between the current input line number or character
position within a line, against an expression or variable:
.verb
@(line 42)
@(line x)
abc@(chr 3)def@(chr y)
.brev
The directive
.code "@(line 42)"
means "match the current input line number against the integer 42". If
the current line is 42, then the directive matches, otherwise it fails.
.code line
is a vertical directive which doesn't consume a line of input. Thus,
the following matches at the beginning of an input stream, and
.code x
ends up bound to the first line of input:
.verb
@(line 1)
@(line 1)
@(line 1)
@x
.brev
The directive
.code "@(line x)"
binds variable
.code x
to the current input line number, if
.code x
is an unbound variable. If
.code x
is already bound, then the value of
.code x
must match the current line number, otherwise the directive fails.
The
.code chr
directive is similar to
.code line
except that it's a horizontal directive, and matches the character position
rather than the line position. Character positions are measured from zero,
rather than one.
.code chr
does not consume a character. Hence the two occurrences of
.code chr
in the following example both match, and
.code x
takes the entire line of input:
.verb
@(chr 0)@(chr 0)@x
.brev
The argument of
.code line
or
.code chr
may be a
.codn @ -delimited
Lisp expression. This is useful for matching computed lines or
character positions:
.verb
@(line @(+ a (* b c)))
.brev
.dir name
The
.code name
directive performs a binding between the name of the current
data source and a variable or bind expression:
.verb
@(name na)
@(name "data.txt")
.brev
If
.code na
is an unbound variable, it is bound and takes on the name
of the data source, such as a file name. If
.code na
is bound, then it has to match the name of the data source,
otherwise the directive fails.
The directive
.mono
@(name "data.txt")
.onom
fails unless the current data source has that name.
.dir data
The
.code data
directive performs a binding between the unmatched data
at the current position, and and a variable or bind expression.
The unmatched data takes the form of a list of strings:
.verb
@(data d)
.brev
The binding is performed on object equality. If
.code d
is already bound, a matching failure occurs unless
.code d
contains the current unmatched data.
Matching the current data has various uses.
For instance, two branches of pattern matching can, at some point, bind the
current data into different variables. When those paths join, the variables can
be bound together to create the assertion that the current data had been the
same at those points:
.verb
@(all)
@ (skip)
foo
@ (skip)
bar
@ (data x)
@(or)
@ (skip)
xyzzy
@ (skip)
bar
@ (data y)
@(end)
@(require (eq x y))
.brev
Here, two branches of the
.code @(all)
match some material which ends in the line
.codn "bar" .
However, it is possible that this is a different line. The
.code data
directives are used to create an assertion that the data regions matched
by the two branches are identical. That is to say, the unmatched data
.code x
captured after the first
.code "bar"
and the unmatched data
.code y
captured after the second
.code "bar"
must be the same object in order for
.code "@(require (eq x y))"
to succeed, which implies that the same
.code "bar"
was matched in both branches of the
.codn @(all) .
Another use of
.code data
is simply to gain access to the trailing remainder of the unmatched
input in order to print it, or do some special processing on it.
The
.code tprint
Lisp function is useful for printing the unmatched data as newline-terminated
lines:
.verb
@(data remainder)
@(do (tprint remainder))
.brev
.dirs some all none maybe cases choose
These directives, called the parallel directives, combine multiple subqueries,
which are applied at the same input position, rather than to consecutive input.
They come in vertical (line mode) and horizontal (character mode) flavors.
In horizontal mode, the current position is understood to be a character
position in the line being processed. The clauses advance this character
position by moving it to the right. In vertical mode, the current position is
understood to be a line of text within the stream. A clause advances the
position by some whole number of lines.
The syntax of these parallel directives follows this example:
.verb
@(some)
subquery1
.
.
.
@(and)
subquery2
.
.
.
@(and)
subquery3
.
.
.
@(end)
.brev
And in horizontal mode:
.verb
@(some)subquery1...@(and)subquery2...@(and)subquery3...@(end)
.brev
Long horizontal lines can be broken up with line continuations, allowing the
above example to be written like this, which is considered a single logical
line:
.verb
@(some)@\e
subquery1...@\e
@(and)@\e
subquery2...@\e
@(and)@\e
subquery3...@\e
@(end)
.brev
The
.codn @(some) ,
.codn @(all) ,
.codn @(none) ,
.codn @(maybe) ,
.code @(cases)
or
.code @(choose)
must be followed
by at least one subquery clause, and be terminated by
.codn @(end) .
If there are two
or more subqueries, these additional clauses are indicated by
.code @(and)
or
.codn @(or) ,
which are interchangeable. The separator and terminator directives also must
appear as the only element in a query line.
The
.code choose
directive requires keyword arguments. See below.
The syntax supports arbitrary nesting. For example:
.verb
QUERY: SYNTAX TREE:
@(all) all -+
@ (skip) +- skip -+
@ (some) | +- some -+
it | | +- TEXT
@ (and) | | +- and
@ (none) | | +- none -+
was | | | +- TEXT
@ (end) | | | +- end
@ (end) | | +- end
a dark | +- TEXT
@(end) *- end
.brev
nesting can be indicated using whitespace between
.code @
and the
directive expression. Thus, the above is an
.code @(all)
query containing a
.code @(skip)
clause which applies to a
.code @(some)
that is followed by the text line
.strn "a dark" .
The
.code @(some)
clause combines the text line
.strn it ,
and a
.code @(none)
clause which contains just one clause consisting of the line
.strn was .
The semantics of the parallel directives is:
.coIP @(all)
Each of the clauses is matched at the current position. If any of the
clauses fails to match, the directive fails (and thus does not produce
any variable bindings). Clauses following the failed directive are not
evaluated. Bindings extracted by a successful clause are visible to the clauses
which follow, and if the directive succeeds, all of the combined bindings
emerge.
.meIP @(some [ :resolve >> ( var ...) ])
Each of the clauses is matched at the current position. If any of the clauses
succeed, the directive succeeds, retaining the bindings accumulated by the
successfully matching clauses. Evaluation does not stop on the first successful
clause. Bindings extracted by a successful clause are visible to the clauses
which follow.
The
.code :resolve
parameter is for situations when the
.code @(some)
directive has
multiple clauses that need to bind some common variables to different
values: for instance, output parameters in functions. Resolve takes
a list of variable name symbols as an argument. This is called the
resolve set. If the clauses of
.code @(some)
bind variables in the resolve
set, those bindings are not visible to later clauses. However, those
bindings do emerge out of the
.code @(some)
directive as a whole.
This creates a conflict: what if two or more clauses introduce
different bindings for a variable in the resolve set?
This is why it is called the resolve set: conflicts for variables in the
resolve set are automatically resolved in favor of later directives.
Example:
.verb
@(some :resolve (x))
@ (bind a "a")
@ (bind x "x1")
@(or)
@ (bind b "b")
@ (bind x "x2")
@(end)
.brev
Here, the two clauses both introduce a binding for
.codn x .
Without the
.code :resolve
parameter, this would mean that the second clause fails, because
.code x
comes in
with the value
.strn x1 ,
which does not bind with
.strn x2 .
But because
.code x
is placed
into the resolve set, the second clause does not see the
.str x1
binding. Both
clauses establish their bindings independently creating a conflict over
.codn x .
The conflict is resolved in favor of the second clause, and so the bindings
which emerge from the directive are:
.verb
a="a"
b="b"
x="x2"
.brev
.coIP @(none)
Each of the clauses is matched at the current position. The
directive succeeds only if all of the clauses fail. If
any clause succeeds, the directive fails, and subsequent clauses are not
evaluated. Thus, this directive never produces variable bindings, only matching
success or failure.
.coIP @(maybe)
Each of the clauses is matched at the current position. The directive always
succeeds, even if all of the clauses fail. Whatever bindings are found in any
of the clauses are retained. Bindings extracted by any successful clause are
visible to the clauses which follow.
.coIP @(cases)
Each of the clauses is matched at the current position.
The clauses are matched, in order, at the current position.
If any clause matches, the matching stops and the bindings
collected from that clause are retained. Any remaining clauses
after that one are not processed. If no clause matches, the
directive fails, and produces no bindings.
.meIP @(choose [ :longest < var | :shortest < var ])
Each of the clauses is matched at the current position in order. In this
construct, bindings established by an earlier clause are not visible to later
clauses. Although any or all of the clauses can potentially match, the clause
which succeeds is the one which maximizes or minimizes the length of the
text bound to the specified variable. The other clauses have no effect.
For all of the parallel directives other than
.code @(none)
and
.codn @(choose) ,
the query
advances the input position by the greatest number of lines that match in any
of the successfully matching subclauses that are evaluated. The
.code @(none)
directive does not advance the input position.
For instance if there are two subclauses, and one of them matches three lines,
but the other one matches five lines, then the overall clause is considered to
have made a five line match at its position. If more directives follow, they
begin matching five lines down from that position.
.dir require
The syntax of
.code @(require)
is:
.mono
.mets @(require << lisp-expression )
.onom
The
.code require
directive evaluates a \*(TL expression. (See TXR LISP far
below.) If the expression yields a true value, then it succeeds, and matching
continues with the directives which follow. Otherwise the directive fails.
In the context of the
.code require
directive, the expression should not be introduced by the
.code @
symbol; it is expected to be a Lisp expression.
Example:
.verb
@; require that 4 is greater than 3
@; This succeeds; therefore, @a is processed
@(require (> (+ 2 2) 3))
@a
.brev
.dir if
The
.code if
directive allows for conditional selection of pattern matching clauses,
based on the Boolean results of Lisp expressions.
A variant of the
.code if
directive is also available for use inside an
.code output
clauses, where it similarly allows for the conditional selection of output
clauses.
The syntax of the
.code if
directive can be exemplified as follows:
.mono
.mets @(if << lisp-expr )
.
.
.
.mets @(elif << lisp-expr )
.
.
.
.mets @(elif << lisp-expr )
.
.
.
@(else)
.
.
.
@(end)
.onom
The
.code @(elif)
and
.code @(else)
clauses are all optional. If
.code @(else)
is present, it must be
last, before
.codn @(end) ,
after any
.code @(elif)
clauses. Any of the clauses may be empty.
.TP* "Example:"
.verb
@(if (> (length str) 42))
foo: @a @b
@(else)
{@c}
@(end)
.brev
In this example, if the length of the variable
.code str
is greater than
.codn 42 ,
then matching continues with
.strn "foo: @a b" ,
otherwise it proceeds with
.codn {@c} .
More precisely, how the
.code if
directive works is as follows. The Lisp expressions are evaluated in order,
starting with the
.code if
expression, then the
.code elif
expressions if any are present. If any Lisp expression yields a true result
(any value other than
.codn nil )
then evaluation of Lisp expressions stops. The corresponding clause of that
Lisp expression is selected and pattern matching continues
with that clauses. The result of that clause (its success or failure,
and any newly bound variables) is then taken as the result of the
.code if
directive. If none of the Lisp expressions yield true, and an
.code else
clause is present, then that clause is processed and its result determines
the result of the
.code if
directive. If none of the Lisp expressions
yield true, and there is no
.code else
clause, then the
.code if
directive is deemed to have trivially succeeded, allowing matching to continue
with whatever directive follows it.
.coNP The Lisp @ if versus TXR @ if
The
.code @(output)
directive supports the embedding of Lisp expressions, whose values are
interpolated into the output. In particular, Lisp
.code if
expressions are useful. For instance
.code "@(if expr \(dqA\(dq \(dqB\(dq)"
reproduces
.code A
if
.code expr
yields a true value, otherwise
.codn B .
Yet the
.code @(if)
directive is also supported in
.codn @(output) .
How the apparent conflict between the two is resolved is that the two take
different numbers of arguments. An
.code @(if)
which has no arguments at all is a syntax error. One that has one argument
is the head of the
.code if
directive syntax which must be terminated by
.code @(end)
and which takes the optional
.code @(elif)
and
.code @(else)
clauses. An
.code @(if)
which has two or more arguments is parsed as a self-contained Lisp expression.
.dir gather
Sometimes text is structured as items that can appear in an arbitrary order.
When multiple matches need to be extracted, there is a combinatorial explosion
of possible orders, making it impractical to write pattern matches for all
the possible orders.
The
.code gather
directive is for these situations. It specifies multiple clauses
which all have to match somewhere in the data, but in any order.
For further convenience, the lines of the first clause of the
.code gather
directive
are implicitly treated as separate clauses.
The syntax follows this pattern
.verb
@(gather)
one-line-query1
one-line-query2
.
.
.
one-line-queryN
@(and)
multi
line
query1
.
.
.
@(and)
multi
line
query2
.
.
.
@(end)
.brev
The multi-line clauses are optional. The
.code gather
directive takes
keyword parameters, see below.
.coNP The @ until / @ last clause in @ gather
Similarly to
.codn collect ,
.code gather
has an optional
.cod3 until / last
clause:
.verb
@(gather)
...
@(until)
...
@(end)
.brev
How gather works is that the text is searched for matches for the single line
and multi-line queries. The clauses are applied in the order in which they appear.
Whenever one of the clauses matches, any bindings it produces are retained and
it is removed from further consideration. Multiple clauses can match at the
same text position. The position advances by the longest match from among the
clauses which matched. If no clauses match, the position advances by one line.
The search stops when all clauses are eliminated, and then the cumulative
bindings are produced. If the data runs out, but unmatched clauses remain, the
directive fails.
Example: extract several environment variables, which do not appear in a particular
order:
.verb
@(next :env)
@(gather)
USER=@USER
HOME=@HOME
SHELL=@SHELL
@(end)
.brev
If the until or last clause is present and a match occurs, then the matches
from the other clauses are discarded and the gather terminates. The difference
between
.cod3 until / last
is that any bindings bindings established in last are
retained, and the input position is advanced past the matched material.
The
.cod3 until / last
clause has visibility to bindings established in the
previous clauses in that same iteration, even though those bindings
end up thrown away.
For consistency, the
.code :mandatory
keyword is supported in the
.cod3 until / last
clause of
.codn gather .
The semantics of using
.code :mandatory
in this situation is tricky. In particular, if it is in effect, and the
.code gather
terminates successfully by collecting all required matches, it will
trigger a failure. On the other hand, if the
.code until
or
.code last
clause activates before all required matches are gathered, a failure
also occurs, whether or not the clause is
.codn :mandatory .
Meaningful use of
.code :mandatory
requires that the gather be open-ended; it must allow some (or all) variables
not to be required. The presence of the option means that for the gather
to succeed, all required variables must be gathered first, but then termination
must be achieved via the
.cod3 until / last
clause before all gather clauses are satisfied.
.coNP Keyword parameters in @ gather
The
.code gather
directive accepts the keyword parameter
.codn :vars .
The argument to
.code :vars
is a list of required and optional variables. A required variable is specified
as a symbol. An optional variable is specified as a two element list which
pairs a symbol with a Lisp expression. That Lisp expression is evaluated
and specifies the default value for the variable.
Example:
.verb
@(gather :vars (a b c (d "foo")))
...
@(end)
.brev
Here,
.codn a ,
.code b
and
.code c
are required variables, and
.code d
is optional, with the default value given by the Lisp expression
.strn foo .
The presence of
.code :vars
changes the behavior in three ways.
Firstly, even if all the clauses in the gather match successfully and are
eliminated, the directive will fail if the required variables do not have
bindings. It doesn't matter whether the bindings are existing, or whether they
are established by the gather.
Secondly, if some of the clauses of the gather did not match, but all
of the required variables have bindings, then the directive succeeds.
Without the presence of
.codn :vars ,
it would fail in this situation.
Thirdly, if
.code gather
succeeds (all required variables have bindings),
then all of the optional variables which do not have bindings are given
bindings to their default values.
The expressions which give the default values are evaluated whenever
the
.code gather
directive is evaluated, whether or not their values are used.
.dir collect
The syntax of the
.code collect
directive is:
.verb
@(collect)
... lines of subquery
@(end)
.brev
or with an until or last clause:
.verb
@(collect)
... lines of subquery: main clause
@(until)
... lines of subquery: until clause
@(end)
@(collect)
... lines of subquery: main clause
@(last)
... lines of subquery: last clause
@(end)
.brev
The
.code repeat
symbol may be specified instead of
.codn collect ,
which changes the meaning, see below:
.verb
@(repeat)
... lines of subquery
@(end)
.brev
The subquery is matched repeatedly, starting at the current line.
If it fails to match, it is tried starting at the subsequent line.
If it matches successfully, it is tried at the line following the
entire extent of matched data, if there is one. Thus, the collected regions do
not overlap. (Overlapping behavior can be obtained: see the
.code @(trailer)
directive).
Unless certain keywords are specified, or unless the collection is explicitly
failed with
.codn @(fail) ,
it always succeeds, even if it collects nothing,
and even if the
.cod3 until / last
clause never finds a match.
If no
.cod3 until / last
last clause is specified, and the collect is not limited
using parameters, the collection is unbounded: it consumes the entire data
file.
.coNP The @ until / @ last clause in @ collect
If an
.cod3 until / last
last clause is specified, the collection stops when that clause
matches at the current position.
If an
.code until
clause terminates collect, no bindings are collected at that
position, even if the main clause matches at that position also. Moreover, the
position is not advanced. The remainder of the query begins matching at that
position.
If a last clause terminates collect, the behavior is different. Any bindings
captured by the main clause are thrown away, just like with the until clause.
However, the bindings in the last clause itself survive, and the position is
advanced to skip over that material.
Example:
.IP code:
.mono
\ @(collect)
@a
@(until)
42
@b
@(end)
@c
.onom
.IP data:
.mono
\ 1
2
3
42
5
6
.onom
.IP result:
.mono
\ a[0]="1"
a[1]="2"
a[2]="3"
c="42"
.onom
.PP
The line
.code 42
is not collected, even though it matches
.codn @a .
Furthermore,
the
.code @(until)
does not advance the position, so variable
.code c
takes
.codn 42 .
If the
.code @(until)
is changed to
.code @(last)
the output will be different:
.IP result:
.mono
\ a[0]="1"
a[1]="2"
a[2]="3"
b="5"
c="6"
.onom
.PP
The
.code 42
is not collected into the a list, just like before. But now
the binding captured by
.code @b
emerges. Furthermore, the position advances
so variable now takes
.codn 6 .
The binding variables within the clause of a collect are treated specially.
The multiple matches for each variable are collected into lists,
which then appear as array variables in the final output.
Example:
.IP code:
.mono
\ @(collect)
@a:@b:@c
@(end)
.onom
.IP data:
.mono
\ John:Doe:101
Mary:Jane:202
Bob:Coder:313
.onom
.IP result:
.mono
\ a[0]="John"
a[1]="Mary"
a[2]="Bob"
b[0]="Doe"
b[1]="Jane"
b[2]="Coder"
c[0]="101"
c[1]="202"
c[2]="313"
.onom
.PP
The query matches the data in three places, so each variable becomes
a list of three elements, reported as an array.
Variables with list bindings may be referenced in a query. They denote a
multiple match. The
.code -D
command line option can establish a one-dimensional
list binding.
The clauses of
.code collect
may be nested. Variable matches collated into lists in an
inner collect, are again collated into nested lists in the outer collect.
Thus an unbound variable wrapped in N nestings of
.code @(collect)
will
be an N-dimensional list. A one dimensional list is a list of strings;
a two dimensional list is a list of lists of strings, etc.
It is important to note that the variables which are bound within the main
clause of a collect. That is, the variables which are subject to
collection appear, within the collect, as normal one-value bindings. The
collation into lists happens outside of the collect. So for instance in the
query:
.mono
@(collect)
@x=@x
@(end)
.onom
The left
.code @x
establishes a binding for some material preceding an equal sign.
The right
.code @x
refers to that binding. The value of
.code @x
is different in each
iteration, and these values are collected. What finally comes out of the
collect clause is a single variable called
.code x
which holds a list containing each value that
was ever instantiated under that name within the collect clause.
Also note that the until clause has visibility over the bindings
established in the main clause. This is true even in the terminating
case when the until clause matches, and the bindings of the main clause
are discarded.
.coNP Keyword parameters in @ collect
By default,
.code collect
searches the rest of the input indefinitely,
or until the
.cod3 until / last
clause matches. It skips arbitrary amounts of
nonmatching material before the first match, and between matches.
Within the
.code @(collect)
syntax, it is possible to specify keyword
parameters for additional control of the behavior. A keyword parameter
consist of a keyword symbol followed by an argument, enclosed within
the
.code @(collect)
syntax. The following are the supported keywords.
.meIP :maxgap < n
The
.code :maxgap
keyword takes a numeric argument
.metn n ,
which is a Lisp expression.
It causes the collect to terminate
if it fails to find a match after skipping
.meta n
lines from the starting position,
or more than
.meta n
lines since any successful match. For example,
.verb
@(collect :maxgap 5)
.brev
specifies that the gap between the current position and the first
match for the body of the collect, or between consecutive matches
can be no longer than five lines. A
.code :maxgap
value of
.code 0
means that the collected regions must be
adjacent and must match right from the starting position. For instance:
.verb
@(collect :maxgap 0)
M @a
@(end)
.brev
means: from here, collect consecutive lines of the form
.strn "M ..." .
This will not
search for the first such line, nor will it skip lines which do not match this
form.
.meIP :mingap < n
The
.code :mingap
keyword complements
.codn :maxgap ,
though not exactly. Its argument
.metn n ,
a Lisp expression, specifies a minimum number
of lines which must separate consecutive matches. However, it has no effect on
the distance from the starting position to the first match.
.meIP :gap < n
The
.code :gap
keyword effectively specifies
.code :mingap
and
.code :maxgap
at the same time, and can only be
used if these other two are not used. Thus:
.verb
@(collect :gap 1)
@a
@(end)
.brev
means: collect every other line starting with the current line.
.meIP :times < n
This shorthand means the same thing as if
.meIP :mintimes < n :maxtimes < n
were specified. This means that exactly
.meta n
matches must occur. If fewer occur, then the collect fails.
Collect stops once it achieves
.code n
matches.
.meIP :mintimes < n
The argument
.meta n
of the
.code :mintimes
keyword is a Lisp expression which specifies that at least
.meta n
matches must occur, or else the collect fails.
.meIP :mintimes < n
The Lisp argument expression
.meta n
of the
.code :mintimes
keyword specifies that at most
.meta n
matches are collected.
.meIP :lines < n
The argument
.meta n
of the
.code :lines
keyword parameter
is a Lisp expression which specifies the upper bound on how many lines
should be scanned by collect, measuring from the starting position.
The extent of the collect body is not counted. Example:
.verb
@(collect :lines 2)
foo: @a
bar: @b
baz: @c
@(end)
.brev
The above
.code collect
will look for a match only twice: at the current position,
and one line down.
.meIP :vars >> ({ variable | >> ( variable << default-value)}*)
The
.code :vars
keyword specifies a restriction on what variables will emanate
from the collect. Its argument is a list of variable
names. An empty list may be specified using empty parentheses
or, equivalently, the symbol
.codn nil .
The
.meta default-value
element of the syntax is a Lisp expression.
The behavior of the
.code :vars
keyword is specified in the following section, "Specifying variables in
.codn collect \(dq.
.meIP :lists <> ( variable *)
The
.code :lists
keyword indicates a list of variables. After the
.code collect
terminates, each
.meta variable
in the list which does not have a binding is bound to the empty
list symbol
.codn nil .
Unlike
.code :vars
the
.code :lists
mechanism doesn't assert that only the listed variables may emanate
from the collect. It also doesn't assert that each iteration of the
collect must bind each of those variables.
.meIP :counter >> { variable | >> ( variable << starting-value )}
The
.code :counter
keyword's argument is a variable name symbol,
or a compound expression consisting of a variable name symbol
and the \*(TL expression
.metn starting-value .
If this keyword argument is specified, then a binding for
.meta variable
is established prior to each repetition of the
.code collect
body, to an integer value representing the repetition count.
By default, repetition counts begin at zero.
If
.meta starting-value
is specified, it must evaluate to a number. This number is
then added to each repetition count, and
.meta variable
takes on the resulting displaced value.
If there is an existing binding for
.meta variable
prior to the processing of the
.codn collect ,
then the variable is shadowed.
The binding is collected in the same way as other bindings
that are established in the
.code collect
body.
The repetition count only increments after a successful match.
The
.code variable
is visible to the
.codn collect 's
.cod3 until / last
clause. If that clause is being processed after a successful match
of the body, then
.meta variable
holds an integer value. If the body fails to match, then the
.cod3 until / last
clause sees a binding for
.code variable
with a value of
.codn nil .
.PP
.coNP Specifying variables in @ collect
Normally, any variable for which a new binding occurs in a
.code collect
block is collected. A collect clause may be "sloppy": it can neglect to collect
some variables on some iterations, or bind some variables which are intended to
behave like local temporaries, but end up collated into lists. Another issue is
that the collect clause might not match anything at all, and then none of the
variables are bound.
The
.code :vars
keyword allows the query writer to add discipline the
.code collect
body.
The argument to
.code :vars
is a list of variable specs. A variable spec is either a
symbol, denoting a required variable, or a
.mono
.meti >> ( symbol << default-value )
.onom
pair, where
.meta default-value
is a Lisp expression whose value specifies a default value
for the variable, which is optional.
When a
.code :vars
list is specified, it means that only the given variables can
emerge from the successful collect. Any newly introduced bindings for other
variables do not propagate. More precisely, whenever the collect body matches
successfully, the following three rules apply:
.IP 1
If
.code :vars
specifies required variables, the collect body must bind all of them,
or else must not bind any variable at all, whether listed in
.code :vars
or not, otherwise an exception of type
.code query-error
is thrown.
.IP 2
If
.code :vars
specifies required variables, and also specifies default variables,
and the collect body binds no variable at all, then the default variables
are not bound to their default values.
.IP 3
If
.code :vars
specifies optional variables, and all required variables are bound by
the collect body, then all those optional variables that are not bound
by the collect body are bound to their default values. Under this rule, if
.code :vars
specifies no required variables, that is deemed to be
logically equivalent to all required variables being bound.
.PP
In the event that
.code collect
does not match anything, the variables
specified in
.codn :vars ,
whether required or optional, are all bound to
empty lists. These bindings are established after the processing of the
.cod3 until / last
last clause, if present.
Example:
.verb
@(collect :vars (a b (c "foo")))
@a @c
@(end)
.brev
Here, if the body
.str @a @c
matches, an error will be thrown because one of the
mandatory variables is
.codn b ,
and the body neglects to produce a binding for
.codn b .
Example:
.verb
@(collect :vars (a (c "foo")))
@a @b
@(end)
.brev
Here, if
.str @a @b
matches, only
.code a
will be collected, but not
.codn b ,
because
.code b
is not
in the variable list. Furthermore, because there is no binding for
.code c
in the
body, a binding is created with the value
.strn foo ,
exactly as if
.code c
matched
such a piece of text.
In the following example, the assumption is that
.code "THIS NEVER MATCHES"
is not found anywhere in the input but the line
.code "THIS DOES MATCH"
is found and has a successor which is bound to
.codn a .
Because the body did not
match, the
.code :vars
.code a
and
.code b
should be bound to empty lists. But
.code a
is bound by the last clause to some text, so this takes precedence. Only
.code b
is bound to an empty list.
.verb
@(collect :vars (a b))
THIS NEVER MATCHES
@(last)
THIS DOES MATCH
@a
@(end)
.brev
The following means: do not allow any variables to propagate out of any
iteration of the collect and therefore collect nothing:
.verb
@(collect :vars nil)
...
@(end)
.brev
Instead of writing
.codn "@(collect :vars nil)" ,
it is possible to write
.codn @(repeat) .
.code @(repeat)
takes all collect keywords, except for
.codn :vars .
There is a
.code @(repeat)
directive used in
.code @(output)
clauses; that is a different directive.
.coNP Mandatory @ until and @ last
The
.cod3 until / last
clause supports the option keyword
.codn :mandatory ,
exemplified by the following:
.verb
@(collect)
...
@(last :mandatory)
...
@(end)
.brev
This means that the collect
.B must
be terminated by a match for the
.cod3 until / last
clause, or else by an explicit
.codn @(accept) .
Specifically, the collect cannot terminate due to simply running out of data,
or exceeding a limit on the number of matches that may be collected. In
those situations, if an
.code until
or
.code last
clause is present with
.codn :mandatory ,
the collect is deemed to have failed.
.dir coll
The
.code coll
directive is the horizontal version of
.codn collect .
Whereas
.code collect
works with multi-line clauses on line-oriented
material,
.code coll
works within a single line. With
.codn coll ,
it is possible to
recognize repeating regularities within a line and collect lists.
Regular-expression based Positive Match variables work well with coll.
Example: collect a comma-separated list, terminated by a space.
.IP code:
.mono
\ @(coll)@{A /[^, ]+/}@(until) @(end)@B
.onom
.IP data:
.mono
\ foo,bar,xyzzy blorch
.onom
.IP result:
.mono
\ A[0]="foo"
A[1]="bar"
A[2]="xyzzy"
B=blorch
.onom
.PP
Here, the variable
.code A
is bound to tokens which match the regular
expression
.codn "/[^, ]+/" :
non-empty sequence of characters other than commas or
spaces.
Like
.codn collect ,
.code coll
searches for matches. If no match
occurs at the current character position, it tries at the next character
position. Whenever a match occurs, it continues at the character position which
follows the last character of the match, if such a position exists.
If not bounded by an until clause, it will exhaust the entire line. If the
until clause matches, then the collection stops at that position,
and any bindings from that iteration are discarded.
Like collect, coll also supports an
.cod3 until / last
clause, which propagates variable
bindings and advances the position. The
.code :mandatory
keyword is supported.
.code coll
clauses nest, and variables bound within a coll are available to clauses
within the rest of the
.code coll
clause, including the
.cod3 until / last
clause, and appear as
single values. The final list aggregation is only visible after the
.code coll
clause.
The behavior of
.code coll
leads to difficulties when a delimited variable are used
to match material which is delimiter separated rather than terminated.
For instance, entries in a comma-separated files usually do
not appear as
.str a,b,c,
but rather
.strn a,b,c .
So for instance, the following result is not satisfactory:
.IP code:
.mono
\ @(coll)@a @(end)
.onom
.IP data:
.mono
\ 1 2 3 4 5
.onom
.IP result:
.mono
\ a[0]="1"
a[1]="2"
a[2]="3"
a[3]="4"
.onom
.PP
The
.code 5
is missing because it isn't followed by a space, which the text-delimited
variable match
.str "@a "
looks for. After matching "4 ", coll continues to look for
matches, and doesn't find any. It is tempting to try to fix it like this:
.IP code:
.mono
\ @(coll)@a@/ ?/@(end)
.onom
.IP data:
.mono
\ 1 2 3 4 5
.onom
.IP result:
.mono
\ a[0]=""
a[1]=""
a[2]=""
a[3]=""
a[4]=""
a[5]=""
a[6]=""
a[7]=""
a[8]=""
.onom
.PP
The problem now is that the regular expression
.code "/ ?/"
(match either a space or nothing), matches at any position.
So when it is used as a variable
delimiter, it matches at the current position, which binds the empty string to
the variable, the extent of the match being zero. In this situation, the
.code coll
directive proceeds character by character. The solution is to use
positive matching: specify the regular expression which matches the item,
rather than a trying to match whatever follows. The
.code collect
directive will
recognize all items which match the regular expression:
.IP code:
.mono
\ @(coll)@{a /[^ ]+/}@(end)
.onom
.IP data:
.mono
\ 1 2 3 4 5
.onom
.IP result:
.mono
\ a[0]="1"
a[1]="2"
a[2]="3"
a[3]="4"
a[4]="5"
.onom
.PP
The
.code until
clause can specify a pattern which, when recognized, terminates
the collection. So for instance, suppose that the list of items may
or may not be terminated by a semicolon. We must exclude
the semicolon from being a valid character inside an item, and
add an until clause which recognizes a semicolon:
.IP code:
.mono
\ @(coll)@{a /[^ ;]+/}@(until);@(end);
.onom
.IP data:
.mono
\ 1 2 3 4 5;
.onom
.IP result:
.mono
\ a[0]="1"
a[1]="2"
a[2]="3"
a[3]="4"
a[4]="5"
.onom
.PP
Whether followed by the semicolon or not, the items are collected properly.
Note that the
.code @(end)
is followed by a semicolon. That's because
when the
.code @(until)
clause meets a match, the matching material
is not consumed.
This repetition can be avoided by using
.code @(last)
instead of
.code @(until)
since
.code @(last)
consumes the terminating material.
Instead of the above regular-expression-based approach, this extraction problem
can also be solved with
.codn cases :
.IP code:
.mono
\ @(coll)@(cases)@a @(or)@a@(end)@(end)
.onom
.IP data:
.mono
\ 1 2 3 4 5
.onom
.IP result:
.mono
\ a[0]="1"
a[1]="2"
a[2]="3"
a[3]="4"
a[4]="5"
.onom
.PP
.coNP Keyword parameters in @ coll
The
.code @(coll)
directive takes most of the same parameters as
.codn @(collect) .
See the section Keyword parameters in
.code collect
above.
So for instance
.code "@(coll :gap 0)"
means that the collects must be
consecutive, and
.code "@(coll :maxtimes 2)"
means that at most two matches
will be collected. The
.code :lines
keyword does not exist, but there is
an analogous
.code :chars
keyword.
The
.code @(coll)
directive takes the
.code :vars
keyword.
The shorthand
.code @(rep)
may be used instead of
.codn "@(coll :vars nil)" .
.code @(rep)
takes all keywords, except
.codn :vars .
.dir flatten
The
.code flatten
directive can be used to convert variables to one dimensional
lists. Variables which have a scalar value are converted to lists containing
that value. Variables which are multidimensional lists are flattened to
one-dimensional lists.
Example (without
.codn @(flatten) )
.IP code:
.mono
\ @b
@(collect)
@(collect)
@a
@(end)
@(end)
.onom
.IP data:
.mono
\ 0
1
2
3
4
5
.onom
.IP result:
.mono
\ b="0"
a_0[0]="1"
a_1[0]="2"
a_2[0]="3"
a_3[0]="4"
a_4[0]="5"
.onom
.PP
Example (with
.codn @(flatten) ):
.IP code:
.mono
\ @b
@(collect)
@(collect)
@a
@(end)
@(end)
@(flatten a b)
.onom
.IP data:
.mono
\ 0
1
2
3
4
5
.onom
.IP result:
.mono
\ b="0"
a[0]="1"
a[1]="2"
a[2]="3"
a[3]="4"
a[4]="5"
.onom
.PP
.dir merge
The syntax of
.code merge
follows the pattern:
.mono
.meti @(merge < destination >> [ sources ...])
.onom
.meta destination
is a variable, which receives a new binding.
.meta sources
are bind expressions.
The
.code merge
directive provides a way of combining collected data from multiple
nested lists in a way which normalizes different nesting levels
among the sources. This directive is useful for combining the results from
collects at different levels of nesting into a single nested list such that
parallel elements are at equal depth.
A new binding is created for the
.meta destination
variable, which holds the result of the operation.
The
.code merge
directive performs its special function if invoked with at least three
arguments: a destination and two sources.
The one-argument case
.code "@(merge x)"
binds a new variable
.code x
and initializes it with the empty list and is thus equivalent to
.codn "@(bind x)" .
Likewise, the two-argument case
.code "@(merge x y)"
is equivalent to
.codn "@(bind x y)" ,
establishing a binding for
.code x
which is initialized with the value of
.codn y .
To understand what merge does when two sources are given, as in
.codn "@(merge C A B)" ,
we first have
to define a property called depth. The depth of an atom such as a string is
defined as
.codn 1 .
The depth of an empty
list is
.codn 0 .
The depth of a nonempty list is one plus the depth of its deepest
element. So for instance
.str foo
has depth 1,
.mono
("foo")
.onom
has depth 2, and
.mono
("foo" ("bar"))
.onom
has depth three.
We can now define a binary (two argument) merge(A, B) function as follows.
First, merge(A, B) normalizes the values A and B
to produce a pair of values which have equal depth, as defined above.
If either value is an atom it is first converted
to a one-element list containing that atom. After this step, both
values are lists; and the only way an argument has depth zero is if it is an
empty list. Next, if either value has a smaller depth than the
other, it is wrapped in a list as many times as needed to give it equal depth.
For instance if A is
.code ("a")
and B is
.code "((((\(dqb\(dq \(dqc\(dq) (\(dqd\(dq \(dqe))))"
then A is converted to
.codn "((((\(dqa\(dq))))" .
Finally, the list values are appended together to produce the merged result.
In the case of the preceding two example values, the result is:
.codn "((((\(dqa\(dq))) (((\(dqb\(dq \(dqc\(dq) (\(dqd\(dq \(dqe))))" .
The result is stored into a the newly bound destination variable
.codn C .
If more than two source arguments are given, these are merged by a left-associative
reduction, which is to say that a three argument
.code "merge(X, Y, Z)"
is defined as
.codn "merge(merge(X, Y), Z)" .
The leftmost two values are merged, and then this result is merged with the third
value, and so on.
.dir cat
The
.code cat
directive converts a list variable into a single
piece of text. The syntax is:
.mono
.mets @(cat < var <> [ sep ])
.onom
The
.meta sep
argument is a Lisp expression whose value specifies a separating piece of text.
If it is omitted, then a single space is used as the separator.
Example:
.IP code:
.mono
\ @(coll)@{a /[^ ]+/}@(end)
@(cat a ":")
.onom
.IP data:
.mono
\ 1 2 3 4 5
.onom
.IP result:
.mono
\ a="1:2:3:4:5"
.onom
.PP
.dir bind
The syntax of the
.code bind
directive is:
.mono
.mets @(bind < pattern < bind-expression >> { keyword << value }*)
.onom
The
.code bind
directive is a kind of pattern match, which matches one or more
variables given in
.meta pattern
against a value produced by the
.meta bind-expression
on the right.
Variables names occurring in the
.meta pattern
expression may refer to bound variables, or may be unbound.
All variables references occurring in
.meta bind-expression
must have value.
Binding occurs as follows. The tree structure of
.meta pattern
and the value of
.meta bind-expression
are considered to be parallel structures.
Any variables in
.meta pattern
which are unbound receive a new binding, which is initialized with
the structurally corresponding piece of the object produced by
.metn bind-expression .
Any variables in
.meta pattern
which are already bound must match the corresponding part of the
value of
.metn bind-expression ,
or else
the
.code bind
directive fails. Variables which are already bound are not altered,
retaining their current values, even if the matching is inexact.
The simplest bind is of one variable against itself, for instance bind
.code A
against
.codn A :
.verb
@(bind A A)
.brev
This will throw an exception if
.code A
is not bound. If
.code A
is bound, it
succeeds, since
.code A
matches itself.
The next simplest bind binds one variable to another:
.verb
@(bind A B)
.brev
Here, if
.code A
is unbound, it takes on the same value as
.codn B .
If
.code A
is bound, it has
to match
.codn B ,
or the bind fails. Matching means that either
.IP -
.code A
and
. code B
are the same text
.IP -
.code A
is text,
.code B
is a list, and
.code A
occurs within
.codn B .
.IP -
.IR "vice versa" :
.code B
is text,
.code A
is a list, and
.code B
occurs within
.codn A .
.IP -
.code A
and
.code B
are lists and are either identical, or one is
found as substructure within the other.
.PP
The right hand side does not have to be a variable. It may be some other
object, like a string, quasiliteral, regexp, or list of strings,
.IR "et cetera" .
For instance
.verb
@(bind A "ab\etc")
.brev
will bind the string
.str ab\etc
to the variable
.code A
if
.code A
is unbound. If
.code A
is bound, this will fail unless
.code A
already contains an identical string. However, the right hand side of a bind
cannot be an unbound variable, nor a complex expression that contains unbound
variables.
The left hand side of
.code bind
can be a nested list pattern containing variables.
The last item of a list at any nesting level can be preceded by a
.code .
(dot), which means that the variable matches the rest of the list from that
position.
.TP* "Example 1:"
Suppose that the list A contains
.mono
("now" "now" "brown" "cow").
.onom
Then the
directive
.codn "@(bind (H N . C) A)" ,
assuming that
.codn H ,
.code N
and
.code C
are unbound variables,
will bind
.code H
to
.strn how ,
code N
to
.strn now ,
and
.code C
to the remainder of the list
.mono
("brown" "cow").
.onom
Example: suppose that the list
.code A
is nested to two dimensions and contains
.mono
(("how" "now") ("brown" "cow")).
.onom
Then
.code "@(bind ((H N) (B C)) A)"
binds
.code H
to
.strn how ,
.code N
to
.strn now ,
.code B
to
.str brown
and
.code C
to
.strn cow .
The dot notation may be used at any nesting level. it must be followed
by an item. The forms
.code (.)
and
.code "(X .)"
are invalid, but
.code "(. X)"
is valid and equivalent to
.codn X .
The number of items in a left pattern match must match the number of items in
the corresponding right side object. So the pattern
.code ()
only matches
an empty list. The notations
.code ()
and
.code nil
mean exactly the same thing.
The symbols
.codn nil ,
.code t
and keyword symbols may be used on either side.
They represent themselves. For example
.code "@(bind :foo :bar)"
fails,
but
.code "@(bind :foo :foo)"
succeeds since the two sides denote the same
keyword symbol object.
.TP* "Example 2:"
In this example, suppose
.code A
contains
.str foo
and
.code B
contains
bar. Then
.code "@(bind (X (Y Z)) (A (B \(dqhey\(dq)))"
binds
.code X
to
.strn foo ,
.code Y
to
.str bar
and
.code Z
to
.strn hey .
This is because the
.meta bind-expression
produces the object
.mono
("foo" ("bar" "hey"))
.onom
which is then structurally matched against the pattern
.codn "(X (Y Z))" ,
and the variables receive the corresponding pieces.
.coNP Keywords in the @ bind directive
The
.code bind
directive accepts these keywords:
.coIP :lfilt
The argument to
.code :lfilt
is a filter specification. When the left side pattern
contains a binding which is therefore matched against its counterpart from the
right side expression, the left side is filtered through the filter specified
by
.code :lfilt
for the purposes of the comparison. For example:
.verb
@(bind "a" "A" :lfilt :upcase)
.brev
produces a match, since the left side is the same as the right after
filtering through the :upcase filter.
.coIP :rfilt
The argument to
.code :rfilt
is a filter specification. The specified filter is
applied to the right hand side material prior to matching it against
the left side. The filter is not applied if the left side is a variable
with no binding. It is only applied to determine a match. Binding takes
place the unmodified right hand side object.
For example, the following produces a match:
.verb
@(bind "A" "a" :rfilt :upcase)
.brev
.coIP :filter
This keyword is a shorthand to specify both filters to the same value.
For instance
.code ":filter :upcase"
is equivalent to
.codn ":lfilt :upcase :rfilt :upcase" .
For a description of filters, see Output Filtering below.
Compound filters like
.code "(:fromhtml :upcase)"
are supported with all these keywords. The filters apply across arbitrary
patterns and nested data.
Example:
.verb
@(bind (a b c) ("A" "B" "C"))
@(bind (a b c) (("z" "a") "b" "c") :rfilt :upcase)
.brev
Here, the first bind establishes the values for
.codn a ,
.code b
and
.codn c ,
and the second bind
succeeds, because the value of a matches the second element of the list
.mono
("z" "a")
.onom
if it is upcased, and likewise
.code b
matches
.str "b"
and
.code c
matches
.str c
if these are upcased.
.coNP Lisp forms in the @ bind directive
\*(TL forms, introduced by
.code @
may be used in the
.meta bind-expression
argument of
.codn bind ,
or as the entire form. This is consistent with the rules for bind expressions.
\*(TL forms can be used in the
.meta pattern
expression also.
Example:
.verb
@(bind a @(+ 2 2))
@(bind @(+ 2 2) @(* 2 2))
.brev
Here,
.code a
is bound to the integer
.codn 4 .
The second
.code bind
then succeeds because the forms
.code "(+ 2 2)"
and
.code "(* 2 2)"
produce equal values.
.dir set
The
.code set
directive syntactically resembles
.codn bind ,
but is not a pattern match. It overwrites
the previous values of variables with new values from the right hand side.
Each variable that is assigned must have an existing binding:
.code set
will not induce binding.
Examples follow.
Store the value of
.code A
back into
.codn A ,
an operation with no effect:
.verb
@(set A A)
.brev
Exchange the values of
.code A
and
.codn B :
.verb
@(set (A B) (B A))
.brev
Store a string into
.codn A :
.verb
@(set A "text")
.brev
Store a list into
.codn A :
.verb
@(set A ("line1" "line2"))
.brev
Destructuring assignment.
.code A
ends up with
.strn A ,
.code B
ends up with
.mono
("B1" "B2")
.onom
and
.code C
binds to
.mono
("C1" "C2").
.onom
.verb
@(bind D ("A" ("B1" "B2") "C1" "C2"))
@(bind (A B C) (() () ()))
@(set (A B . C) D)
.brev
Note that
.code set
does not support a \*(TL expression on the left side, so the following
are invalid syntax:
.verb
@(set @(+ 1 1) @(* 2 2))
@(set @b @(list "a"))
.brev
The second one is erroneous even though there is a variable on the left.
Because it is preceded by the
.code @
escape, it is a Lisp variable, and not a pattern variable.
.dir rebind
The
.code rebind
directive resembles
.code set
but it is not an assignment.
It combines the semantics of
.codn local ,
.code bind
and
.codn set .
The expression on the right hand side is evaluated in the current
environment. Then the variables in the pattern on the left are introduced
as new bindings, whose values come from the pattern.
.code rebind
makes it easy to create temporary bindings based on existing bindings.
.verb
@(define pattern-function (arg))
@;; inside a pattern function:
@(rebind recursion-level @(+ recursion-level 1))
@;; ...
@(end)
.brev
When the function terminates, the previous value of recursion-level
is restored. The effect is like the following, but much easier
to write and faster to execute:
.verb
@(define pattern-function (arg))
@;; inside a pattern function:
@(local temp)
@(set temp recursion-level)
@(local recursion-level)
@(set recursion-level @(+ temp 1))
@;; ...
@(end)
.brev
.dir forget
The
.code forget
has two spellings:
.code @(forget)
and
.codn @(local) .
The arguments are one or more symbols, for example:
.verb
@(forget a)
@(local a b c)
.brev
this can be written
.verb
@(local a)
@(local a b c)
.brev
Directives which follow the
.code forget
or
.code local
directive no longer see
any bindings for the symbols mentioned in that directive, and
can establish new bindings.
It is not an error if the bindings do not exist.
It is strongly recommended to use the
.code @(local)
spelling in functions,
because the forgetting action simulates local variables:
for the given symbols, the machine forgets any earlier variables
from outside of the function, and consequently, any new bindings
for those variables belong to the function. (Furthermore,
functions suppress the propagation of variables that are not
in their parameter list, so these locals will be automatically
forgotten when the function terminates.)
.dir do
The syntax of
.code @(do)
is:
.mono
.mets @(do << lisp-expression *)
.onom
The
.code do
directive evaluates zero or more \*(TL expressions. (See TXR LISP far
below.) The value of the expression is ignored, and matching
continues with the directives which follow the
.code do
directive, if any.
In the context of the
.code do
directive, the expression should not be introduced by the
.code @
symbol; it is expected to be a Lisp expression.
Example:
.verb
@; match text into variables a and b, then insert into hash table h
@(bind h (hash))
@a:@b
@(do (set [h a] b))
.brev
.dir mdo
The syntax of
.code @(mdo)
is:
.mono
.mets @(mdo << lisp-expression *)
.onom
Like the
.code do
directive,
.code mdo
(macro-time
.codn do )
evaluates zero or more \*(TL expressions. Unlike
.codn do ,
.code mdo
performs this evaluation immediately upon being parsed.
Then it disappears from the syntax.
The effect of
.code "@(mdo e0 e1 e2 ...)"
is exactly like
.code "@(do (macro-time e0 e1 e2 ...))"
except that
.code do
doesn't disappear from the syntax.
Another difference is that
.code do
can be used as a horizontal or vertical directive, whereas
.code mdo
is only vertical.
.dir in-package
The
.code in-package
directive shares the same syntax and semantics as the \*(TL macro
of the same name:
.mono
.mets (in-package << name )
.onom
The
.code in-package
directive is evaluated immediately upon being parsed,
leaving no trace in the syntax tree of the surrounding \*(TX
query.
It causes the
.code *package*
special variable to take on the package denoted by
.metn name .
The directive that
.meta name
is either a string or symbol. An error exception is thrown if
this isn't the case. Otherwise it searches for the package.
If the package is not found, an error exception is thrown.
.SS* Blocks
.NP* Overview
Blocks are sections of a query which are either denoted by a name,
or are anonymous. They may nest: blocks can occur within blocks
and other constructs.
Blocks are useful for terminating parts of a pattern matching search
prematurely, and escaping to a higher level. This makes blocks not only
useful for simplifying the semantics of certain pattern matches,
but also an optimization tool.
Judicious use of blocks and escapes can reduce or eliminate the amount of
backtracking that \*(TX performs.
.dir block
The
.mono
.meti @(block << name )
.onom
directive introduces a named block, except when
.meta name
is the symbol
.codn nil .
The
.code @(block)
directive introduces an unnamed block, equivalent
to
.codn "@(block nil)" .
The
.code @(skip)
and
.code @(collect)
directives introduce implicit anonymous blocks,
as do function bodies.
Blocks must be terminated by
.code "@(end)"
and can be vertical:
.mono
.mets @(block <> [ name ])
...
.mets @(end)
.onom
or horizontal:
.mono
.mets @(block <> [ name ])...@(end)
.onom
.NP* Block Scope
The names of blocks are in a distinct namespace from the variable binding
space. So
.code "@(block foo)"
is unrelated to the variable
.codn @foo .
A block extends from the
.code "@(block ...)"
directive which introduces it,
until the matching
.codn @(end) ,
and may be empty. For instance:
.verb
@(some)
abc
@(block foo)
xyz
@(end)
@(end)
.brev
Here, the block foo occurs in a
.code @(some)
clause, and so it extends to the
.code @(end)
which terminates the block. After that
.codn @(end) ,
the name foo is not
associated with a block (is not "in scope"). The second
.code @(end)
terminates
the
.code @(some)
block.
The implicit anonymous block introduced by
.code @(skip)
has the same scope
as the
.codn @(skip) :
it extends over all of the material which follows the skip,
to the end of the containing subquery.
.NP* Block Nesting
Blocks may nest, and nested blocks may have the same names as blocks in
which they are nested. For instance:
.verb
@(block)
@(block)
...
@(end)
@(end)
.brev
is a nesting of two anonymous blocks, and
.verb
@(block foo)
@(block foo)
@(end)
@(end)
.brev
is a nesting of two named blocks which happen to have the same name.
When a nested block has the same name as an outer block, it creates
a block scope in which the outer block is "shadowed"; that is to say,
directives which refer to that block name within the nested block refer to the
inner block, and not to the outer one.
.NP* Block Semantics
A block normally does nothing. The query material in the block is evaluated
normally. However, a block serves as a termination point for
.code @(fail)
and
.code @(accept)
directives which are in scope of that block and refer to it.
The precise meaning of these directives is:
.meIP @(fail << name )
Immediately terminate the enclosing query block called
.metn name ,
as if that block
failed to match anything. If more than one block by that name encloses
the directive, the inner-most block is terminated. No bindings emerge from
a failed block.
.coIP @(fail)
Immediately terminate the innermost enclosing anonymous block, as if
that block failed to match.
The
.code @(fail)
directive has a vertical and horizontal form.
If the implicit block introduced by
.code @(skip)
is terminated in this manner,
this has the effect of causing
.code skip
itself to fail. I.e. the behavior
is as if skip search did not find a match for the trailing material,
except that it takes place prematurely (before the end of the available
data source is reached).
If the implicit block associated with a
.code @(collect)
is terminated this way,
then the entire
.code collect
fails. This is a special behavior, because a
collect normally does not fail, even if it matches nothing and collects nothing!
To prematurely terminate a collect by means of its anonymous block, without
failing it, use
.codn @(accept) .
.meIP @(accept << name )
Immediately terminate the enclosing query block called
.metn name ,
as if that block
successfully matched. If more than one block by that name encloses the
directive, the inner-most block is terminated.
.coIP @(accept)
Immediately terminate the innermost enclosing anonymous block, as if
that block successfully matched.
.code @(accept)
communicates the current bindings and input position to the terminated
block. These bindings and current position may be altered by special
interactions between certain directives and
.codn @(accept) ,
described in the following section. Communicating the current bindings
and input position means that the block which is terminated by
.code @(accept)
exhibits the bindings which were collected just prior to the execution
of that
.code @(accept)
and the input position which was in effect at that time.
.code @(accept)
has a vertical and horizontal form. In the horizontal form,
it communicates a horizontal input position. A horizontal input
position thus communicated will only take effect if the block being
terminated had been suspended on the same line of input.
If the implicit block introduced by
.code @(skip)
is terminated by
.codn @(accept) ,
this has the effect of causing the skip itself to succeed, as if
all of the trailing material had successfully matched.
If the implicit block associated with a
.code @(collect)
is terminated by
.codn @(accept) ,
then the collection stops. All bindings collected in the current iteration of
the collect are discarded. Bindings collected in previous iterations are
retained, and collated into lists in accordance with the semantics of collect.
Example: alternative way to achieve
.code @(until)
termination:
.verb
@(collect)
@ (maybe)
---
@ (accept)
@ (end)
@LINE
@(end)
.brev
This query will collect entire lines into a list called
.codn LINE .
However,
if the line
.code ---
is matched (by the embedded
.codn @(maybe) ),
the collection
is terminated. Only the lines up to, and not including the
.code ---
line, are collected. The effect is identical to:
.verb
@(collect)
@LINE
@(until)
---
@(end)
.brev
The difference (not relevant in these examples) is that the until clause has
visibility into the bindings set up by the main clause.
However, the following example has a different meaning:
.verb
@(collect)
@LINE
@ (maybe)
---
@ (accept)
@ (end)
@(end)
.brev
Now, lines are collected until the end of the data source, or until a line is
found which is followed by a
.code ---
line. If such a line is found,
the collection stops, and that line is not included in the collection!
The
.code @(accept)
terminates the process of the collect body, and so the
action of collecting the last
.code @LINE
binding into the list is not performed.
.PP
Example: communication of bindings and input position:
.IP code:
.mono
\ @(some)
@(block foo)
@first
@(accept foo)
@ignored
@(end)
@second
.onom
.IP data:
.mono
\ 1
2
3
.onom
.IP result:
.mono
\ first="1"
second="2"
.onom
.PP
At the point where the
.code accept
occurs, the foo block has matched the first line,
bound the text
.str 1
to the variable
.codn @first .
The block is then terminated.
Not only does the
.code @first
binding emerge from this terminated block, but
what also emerges is that the block advanced the data past the first line to
the second line. Next, the
.code @(some)
directive ends, and propagates the
bindings and position. Thus the
.code @second
which follows then matches the second
line and takes the text
.strn 2 .
Example: abandonment of
.code @(some)
clause by
.codn @(accept) :
In the following query, the foo block occurs inside a maybe clause.
Inside the foo block there is a
.code @(some)
clause. Its first subclause
matches variable
.code @first
and then terminates block foo. Since block foo is
outside of the
.code @(some)
directive, this has the effect of terminating the
.code @(some)
clause:
.IP code:
.mono
\ @(maybe)
@(block foo)
@ (some)
@first
@ (accept foo)
@ (or)
@one
@two
@three
@four
@ (end)
@(end)
@second
.onom
.IP data:
.mono
\ 1
2
3
4
5
.onom
.IP result:
.mono
\ first="1"
second="2"
.onom
.PP
The second clause of the
.code @(some)
directive, namely:
.verb
@one
@two
@three
@four
.brev
is never processed. The reason is that subclauses are processed in top
to bottom order, but the processing was aborted within the
first clause the
.codn "@(accept foo)" .
The
.code @(some)
construct never gets the
opportunity to match four lines.
If the
.code "@(accept foo)"
line is removed from the above query, the output
is different:
.IP code:
.mono
\ @(maybe)
@(block foo)
@ (some)
@first
@# <-- @(accept foo) removed from here!!!
@ (or)
@one
@two
@three
@four
@ (end)
@(end)
@second
.onom
.IP data:
.mono
\ 1
2
3
4
5
.onom
.IP result:
.mono
\ first="1"
one="1"
two="2"
three="3"
four="4"
second="5"
.onom
.PP
Now, all clauses of the
.code @(some)
directive have the opportunity to match.
The second clause grabs four lines, which is the longest match.
And so, the next line of input available for matching is
.codn 5 ,
which goes
to the
.code @second
variable.
.coNP Interaction Between the @ trailer and @ accept Directives
If one of the clauses which follow a
.code @(trailer)
requests a successful
termination to an outer block via
.codn @(accept) ,
then
.code @(trailer)
intercepts the escape and adjusts the data extent to the position
that it was given.
Example:
.IP code:
.mono
\ @(block)
@(trailer)
@line1
@line2
@(accept)
@(end)
@line3
.onom
.IP data:
.mono
\ 1
2
3
.onom
.IP result:
.mono
\ line1="1"
line2="2"
line3="1"
.onom
.PP
The variable
.code line3
is bound to
.str 1
because although
.code @(accept)
yields a data
position which has advanced to the third line, this is intercepted by
.code @(trailer)
and adjusted back to the first line. Neglecting to do this adjustment
would violate the semantics of
.codn trailer .
.coNP Interaction Between the @ next and @ accept Directives
When the clauses under a
.code next
directive are terminated by an
.codn accept ,
such that control passes to a block which surrounds that
.codn next ,
the
.code accept
is intercepted by
.codn next .
The input position being communicated by the
.code accept
is replaced with the original input position in the original
stream which is in effect prior to the
.code next
directive. The
.code accept
transfer is then resumed.
In other words,
.code accept
cannot be used to "leak" the new stream out of a
.code next
scope.
However,
.code next
has no effect on the bindings being communicated.
Example:
.mono
\ @(next "file-x")
@(block b)
@(next "file-y")
@line
@(accept b)
@(end)
.onom
Here, the variable
.code line
matches the first line of the file
.strn file-y ,
after which an
.code accept
transfer is initiated, targeting block
.codn b .
This transfer communicates the
.code line
binding, as well as the position within
.codn file-y ,
pointing at the second line.
However, the
.code accept
traverses the
.code next
directive, causing it to be abandoned. The special unwinding
action within that directive detects this transfer and rewrites
the input position to be the original one within the stream
associated with
.strn file-x .
Note that this special handling exists in order for the behavior to be
consistent with what would happen if the
.code "@(accept b)"
were removed, and the block
.code b
terminated normally: because the inner
.code next
is nested within that block, \*(TX would backtrack to the
previous input position within
.strn file-x .
.coNP Interaction Between Functions and the @ accept directive
If a pattern function is terminated due to
.codn accept ,
the function return mechanism intercepts the
.codn accept .
The bindings being communicated by that
.code accept
are then subject to the special resolution with respect to the
function parameters, exactly as if the bindings were being
returned normally out of the function. The resolved bindings
then replace those being communicated by the
.code accept
and the
.code accept
transfer is resumed.
Example:
.mono
\ @(define fun (a))
@ (bind a "a")
@ (bind b "b")
@ (accept blk)
@(end)
@(block blk)
@(fun x)
this line is skipped by accept
@(end)
.onom
Here, the
.code accept
initiates a control transfer which communicates the
.code a
and
.code b
variable bindings which are visible in that scope. This transfer is
intercepted by the function, and the treatment of the bindings follows
to the same rules as a normal return (which, in the given function, would
readily take place if the
.code accept
directive were removed). The
.code b
variable is suppressed, because
.code b
isn't a parameter of the function. Because
.code a
.B is
a parameter, and the argument to that parameter is the unbound
variable
.codn x ,
the effect is that
.code x
is bound to the value of
.codn a .
When the accept transfer reaches block
.code blk
and terminates it, all that emerges is the
.code x
binding carrying
.strn a .
If the
.code accept
invocation is removed from
.codn fun ,
then the function returns normally, producing the
.code x
binding. In that case, the line
.code "this line is skipped by accept"
isn't skipped since the block isn't being terminated; that
line must match something.
.coNP Interaction Between @ finally and the @ accept directive
If the exception handling
.code try
directive protected body is terminated by an
.code accept
transfer, and if that
.code try
has a
.code finally
block, then there is a special interaction between the
.code finally
block and the
.code accept
transfer.
The processing of the
.code finally
block detects that it has been triggered by an
.code accept
transfer. Consequently, it retrieves the current input position
and bindings from that transfer, and uses that position and those
bindings for the processing of the
.code finally
clauses.
If the
.code finally
clauses succeed, then the new input position and new bindings
are installed into the
.code accept
control transfer and that transfer resumes.
If the
.code finally
clauses fail, then the
.code accept
transfer is converted to a
.codn fail ,
with exactly the same block as its destination.
.coNP Vertical-Horizontal Mismatch Between @ block and @ accept
The
.codn block ,
.code accept
and
.code fail
directives comes in horizontal and vertical forms.
This creates the possibility than an
.code accept
in horizontal context targets a vertical
.code block
or
.IR "vice versa" ,
raising the question of how the input position
is treated. The semantics of this is defined.
If a horizontal-context
.code accept
targets a vertical block, the current position at the target block will be the
following line. That is to say, when the horizontal
.code accept
occurs, there is a current input line which may have unconsumed
material past the current position. If the
.code accept
communicates its input position to a vertical context, that unconsumed
material is skipped, as if it had been matched and the vertical position
is advanced to the next line.
If a horizontal block catches a vertical accept, it rejects that
.codn accept 's
position and stays at the current backtracking position for that block.
Only the bindings from the
.code accept
are retained.
.coNP Horizontal-Horizontal Mismatch between @ block and @ accept
It is possible for a horizontal
.code accept
to terminate in a horizontal block which is processing
a different line of input (or even a different input stream).
This situation is treated the same way as vertical accept terminating
in a horizontal block: the position communicated by
.code accept
is ignored, and only the bindings are taken.
.SS* Functions
.NP* Overview
\*(TX functions allow a query to be structured to avoid repetition.
On a theoretical note, because
\*(TX functions support recursion, functions enable \*(TX to match some
kinds of patterns which exhibit self-embedding, or nesting,
and thus cannot be matched by a regular language.
Functions in \*(TX are not exactly like functions in mathematics or functional
languages, and are not like procedures in imperative programming languages.
They are not exactly like macros either. What it means for a
\*(TX function to take arguments and produce a result is different from
the conventional notion of a function.
A \*(TX function may have one or more parameters. When such a function is
invoked, an argument must be specified for each parameter. However, a special
behavior is at play here. Namely, some or all of the argument expressions may
be unbound variables. In that case, the corresponding parameters behave like
unbound variables also. Thus \*(TX function calls can transmit the "unbound"
state from argument to parameter.
It should be mentioned that functions have access to all bindings that are
visible in the caller; functions may refer to variables which are not
mentioned in their parameter list.
With regard to returning, \*(TX functions are also unconventional. If the
function fails, then the function call is considered to have failed. The
function call behaves like a kind of match; if the function fails, then the
call is like a failed match.
When a function call succeeds, then the bindings emanating from that function
are processed specially. Firstly, any bindings for variables which do not
correspond to one of the function's parameters are thrown away. Functions may
internally bind arbitrary variables in order to get their job done, but only
those variables which are named in the function argument list may propagate out
of the function call. Thus, a function with no arguments can only indicate
matching success or failure, but not produce any bindings. Secondly,
variables do not propagate out of the function directly, but undergo
a renaming. For each parameter which went into the function as an unbound
variable (because its corresponding argument was an unbound variable),
if that parameter now has a value, that value is bound onto the corresponding
argument.
Example:
.verb
@(define collect-words (list))
@(coll)@{list /[^ \et]+/}@(end)
@(end)
.brev
The above function
.code collect-words
contains a query which collects words from a
line (sequences of characters other than space or tab), into the list variable
called
.codn list .
This variable is named in the parameter list of the function,
therefore, its value, if it has one, is permitted to escape from the function
call.
Suppose the input data is:
.verb
Fine summer day
.brev
and the function is called like this:
.verb
@(collect-words wordlist)
.brev
The result (with
.codn "txr -B" )
is:
.verb
wordlist[0]=Fine
wordlist[1]=summer
wordlist[1]=day
.brev
How it works is that in the function call
.codn "@(collect-words wordlist)" ,
.code wordlist
is an unbound variable. The parameter corresponding to that
unbound variable is the parameter
.codn list .
Therefore, that parameter
is unbound over the body of the function. The function body collects the
words of
.str Fine summer day
into the variable
.codn list ,
and then
yields the that binding. Then the function call completes by
noticing that the function parameter
.code list
now has a binding, and
that the corresponding argument
.code wordlist
has no binding. The binding
is thus transferred to the
.code wordlist
variable. After that, the
bindings produced by the function are thrown away. The only enduring
effects are:
.IP -
the function matched and consumed some input; and
.IP -
the function succeeded; and
.IP -
the
.code wordlist
variable now has a binding.
.PP
Another way to understand the parameter behavior is that function
parameters behave like proxies which represent their arguments. If an argument
is an established value, such as a character string or bound variable, the
parameter is a proxy for that value and behaves just like that value. If an
argument is an unbound variable, the function parameter acts as a proxy
representing that unbound variable. The effect of binding the proxy is
that the variable becomes bound, an effect which is settled when the
function goes out of scope.
Within the function, both the original variable and the proxy are
visible simultaneously, and are independent. What if a function binds both of
them? Suppose a function has a parameter called
.codn P ,
which is called with an argument
.codn A ,
which is an unbound variable, and then, in the function, both
.code A
and
.code P
bound. This is
permitted, and they can even be bound to different values. However, when the
function terminates, the local binding of A simply disappears (because
the symbol
.code A
is not among the parameters of the function).
Only the value bound to
.code P
emerges, and is bound to
.codn A ,
which still appears unbound at that point. The
.code P
binding disappears also, and the net effect is that
.code A
is now bound. The "proxy" binding of
.code A
through the parameter
.code P
"wins" the conflict with the direct binding.
.NP* Definition Syntax
Function definition syntax comes in two flavors: vertical and horizontal.
Horizontal definitions actually come in two forms, the distinction
between which is hardly noticeable, and the need for which is
made clear below.
A function definition begins with a
.code "@(define ...)"
directive. For vertical
functions, this is the only element in a line.
The
.code define
symbol must be followed by a symbol, which is the name of the
function being defined. After the symbol, there is a parenthesized optional
argument list. If there is no such list, or if the list is specified as
.code ()
or
the symbol
.code nil
then the function has no parameters. Examples of valid
.code define
syntax are:
.verb
@(define foo)
@(define bar ())
@(define match (a b c))
.brev
If the
.code define
directive is followed by more material on the same line, then
it defines a horizontal function:
.verb
@(define match-x)x@(end)
.brev
If the define is the sole element in a line, then it
is a vertical function, and the function definition continues below:
.verb
@(define match-x)
x
@(end)
.brev
The difference between the two is that a horizontal function matches
characters within a line, whereas a vertical function matches lines
within a stream. The former
.code match-x
matches the character
.codn x ,
advancing
to the next character position. The latter
.code match-x
matches a line consisting
of the character
.codn x ,
advancing to the next line.
Material between
.code @(define)
and
.code @(end)
is the function body. The define
directive may be followed directly by the
.code @(end)
directive, in which case the
function has an empty body.
Functions may be nested within function bodies. Such local functions have
dynamic scope. They are visible in the function body in which they are defined,
and in any functions invoked from that body.
The body of a function is an anonymous block. (See Blocks above).
.NP* Two Forms of The Horizontal Function
If a horizontal function is defined as the only element of a line,
it may not be followed by additional material. The following
construct is erroneous:
.verb
@(define horiz (x))@foo:@bar@(end)lalala
.brev
This kind of definition is actually considered to be in the vertical context,
and like other directives that have special effects and that do not match
anything, it does not consume a line of input. If the above syntax were
allowed, it would mean that the line would not only define a function but also
match
.codn "lalala" .
This would, in turn, would mean that the
.code @(define)...@(end)
is
actually in horizontal mode, and so it matches a span of zero characters within
a line (which means that is would require a line of input to match: a
surprising behavior for a non-matching directive!)
A horizontal function can be defined in an actual horizontal context. This
occurs if its is in a line where it is preceded by other material.
For instance:
.verb
X@(define fun)...@(end)Y
.brev
This is a query line which must match the text
.codn XY .
It also defines the function
.codn fun .
The main use of this form is for nested horizontal functions:
.verb
@(define fun)@(define local_fun)...@(end)@(end)
.brev
.NP* Vertical-Horizontal Overloading
A function of the same name may be defined as both vertical and horizontal.
Both functions are available at the same time. Which one is used by
a call is resolved by context. See the section Vertical Versus Horizontal Calls
below.
.NP* Call Syntax
A function is invoked by compound directive whose first symbol is the name of
that function. Additional elements in the directive are the arguments.
Arguments may be symbols, or other objects like string and character
literals, quasiliterals ore regular expressions.
Example:
.IP code:
.mono
\ @(define pair (a b))
@a @b
@(end)
@(pair first second)
@(pair "ice" cream)
.onom
.IP data:
.mono
\ one two
ice milk
.onom
.IP result:
.mono
\ first="one"
second="two"
cream="milk"
.onom
.PP
The first call to the function takes the line
.strn "one two" .
The parameter
.code a
takes
.str one
and parameter
.code b
takes
.strn two .
These are rebound to the arguments
.code first
and
.codn second .
The second call to the function binds the a parameter to the word
.strn "ice" ,
and the
.code b
is unbound, because the
corresponding argument
.code cream
is unbound. Thus inside the function,
.code a
is forced to match
.codn "ice" .
Then a space is matched and
.code b
collects the text
.strn milk .
When the function returns, the unbound
.str cream
variable gets this value.
If a symbol occurs multiple times in the argument list, it constrains
both parameters to bind to the same value. That is to say, all parameters
which, in the body of the function, bind a value, and which are all derived
from the same argument symbol must bind to the same value. This is settled when
the function terminates, not while it is matching. Example:
.IP code:
.mono
\ @(define pair (a b))
@a @b
@(end)
@(pair same same)
.onom
.IP data:
.mono
\ one two
.onom
.IP result:
.mono
\ [query fails]
.onom
.PP
Here the query fails because
.code a
and
.code b
are effectively proxies for the same unbound variable
.code same
and are bound to different values, creating a conflict which
constitutes a match failure.
.NP* Vertical Versus Horizontal Calls
A function call which is the only element of the query line in
which it occurs is ambiguous. It can go either to a vertical
function or to the horizontal one. If both are defined, then
it goes to the vertical one.
Example:
.IP code:
.mono
\ @(define which (x))@(bind x "horizontal")@(end)
@(define which (x))
@(bind x "vertical")
@(end)
@(which fun)
.onom
.IP result:
.mono
\ fun="vertical"
.onom
.PP
Not only does this call go to the vertical function, but
it is in a vertical context.
If only a horizontal function is defined, then that is the one which is called,
even if the call is the only element in the line. This takes place in a
horizontal character-matching context, which requires a line of input which can
be traversed:
Example:
.IP code:
.mono
\ @(define which (x))@(bind x "horizontal")@(end)
@(which fun)
.onom
.IP data:
.mono
\ ABC
.onom
.IP result:
.mono
\ [query fails]
.onom
.PP
The query fails because since
.code "@(which fun)"
is in horizontal mode,
it matches characters in a line. Since the function body consists
only of
.code "@(bind ...)"
which doesn't match any characters, the function
call requires an empty line to match. The line
.code ABC
is not empty,
and so there is a matching failure. The following
example corrects this:
Example:
.IP code:
.mono
\ @(define which (x))@(bind x "horizontal")@(end)
@(which fun)
.onom
.IP data:
.mono
\ [empty line]
.onom
.IP result:
.mono
\ fun="horizontal"
.onom
.PP
A call made in a clearly horizontal context will prefer the
horizontal function, and only fall back on the vertical one
if the horizontal one doesn't exist. (In this fall-back case,
the vertical function is called with empty data; it is useful
for calling vertical functions which process arguments and
produce values.)
In the next example, the call is followed by trailing material,
placing it in a horizontal context. Leading material will
do the same thing:
Example:
.IP code:
.mono
\ @(define which (x))@(bind x "horizontal")@(end)
@(define which (x))
@(bind x "vertical")
@(end)
@(which fun)B
.onom
.IP data:
.mono
\ B
.onom
.IP result:
.mono
\ fun="horizontal"
.onom
.PP
.NP* Local Variables
As described earlier, variables bound in a function body which are not
parameters of the function are discarded when the function returns. However,
that, by itself, doesn't make these variables local, because pattern functions
have visibility to all variables in their calling environment. If a variable
.code x
exists already when a function is called, then an attempt to bind it inside a
function may result in a failure. The
.code local
directive must be used in a
pattern function to list which variables are local.
Example:
.verb
@(define path (path))@\e
@(local x y)@\e
@(cases)@\e
(@(path x))@(path y)@(bind path `(@x)@y`)@\e
@(or)@\e
@{x /[.,;'!?][^ \et\ef\ev]/}@(path y)@(bind path `@x@y`)@\e
@(or)@\e
@{x /[^ .,;'!?()\et\ef\ev]/}@(path y)@(bind path `@x@y`)@\e
@(or)@\e
@(bind path "")@\e
@(end)@\e
@(end)
.brev
This is a horizontal function which matches a path, which lands into four
recursive cases. A path can be parenthesized path followed by a path; it can be
a certain character followed by a path, or it can be empty
This function ensures that the variables it uses internally,
.code x
and
.codn y ,
do not have anything to do with any inherited bindings for
.code x
and
.codn y .
Note that the function is recursive, which cannot work without
.code x
and
.code y
being local, even if no such bindings exist prior to the top-level invocation of the
function. The invocation
.code "@(path x)"
causes
.code x
to be bound, which is
visible inside the invocation
.codn "@(path y)" ,
but that invocation needs to have its own binding of
.code x
for local use.
.NP* Nested Functions
Function definitions may appear in a function. Such definitions
are visible in all functions which are invoked from the body
(and not necessarily enclosed in the body). In other words, the
scope is dynamic, not lexical. Inner definitions shadow outer
definitions. This means that a caller can redirect the function
calls that take place in a callee, by defining local functions
which capture the references.
Example:
.IP code:
.mono
\ @(define which)
@ (fun)
@(end)
@(define fun)
@ (output)
top-level fun!
@ (end)
@(end)
@(define callee)
@ (define fun)
@ (output)
local fun!
@ (end)
@ (end)
@ (which)
@(end)
@(callee)
@(which)
.onom
.IP output:
.mono
\ local fun!
top-level fun!
.onom
.PP
Here, the function
.code which
is defined which calls
.codn fun .
A top-level definition of
.code fun
is introduced which
outputs
.strn "top-level fun!" .
The function
.code callee
provides its own local
definition of
.code fun
which outputs
.str "local fun!"
before calling
.codn which .
When
.code callee
is invoked, it calls
.codn which ,
whose
.code @(fun)
call is routed to callee's
local definition. When
.code which
is called directly from the top level, its
.code fun
call goes to the top-level definition.
.NP* Indirect Calls
Function indirection may be performed using the
.code call
directive. If
.meta fun-expr
is an expression which evaluates to a symbol, and
that symbol names a function which takes no arguments, then
.verb
@(call fun-expr)
.brev
may be used to invoke the function. Additional
expressions may be supplied which specify arguments.
Example 1:
.mono
\ @(define foo (arg))
@(bind arg "abc")
@(end)
@(call @'foo b)
.onom
In this example, the effect is that
.code foo
is invoked, and
.code b
ends up bound to
.strn abc .
The
.code call
directive here uses the
.code @'foo
expression to calculate the name of the function to be invoked.
The
.code @
symbol indicates that the expression which follows is \*(TL ,
and
.code 'foo
is the \*(TL syntax for quoting a symbol. (See the
.code quote
operator).
This particular
.code call
expression can just be replaced by the direct invocation
syntax
.codn "@(foo b)" .
The power of
.code call
lies in being able to specify the function as a value which
comes from elsewhere in the program, as in the following example.
.mono
\ @(define foo (arg))
@(bind arg "abc")
@(end)
@(bind f @'foo)
@(call f b)
.onom
Here the
.code call
directive obtains the name of the function from the
.code f
variable.
Note that function names are resolved to functions in the environment
that is apparent at the point in execution where the
.code call
takes place. The directive
.code "@(call f args ...)"
is precisely equivalent to
.code "@(s args ...)"
if, at the point of the call,
.code f
is a variable which holds the symbol
.code s
and symbol
.code s
is defined as a function. Otherwise it is erroneous.
.SS* Modularization
.dirs load include
The syntax of the
.code load
and
.code include
directives is:
.mono
.mets @(load << expr )
.mets @(include << expr )
.onom
Where
.meta expr
is a Lisp expression that
evaluates to a string giving the path of the file to load.
Firstly, the path given by
.meta expr
is converted to an effective path, as follows.
If the value of the
.code *load-path*
variable has a current value which is not
.code nil
and the path given in
.meta expr
is pure relative according to the
.code pure-rel-path-p
function, then the effective path is interpreted taken relative
to the directory portion of the path which is stored in
.codn *load-path* .
If
.code *load-path*
is nil, or the load path is not pure relative, then the
path is taken as-is as the effective path.
Next, an attempt is made to open the file for processing, in
almost exactly the same manner as by the \*(TL function
.codn load .
The difference is that if the effective path is unsuffixed,
then the
.code .txr
suffix is added to it, and that resulting path is tried first,
and if it succeeds, then the file is treated as \*(TX Pattern
Language syntax.
If that fails, then the suffix
.code .tlo
is tried, and so forth, as described for the
.code load
function.
Both the
.code load
and
.code include
directives bind the
.code *load-path*
variable to the path of the loaded file just before parsing syntax from it,
The
.code *package*
variable is also given a new dynamic binding, whose value is the
same as the existing binding. These bindings are removed when the
load operation completes, restoring the prior values of these
variables.
If the file opened for processing is \*(TL source, or
a compiled \*(TL file, then it is processed in the manner
described for the
.code load
function.
Different requirements apply to the processing of the file under the
.code load
and
.code include
directives.
The
.code include
directive performs the processing of the file at parse time. If the
file being processed is \*(TX Pattern Language, then it is parsed,
and then its syntax replaces the
.code include
directive, as if it had originally appeared in its place.
If a \*(TL source or a compiled \*(TL file is processed by
.code include
then the
.code include
directive is removed from the syntax.
The
.code load
directive performs the processing of the file at evaluation time.
Evaluation time
occurs after a \*(TX program is read from beginning to end and parsed.
That is to say, when a \*(TX query is parsed, any embedded
.code "@(load ...)"
forms in it are parsed and constitute part of its syntax tree.
They are executed when that query is executed, whenever its execution
reaches those
.code load
directives. When the
.code load
directive processes \*(TX Pattern Language syntax, it parses
the file in its entirety and then executes that file's directives
against the current input position. Repeated executions of the
same
.code load
directive result in repeated processing of the file.
Note: the
.code include
directive is useful for loading \*(TX files which contain Lisp macros
which are needed by the parent program. The parent program cannot use
.code load
to bring in macros because macros are required during expansion, which
takes place prior to evaluation time, whereas
.code load
doesn't execute until evaluation time.
See also: the
.codn self-path ,
.code stdlib
and
.code *load-path*
variables in \*(TL.
.SS* Output
.NP* Introduction
A \*(TX query may perform custom output. Output is performed by
.code output
clauses,
which may be embedded anywhere in the query, or placed at the end. Output
occurs as a side effect of producing a part of a query which contains an
.code @(output)
directive, and is executed even if that part of the query ultimately
fails to find a match. Thus output can be useful for debugging.
An
.code output
clause specifies that its output goes to a file, pipe, or (by
default) standard output. If any output clause is executed whose destination is
standard output, \*(TX makes a note of this, and later, just prior to
termination, suppresses the usual printing of the variable bindings or the word
false.
.dir output
The syntax of the
.code @(output)
directive is:
.mono
.mets @(output [ < destination ] { < bool-keyword | < keyword < value }* )
.
. one or more output directives or lines
.
@(end)
.onom
If the directive has arguments, then the first one is evaluated.
If it is an object other than a keyword symbol, then it specifies
the optional
.metn destination .
Any remaining arguments after the optional destination are
the keyword list. If the destination is missing, then the
entire argument list is a keyword list.
The
.meta destination
argument,
if present,
is treated as a \*(TL expression and evaluated.
The resulting value is taken as the output destination. The value may be a
string which gives the path name of a file to open for output. Otherwise,
the destination must be a stream object.
The keyword list consists of a mixture of Boolean keywords which
do not have an argument, or keywords with arguments.
The following Boolean keywords are supported:
.coIP :nothrow
The
.code output
directive throws an exception if the output destination
cannot be opened, unless the
.code :nothrow
keyword is present, in which
case the situation is treated as a match failure.
Note that since command pipes are processes that report errors
asynchronously, a failing command will not throw an immediate exception that
can be suppressed with
.codn :nothrow .
This is for synchronous errors, like
trying to open a destination file, but not having permissions, etc.
.coIP :append
This keyword is meaningful for files, specifying append mode: the output is to
be added to the end of the file rather than overwriting the file.
The following value keywords are supported:
.coIP :filter
The argument can be a symbol, which specifies a filter to be applied to
the variable substitutions occurring within the
.code output
clause.
The argument can also be a list of filter symbols, which specifies
that multiple filters are to be applied, in left to right order.
See the later sections Output Filtering below, and The Deffilter Directive.
.coIP :into
The argument of
.code :into
is a symbol which denotes a variable.
The output will go into that variable. If the variable is unbound,
it will be created. Otherwise, its contents are overwritten
unless the
.code :append
keyword is used. If
.code :append
is used, then
the new content will be appended to the previous content of
the variable, after flattening the content to a list,
as if by the
.code flatten
directive.
.coIP :named
The argument of
.code :named
is a symbol which denotes a variable.
The file or pipe stream which is opened for the output is
stored in this variable, and is not closed at the end of the
output block. This allows a subsequent output block to continue
output on the same stream, which is possible using the
next two keywords,
.code :continue
or
.codn :finish .
A new binding is established for the variable, even if it
already has an existing binding.
.coIP :continue
A destination should not be specified if
.code :continue
is used. The argument of
.code :continue
is an expression, such as a variable name, that evaluates to a
stream object. That stream object is used for the output block.
At the end of the output block, the stream is flushed, but not
closed. A usage example is given in the documentation for the Close Directive
below.
.coIP :finish
A destination should not be specified if
.code :finish
is used. The argument of
.code :finish
is an expression, such as a variable name, that evaluates to a
stream object. That stream object is used for the output block.
At the end of the output block, the stream is closed.
An example is given in the documentation for the Close Directive
below.
.NP* Output Text
Text in an output clause is not matched against anything, but is output
verbatim to the destination file, device or command pipe.
.NP* Output Variables
Variables occurring in an output clause do not match anything; instead
their contents are output.
A variable being output can be any object. If it is of a type other
than a list or string, it will be converted to a string as if by the
.code tostring
function in \*(TL.
A list is converted to a string in a special way: the elements are
individually converted to a string and then they are catenated together.
The default separator string is a single space: an alternate separation
can be specified as an argument in the brace substitution syntax.
Empty lists turn into an empty string.
Lists may be output within
.code @(repeat)
or
.code @(rep)
clauses. Each nesting of
these constructs removes one level of nesting from the list variables
that it contains.
In an output clause, the
.mono
.meti >> @{ name << number }
.onom
variable syntax generates fixed-width
field, which contains the variable's text. The absolute value of the
number specifies the field width. For instance
.code -20
and
.code 20
both specify a field
width of twenty. If the text is longer than the field, then it overflows the
field. If the text is shorter than the field, then it is left-adjusted within
that field, if the width is specified as a positive number, and right-adjusted
if the width is specified as negative.
An output variable may specify a filter which overrides any filter established
for the output clause. The syntax for this is
.mono
.meti @{NAME :filter << filterspec }.
.onom
The filter specification syntax is the same as in the output clause.
See Output Filtering below.
.NP* Output Variables: Indexing
Additional syntax is supported in output variables that does not appear
in pattern matching variables.
A square bracket index notation may be used to extract elements or
ranges from a variable, which works with strings, vectors and lists. Elements
are indexed from zero. This notation is only available in brace-enclosed
syntax, and looks like this:
.meIP <> @{name[ expr ]}
Extract the element at the position given by
.metn expr .
.meIP <> @{name[ expr1..expr2 ]}
Extract a range of elements from the position given by
.metn expr1 ,
up to
one position less than the position given by
.metn expr2 .
If the variable is a list, it is treated as a list substitution,
exactly as if it were the value of an unsubscripted list variable.
The elements of the list are converted to strings and catenated
together wit ha separator string between them, the default one being
a single space.
An alternate character may be given as a string argument in the brace
notation.
.PP
Example:
.verb
@(bind a ("a" "b" "c" "d"))
@(output)
@{a[1..3] "," 10}
@(end)
.brev
The above produces the text
.str b,c
in a field
.code 10
spaces wide. The
.code [1..3]
argument extracts a range of
.codn a ;
the
.str ","
argument specifies an alternate
separator string, and
.code 10
specifies the field width.
.NP* Output Substitutions
The brace syntax has another syntactic and semantic extension in
.code output
clauses. In place
of the symbol, an expression may appear. The value of that expression
is substituted.
Example:
.mono
@(bind a "foo")
@(output)
@{`@a:` -10}
.onom
Here, the quasiliteral expression
.code `@a:`
is evaluated, producing the string
.strn foo: .
This string is printed right-adjusted in a
.code 10
character field.
.dir repeat
The
.code repeat
directive generates repeated text from a "boilerplate",
by taking successive elements from lists. The syntax of repeat is
like this:
.verb
@(repeat)
.
.
main clause material, required
.
.
special clauses, optional
.
.
@(end)
.brev
.code repeat
has four types of special clauses, any of which may be
specified with empty contents, or omitted entirely. They are described
below.
.code repeat
takes arguments, also described below.
All of the material in the main clause and optional clauses
is examined for the presence of variables. If none of the variables
hold lists which contain at least one item, then no output is performed,
(unless the repeat specifies an
.code @(empty)
clause, see below).
Otherwise, among those variables which contain non-empty lists, repeat finds
the length of the longest list. This length of this list determines the number
of repetitions, R.
If the
.code repeat
contains only a main clause, then the lines of this clause is
output R times. Over the first repetition, all of the variables which, outside
of the repeat, contain lists are locally rebound to just their first item. Over
the second repetition, all of the list variables are bound to their second
item, and so forth. Any variables which hold shorter lists than the longest
list eventually end up with empty values over some repetitions.
Example: if the list
.code A
holds
.strn 1 ,
.str 2
and
.strn 3 ;
the list
.code B
holds
.strn A ,
.strn B ;
and the variable
.code C
holds
.strn X ,
then
.verb
@(repeat)
>> @C
>> @A @B
@(end)
.brev
will produce three repetitions (since there are two lists, the longest
of which has three items). The output is:
.verb
>> X
>> 1 A
>> X
>> 2 B
>> X
>> 3
.brev
The last line has a trailing space, since it is produced by
.strn "@A @B" ,
where
.code B
has an empty value. Since
.code C
is not a list variable, it
produces the same value in each repetition.
The special clauses are:
.coIP @(single)
If the
.code repeat
produces exactly one repetition, then the contents of this clause
are processed for that one and only repetition, instead of the main clause
or any other clause which would otherwise be processed.
.coIP @(first)
The body of this clause specifies an alternative body to be used for the first
repetition, instead of the material from the main clause.
.coIP @(last)
The body of this clause is used instead of the main clause for the last
repetition.
.coIP @(empty)
If the repeat produces no repetitions, then the body of this clause is output.
If this clause is absent or empty, the repeat produces no output.
.coIP "@(mod n m)"
The forms
.code n
and
.code m
are Lisp expressions that evaluate to integers. The value of
.code m
should be nonzero. The clause denoted this way is active if the repetition
modulo
.code m
is equal to
.codn n .
The first repetition is numbered zero.
For instance the clause headed by
.code "@(mod 0 2)"
will be used on repetitions
0, 2, 4, 6, ... and
.code "@(mod 1 2)"
will be used on repetitions 1, 3, 5, 7, ...
.coIP "@(modlast n m)"
The meaning of
.code n
and
.code m
is the same as in
.codn "@(mod n m)" ,
but one more condition
is imposed. This clause is used if the repetition modulo
.code m
is equal to
.codn n ,
and if it is the last repetition.
.PP
The precedence among the clauses which take an iteration is:
.codn "single > first > mod > modlast > last > main" .
That is if two or more of these
clauses can apply to a repetition, then the leftmost one in this precedence
list applies. For instance, if there is just a single repetition, then any of
these special clause types can apply to that repetition, since it is the only
repetition, as well as the first and last one. In this situation, if there is a
.code @(single)
clause present, then the repetition is processed using that clause.
Otherwise, if there is a
.code @(first)
clause present, that clause is used. Failing
that,
.code @(mod)
is used if there is such a clause and its numeric conditions
are satisfied. If there isn't, then
.code @(modlast)
clauses are considered, and if there
are none, or none of them activate, then
.code @(last)
is considered. Finally if none
of all these clauses are present or apply, then the repetition is processed
using the main clause.
Repeat supports arguments.
.mono
.mets @(repeat
.mets \ \ \ [:counter >> { symbol | >> ( symbol << expr )}]
.mets \ \ \ [:vars >> ({ symbol | >> ( symbol << expr )}*)])
.onom
The
.code :counter
argument designates a symbol which will behave as an integer
variable over the scope of the clauses inside the repeat. The variable provides
access to the repetition count, starting at zero, incrementing with each
repetition. If the the argument is given as
.mono
.meti >> ( symbol << expr )
.onom
then
.meta expr
is a Lisp expression whose value is taken as a displacement value which
is added to each iteration of the counter. For instance
.code ":counter (c 1)"
specifies a counter
.code c
which counts from 1.
The
.code :vars
argument specifies a list of variable name symbols
.meta symbol
or else pairs of the form
.mono
.meti >> ( symbol << init-form )
.onom
consisting of a variable name and Lisp expression. Historically, the former
syntax informed
.code repeat
about references to variables contained in Lisp code. This usage is no
longer necessary as of \*(TX 243, since the
.code repeat
construct walks Lisp code, identifying all free variables.
The latter syntax introduces a new pattern variable binding for
.meta symbol
over the scope of the
.code repeat
construct. The
.meta init-form
specifies a Lisp expression which is evaluated to produce the
binding's value.
The
.code repeat
directive then processes the list of variables, selecting from it
those which have a binding, either a previously existing binding or the
one just introduced. For each selected variable, repeat
will assume that the variable occurs in the repeat block and contains
a list to be iterated.
The variable binding syntax supported by
.code :vars
of the form
.mono
.meti >> ( symbol << init-form )
.onom
provides a solution for situations when it is necessary to iterate
over some list, but that list is the result of an expression, and not stored in
any variable. A repeat block iterates only over lists emanating from variables;
it does not iterate over lists pulled from arbitrary expressions.
Example: output all file names matching the
.code *.txr
pattern in the current directory:
.verb
@(output)
@(repeat :vars ((name (glob "*.txr"))))
@name
@(end)
@(end)
.brev
Prior to \*(TX 243, the simple variable binding syntax supported by
.code :vars
of the form
.meta symbol
binding was needed for situations in which \*(TL expressions which
reference variables were embedded in
.code @(repeat)
blocks. Variables references embedded in Lisp code were not identified
.codn @(repeat) .
For instance, the following produced no output, because no variables
were found in the
.code repeat
body:
.verb
@(bind trigraph ("abc" "def" "ghi"))
@(output)
@(repeat)
@(reverse trigraph)
@(end)
@(end)
.brev
There is a reference to
.meta list
but it's inside a Lisp
.code "(reverse lisp)"
expression that was not processed by
.codn repeat .
The solution was to mention
.meta list
via the
.code :vars
construct:
.verb
@(bind trigraph ("abc" "def" "ghi"))
@(output)
@(repeat :vars (trigraph))
@(reverse trigraph)
@(end)
@(end)
.brev
Then the repeat block would iterates over list, producing the output:
.verb
cba
fed
igh
.brev
This workaround is no longer required as of \*(TX 243; the output
is produced by the first example, without
.codn :vars .
.coNP Nested @ repeat directives
If a
.code repeat
clause encloses variables which hold multidimensional lists,
those lists require additional nesting levels of repeat (or rep).
It is an error to attempt to output a list variable which has not been
decimated into primary elements via a repeat construct.
Suppose that a variable
.code X
is two-dimensional (contains a list of lists).
.code X
must be twice nested in a
.codn repeat .
The outer repeat will traverse the lists
contained in
.codn X .
The inner repeat will traverse the elements of each of these
lists.
A nested repeat may be embedded in any of the clauses of a repeat,
not only the main clause.
.dir rep
The
.code rep
directive is similar to
.codn repeat .
Whereas
.code repeat
is line oriented,
.code rep
generates material within a line. It has all the same clauses,
but everything is specified within one line:
.verb
@(rep)... main material ... .... special clauses ...@(end)
.brev
More than one
.code @(rep)
can occur within a line, mixed with other material.
A
.code @(rep)
can be nested within a
.code @(repeat)
or within another
.codn @(rep) .
Also,
.code @(rep)
accepts the same
.code :counter
and
.code :vars
arguments.
.coNP @ repeat and @ rep Examples
Example 1: show the list
.code L
in parentheses, with spaces between
the elements, or the word
.code EMPTY
if the list is empty:
.verb
@(output)
@(rep)@L @(single)(@L)@(first)(@L @(last)@L)@(empty)EMPTY@(end)
@(end)
.brev
Here, the
.code @(empty)
clause specifies
.codn EMPTY .
So if there are no repetitions,
the text
.code EMPTY
is produced. If there is a single item in the list
.codn L ,
then
.code @(single)(@L)
produces that item between parentheses. Otherwise
if there are two or more items, the first item is produced with
a leading parenthesis followed by a space by
.code @(first)(@L
and the last item is produced with a closing parenthesis:
.codn @(last)@L) .
All items in between are emitted with a trailing space by
the main clause:
.codn @(rep)@L .
Example 2: show the list L like Example 1 above, but the empty list is
.codn () .
.verb
@(output)
(@(rep)@L @(last)@L@(end))
@(end)
.brev
This is simpler. The parentheses are part of the text which
surrounds the
.code @(rep)
construct, produced unconditionally.
If the list
.code L
is empty, then
.code @(rep)
produces no output, resulting in
.codn () .
If the list
.code L
has one or more items, then they are produced with
spaces each one, except the last which has no space.
If the list has exactly one item, then the
.code @(last)
applies to it
instead of the main clause: it is produced with no trailing space.
.dir close
The syntax of the
.code close
directive is:
.mono
.mets @(close << expr )
.onom
Where
.meta expr
evaluates to a stream. The
.code close
directive can be
used to explicitly close streams created using
.mono
.meti @(output ... :named << var )
.onom
syntax, as an alternative to
.mono
.meti @(output :finish << expr ).
.onom
Examples:
Write two lines to
.str foo.txt
over two output blocks using
a single stream:
.verb
@(output "foo.txt" :named foo)
Hello,
@(end)
@(output :continue foo)
world!
@(end)
@(close foo)
.brev
The same as above, using
.code :finish
rather than
.code :continue
so that the stream is closed at the end of the second block:
.verb
@(output "foo.txt" :named foo)
Hello,
@(end)
@(output :finish foo)
world!
@(end)
.brev
.NP* Output Filtering
Often it is necessary to transform the output to preserve its meaning
under the convention of a given data format. For instance, if a piece of
text contains the characters
.code <
or
.codn > ,
then if that text is being
substituted into HTML, these should be replaced by
.code <
and
.codn > .
This is what filtering is for. Filtering is applied to the contents of output
variables, not to any template text.
\*(TX implements named filters. Built-in filters are named by keywords, given
below. User-defined filters are possible, however. See notes on the deffilter
directive below.
Instead of a filter name, the syntax
.mono
.meti (fun << name )
.onom
can be used. This
denotes that the function called
.meta name
is to be used as a filter.
This is described in the next section Function Filters below.
Built-in filters named by keywords:
.coIP :tohtml
Filter text to HTML, representing special characters using HTML
ampersand sequences. For instance
.code >
is replaced by
.codn > .
.coIP :tohtml*
Filter text to HTML, representing special characters using HTML
ampersand sequences. Unlike
.codn :tohtml ,
this filter doesn't treat the single and double quote characters.
It is not suitable for preparing HTML fragments which end up
inserted into HTML tag attributes.
.coIP :fromhtml
Filter text with HTML codes into text in which the codes are replaced by the
corresponding characters. For instance
.code >
is replaced by
.codn > .
.coIP :upcase
Convert the 26 lower case letters of the English alphabet to upper case.
.coIP :downcase
Convert the 26 upper case letters of the English alphabet to lower case.
.coIP :frompercent
Decode percent-encoded text. Character triplets consisting
of the
.code %
character followed by a pair of hexadecimal digits (case insensitive)
are are converted to bytes having the value represented by the hexadecimal
digits (most significant nybble first). Sequences of one or more such bytes are
treated as UTF-8 data and decoded to characters.
.coIP :topercent
Convert to percent encoding according to RFC 3986. The text is first converted
to UTF-8 bytes. The bytes are then converted back to text as follows.
Bytes in the range 0 to 32, and 127 to 255 (note: including the ASCII DEL),
bytes whose values correspond to ASCII characters which are listed by RFC 3986
as being in the "reserved set", and the byte value corresponding to the
ASCII
.code %
character are encoded as a three-character sequence consisting
of the
.code %
character followed by two hexadecimal digits derived from the
byte value (most significant nybble first, upper case). All other bytes
are converted directly to characters of the same value without any such
encoding.
.coIP :fromurl
Decode from URL encoding, which is like percent encoding, except that
if the unencoded
.code +
character occurs, it is decoded to a space character. The
.code %20
sequence still decodes to space, and
.code %2B
to the
.code +
character.
.coIP :tourl
Encode to URL encoding, which is like percent encoding except that
a space maps to
.code +
rather than
.codn %20 .
The
.code +
character, being in the
reserved set, encodes to
.codn %2B .
.coIP :frombase64
Decode from the Base 64 encoding described in RFC 4648, section 5.
.coIP :tobase64
Encode to the Base 64 encoding described in RFC 4648, section 5.
.coIP :frombase64url
Decode from the Base64 encoding described in RFC 4648, section 6.
This uses the URL and filename safe alphabet, in which the
.code +
(plus) and
.code /
(slash) characters used in regular Base 64 are respectively replaced with
.code -
(minus) and
.code _
(underscore).
.coIP :tobase64url
Encode to the Base 64 encoding described in RFC 4648, section 6. See
.code :frombase64url
above.
.coIP :tonumber
Converts strings to numbers. Strings that contain a period,
.code e
or
.code E
are converted to floating point as if by the Lisp function
.codn flo-str .
Otherwise they are converted to integer as if using
.code int-str
with a radix of 10.
Non-numeric junk results in the object
.codn nil .
.coIP :toint
Converts strings to integers as if using
.code int-str
with a radix of 10.
Non-numeric junk results in the object
.codn nil .
.coIP :tofloat
Converts strings to floating-point values as if using the function
.codn flo-str .
Non-numeric junk results in the object
.codn nil .
.coIP :hextoint
Converts strings to integers as if using
.code int-str
with a radix of 16.
Non-numeric junk results in the object
.codn nil .
.PP
Examples:
To escape HTML characters in all variable substitutions occurring in an
output clause, specify
.code ":filter :tohtml"
in the directive:
.verb
@(output :filter :tohtml)
...
@(end)
.brev
To filter an individual variable, add the syntax to the variable spec:
.verb
@(output)
@{x :filter :tohtml}
@(end)
.brev
Multiple filters can be applied at the same time. For instance:
.verb
@(output)
@{x :filter (:upcase :tohtml)}
@(end)
.brev
This will fold the contents of
.code x
to upper case, and then encode any special
characters into HTML. Beware of combinations that do not make sense.
For instance, suppose the original text is HTML, containing codes
like
.codn " .
The compound filter
.code "(:upcase :fromhtml)"
will not work
because
.code "
will turn to
.code "
which no longer be recognized by the
.code :fromhtml
filter, since the entity names in HTML codes
are case-sensitive.
Capture some numeric variables and convert to numbers:
.verb
@date @time @temperature @pressure
@(filter :tofloat temperature pressure)
@;; temperature and pressure can now be used in calculations
.brev
.NP* Function Filters
A function can be used as a filter. For this to be possible, the function must
conform to certain rules:
.IP 1.
The function must take two special arguments, which may be followed
by additional arguments.
.IP 2.
When the function is called, the first argument will be bound to a string,
and the second argument will be unbound. The function must produce a
value by binding it to the second argument. If the filter is to be used
as the final filter in a chain, it must produce a string.
.PP
For instance, the following is a valid filter function:
.verb
@(define foo_to_bar (in out))
@ (next :string in)
@ (cases)
foo
@ (bind out "bar")
@ (or)
@ (bind out in)
@ (end)
@(end)
.brev
This function binds the
.code out
parameter to
.str bar
if the in parameter
is
.strn foo ,
otherwise it binds the
.code out
parameter to a copy of the
.code in
parameter.
This is a simple filter.
To use the filter, use the syntax
.code "(:fun foo_to_bar)"
in place of a filter name.
For instance in the
.code bind
directive:
.verb
@(bind "foo" "bar" :lfilt (:fun foo_to_bar))
.brev
The above should succeed since the left side is filtered from
.str foo
to
.strn bar ,
so that there is a match.
Function filters can be used in a chain:
.verb
@(output :filter (:downcase (:fun foo_to_bar) :upcase))
...
@(end)
.brev
Here is a split function which takes an extra argument
which specifies the separator:
.verb
@(define split (in out sep))
@ (next :list in)
@ (coll)@(maybe)@token@sep@(or)@token@(end)@(end)
@ (bind out token)
@(end)
.brev
Furthermore, note that it produces a list rather than a string.
This function separates the argument in into tokens according to the
separator text carried in the variable
.codn sep .
Here is another function,
.codn join ,
which catenates a list:
.verb
@(define join (in out sep))
@ (output :into out)
@ (rep)@in@sep@(last)@in@(end)
@ (end)
@(end)
.brev
Now here is these two being used in a chain:
.verb
@(bind text "how,are,you")
@(output :filter (:fun split ",") (:fun join "-"))
@text
@(end)
.brev
Output:
.verb
how-are-you
.brev
When the filter invokes a function, it generates the first two arguments
internally to pass in the input value and capture the output. The remaining
arguments from the
.code "(:fun ...)"
construct are also passed to the function.
Thus the string objects
.str ","
and
.str "-"
are passed as the
.code sep
argument to
.code split
and
.codn join .
Note that
.code split
puts out a list, which
.code join
accepts. So the overall filter
chain operates on a string: a string goes into split, and a string comes out of
join.
.dir deffilter
The
.code deffilter
directive allows a query to define a custom filter, which
can then be used in
.code output
clauses to transform substituted data.
The syntax of
.code deffilter
is illustrated in this example:
.IP code:
.mono
\ @(deffilter rot13
("a" "n")
("b" "o")
("c" "p")
("d" "q")
("e" "r")
("f" "s")
("g" "t")
("h" "u")
("i" "v")
("j" "w")
("k" "x")
("l" "y")
("m" "z")
("n" "a")
("o" "b")
("p" "c")
("q" "d")
("r" "e")
("s" "f")
("t" "g")
("u" "h")
("v" "i")
("w" "j")
("x" "k")
("y" "l")
("z" "m"))
@(collect)
@line
@(end)
@(output :filter rot13)
@(repeat)
@line
@(end)
@(end)
.onom
.IP data:
.mono
\ hey there!
.onom
.IP output:
.mono
\ url gurer!
.onom
.PP
The
.code deffilter
symbol must be followed by the name of the filter to be defined,
followed by bind expressions which evaluate to lists of strings. Each list must
be at least two elements long and specifies one or more texts which are mapped
to a replacement text. For instance, the following specifies a telephone keypad
mapping from upper case letters to digits.
.verb
@(deffilter alpha_to_phone ("E" "0")
("J" "N" "Q" "1")
("R" "W" "X" "2")
("D" "S" "Y" "3")
("F" "T" "4")
("A" "M" "5")
("C" "I" "V" "6")
("B" "K" "U" "7")
("L" "O" "P" "8")
("G" "H" "Z" "9"))
@(deffilter foo (`@a` `@b`) ("c" `->@d`))
@(bind x ("from" "to"))
@(bind y ("---" "+++"))
@(deffilter sub x y)
.brev
The last deffilter has the same effect as the
.mono
@(deffilter sub ("from" "to") ("---" "+++"))
.onom
directive.
Filtering works using a longest match algorithm. The input is scanned from left
to right, and the longest piece of text is identified at every character
position which matches a string on the left hand side, and that text is
replaced with its associated replacement text. The scanning then continues
at the first character after the matched text.
If none of the strings matches at a given character position, then that
character is passed through the filter untranslated, and the scan continues at
the next character in the input.
Filtering is not in-place but rather instantiates a new text, and so
replacement text is not re-scanned for more replacements.
If a filter definition accidentally contains two or more repetitions of the
same left hand string with different right hand translations, the later ones
take precedence. No warning is issued.
.dir filter
The syntax of the
.code filter
directive is:
.verb
@(filter FILTER { VAR }+ )
.brev
A filter is specified, followed by one or more variables whose values
are filtered and stored back into each variable.
Example: convert
.codn a ,
.codn b ,
and
.code c
to upper case and HTML encode:
.verb
@(filter (:upcase :tohtml) a b c)
.brev
.SS* Exceptions
.NP* Introduction
The exceptions mechanism in \*(TX is another
disciplined form of non-local transfer, in addition to the blocks
mechanism (see Blocks above). Like blocks, exceptions provide a construct
which serves as the target for a dynamic exit. Both blocks and exceptions
can be used to bail out of deep nesting when some condition occurs.
However, exceptions provide more complexity. Exceptions are useful for
error handling, and \*(TX in fact maps certain error situations to exception
control transfers. However, exceptions are not inherently an error-handling
mechanism; they are a structured dynamic control transfer mechanism, one
of whose applications is error handling.
An exception control transfer (simply called an exception) is always identified
by a symbol, which is its type. Types are organized in a subtype-supertype
hierarchy. For instance, the
.code file-error
exception type is a subtype of the
.code error
type. This means that a file error is a kind of error. An exception
handling block which catches exceptions of type
.code error
will catch exceptions of
type
.codn file-error ,
but a block which catches
.code file-error
will not catch all
exceptions of type
.codn error .
A
.code query-error
is a kind of error, but not a kind of
.codn file-error .
The symbol
.code t
is the supertype of every type: every exception type
is considered to be a kind of
.codn t .
(Mnemonic:
.code t
stands for type, as in any type).
Exceptions are handled using
.code @(catch)
clauses within a
.code @(try)
directive.
In addition to being useful for exception handling, the
.code @(try)
directive
also provides unwind protection by means of a
.code @(finally)
clause,
which specifies query material to be executed unconditionally when
the try clause terminates, no matter how it terminates.
.dir try
The general syntax of the
.code try
directive is
.verb
@(try)
... main clause, required ...
... optional catch clauses ...
... optional finally clause
@(end)
.brev
A
.code catch
clause looks like:
.verb
@(catch TYPE [ PARAMETERS ])
.
.
.
.brev
and also this simple form:
.verb
@(catch)
.
.
.
.brev
which catches all exceptions, and is equivalent
to
.codn "@(catch t)" .
A
.code finally
clause looks like:
.verb
@(finally)
...
.
.
.brev
The main clause may not be empty, but the catch and finally may be.
A try clause is surrounded by an implicit anonymous block (see Blocks section
above). So for instance, the following is a no-op (an operation with no effect,
other than successful execution):
.verb
@(try)
@(accept)
@(end)
.brev
The
.code @(accept)
causes a successful termination of the implicit anonymous block.
Execution resumes with query lines or directives which follow, if any.
.code try
clauses and blocks interact. For instance, an
.code accept
from within
a try clause invokes a
.codn finally .
.IP code:
.mono
\ @(block foo)
@ (try)
@ (accept foo)
@ (finally)
@ (output)
bye!
@ (end)
@ (end)
.onom
.IP output:
.mono
\ bye!
.onom
.PP
How this works: the
.code try
block's main clause is
.codn "@(accept foo)" .
This causes
the enclosing block named
.code foo
to terminate, as a successful match.
Since the
.code try
is nested within this block, it too must terminate
in order for the block to terminate. But the try has a
.code finally
clause,
which executes unconditionally, no matter how the try block
terminates. The
.code finally
clause performs some output, which is seen.
Note that
.code finally
interacts with
.code accept
in subtle ways not revealed in this example; they are documented in
the description of
.code accept
under the
.code block
directive documentation.
.coNP The @ finally clause
A
.code try
directive can terminate in one of three ways. The main clause
may match successfully, and possibly yield some new variable bindings.
The main clause may fail to match. Or the main clause may be terminated
by a non-local control transfer, like an exception being thrown or a block
return (like the block foo example in the previous section).
No matter how the
.code try
clause terminates, the
.code finally
clause is processed.
The
.code finally
clause is itself a query which binds variables, which leads to
questions: what happens to such variables? What if the
.code finally
block fails
as a query? As well as: what if a
.code finally
clause itself initiates a
control transfer? Answers follow.
Firstly, a
.code finally
clause will contribute variable bindings only if the main
clause terminates normally (either as a successful or failed match).
If the main clause of the
.code try
block successfully matches, then the
.code finally
block continues
matching at the next position in the data, and contributes bindings.
If the main clause fails, then the
.code finally
block tries to match at the same position where the main clause failed.
The overall
.code try
directive succeeds as a match if either the main clause
or the
.code finally
clause succeed. If both fail, then the
.code try
directive is a failed match.
Example:
.IP code:
.mono
\ @(try)
@a
@(finally)
@b
@(end)
@c
.onom
.IP data:
.mono
\ 1
2
3
.onom
.IP result:
.mono
\ a="1"
b="2"
c="3"
.onom
.PP
In this example, the main clause of the
.code try
captures line
.str 1
of the data as
variable
.codn a ,
then the finally clause captures
.str 2
as
.codn b ,
and then the query continues with the
.code @c
line after try block, so that
.code c
captures
.strn "3" .
Example:
.IP code:
.mono
\ @(try)
hello @a
@(finally)
@b
@(end)
@c
.onom
.IP data:
.mono
\ 1
2
.onom
.IP result:
.mono
\ b="1"
c="2"
.onom
.PP
In this example, the main clause of the
.code try
fails to match, because
the input is not prefixed with
.strn "hello " .
However, the
.code finally
clause
matches, binding
.code b
to
.strn "1" .
This means that the try block is a successful
match, and so processing continues with
.code @c
which captures
.strn "2" .
When
.code finally
clauses are processed during a non-local return,
they have no externally visible effect if they do not bind variables.
However, their execution makes itself known if they perform side effects,
such as output.
A
.code finally
clause guards only the main clause and the
.code catch
clauses. It does not
guard itself. Once the finally clause is executing, the
.code try
block is no
longer guarded. This means if a nonlocal transfer, such as a block accept
or exception, is initiated within the finally clause, it will not re-execute
the
.code finally
clause. The
.code finally
clause is simply abandoned.
The disestablishment of blocks and
.code try
clauses is properly interleaved
with the execution of
.code finally
clauses. This means that all surrounding
exit points are visible in a
.code finally
clause, even if the
.code finally
clause
is being invoked as part of a transfer to a distant exit point.
The finally clause can make a control transfer to an exit point which
is more near than the original one, thereby "hijacking" the control
transfer. Also, the anonymous block established by the
.code try
directive
is visible in the
.code finally
clause.
Example:
.verb
@(try)
@ (try)
@ (next "nonexistent-file")
@ (finally)
@ (accept)
@ (end)
@(catch file-error)
@ (output)
file error caught
@ (end)
@(end)
.brev
In this example, the
.code @(next)
directive throws an exception of type
.codn file-error ,
because the given file does not exist. The exit point for this exception is the
.code "@(catch file-error)"
clause in the outer-most
.code try
block. The inner block is
not eligible because it contains no catch clauses at all. However, the inner
try block has a finally clause, and so during the processing of this
exception which is headed for
.codn "@(catch file-error)" ,
the
.code finally
clause performs an anonymous
.codn accept .
The exit point for that
.code accept
is the anonymous block
surrounding the inner
.codn try .
So the original
transfer to the
.code catch
clause is thereby abandoned. The inner
.code try
terminates
successfully due to the
.codn accept ,
and since it constitutes the main clause of the outer try,
that also terminates successfully. The
.str "file error caught"
message is never printed.
.c1NP catch clauses
.code catch
clauses establish their associated
.code try
blocks as potential exit points for
exception-induced control transfers (called "throws").
A
.code catch
clause specifies an optional list of symbols which represent
the exception types which it catches. The
.code catch
clause will catch
exceptions which are a subtype of any one of those exception types.
If a
.code try
block has more than one
.code catch
clause which can match a given
exception, the first one will be invoked.
When a
.code catch
is invoked, it is understood that the main clause did
not terminate normally, and so the main clause could not have produced any
bindings.
.code catch
clauses are processed prior to
.codn finally .
If a
.code catch
clause itself throws an exception, that exception cannot
be caught by that same clause or its siblings in the same try block.
The
.code catch
clauses of that block are no longer visible at that point.
Nevertheless, the
.code catch
clauses are still protected by the finally block.
If a catch clause throws, or otherwise terminates, the
.code finally
block is still processed.
If a
.code finally
block throws an exception, then it is simply aborted;
the remaining directives in that block are not processed.
So the success or failure of the
.code try
block depends on the behavior of the
.code catch
clause or the
.code finally
clause, if there is one. If either of them succeed, then the try
block is considered a successful match.
Example:
.IP code:
.mono
\ @(try)
@ (next "nonexistent-file")
@ x
@ (catch file-error)
@a
@(finally)
@b
@(end)
@c
.onom
.IP data:
.mono
\ 1
2
3
.onom
.IP result:
.mono
\ a="1"
b="2"
c="3"
.onom
.PP
Here, the
.code try
block's main clause is terminated abruptly by a
.code file-error
exception from the
.code @(next)
directive. This is handled by the
.code catch
clause, which binds variable
.code a
to the input line
.strn 1 .
Then the
.code finally
clause executes, binding
.code b
to
.strn 2 .
The
.code try
block then terminates successfully, and so
.code @c
takes
.strn "3" .
.coNP @ catch Clauses with Parameters
A
.code catch
clause may have parameters following the type name, like this:
.verb
@(catch pair (a b))
.brev
To write a catch-all with parameters, explicitly write the
master supertype t:
.verb
@(catch t (arg ...))
.brev
Parameters are useful in conjunction with
.codn throw .
The built-in
.code error
exceptions carry one argument, which is a string containing
the error message. Using
.codn throw ,
arbitrary parameters can be passed
from the throw site to the catch site.
.dir throw
The
.code throw
directive generates an exception. A type must be specified,
followed by optional arguments, which are bind expressions. For example,
.verb
@(throw pair "a" `@file.txt`)
.brev
throws an exception of type
.codn pair ,
with two arguments, being
.str a
and the expansion of the quasiliteral
.codn `@file.txt` .
The selection of the target
.code catch
is performed purely using the type
name; the parameters are not involved in the selection.
Binding takes place between the arguments given in
.code throw
and the target
.codn catch .
If any
.code catch
parameter, for which a
.code throw
argument is given, is a bound
variable, it has to be identical to the argument, otherwise the catch fails.
(Control still passes to the
.codn catch ,
but the catch is a failed match).
.IP code:
.mono
\ @(bind a "apple")
@(try)
@(throw e "banana")
@(catch e (a))
@(end)
.onom
.IP result:
.mono
\ [query fails]
.onom
.PP
If any argument is an unbound variable, the corresponding parameter
in the
.code catch
is left alone: if it is an unbound variable, it remains
unbound, and if it is bound, it stays as is.
.IP code:
.mono
\ @(try)
@(trow e "honda" unbound)
@(catch e (car1 car2))
@car1 @car2
@(end)
.onom
.IP data:
.mono
\ honda toyota
.onom
.IP result:
.mono
\ car1="honda"
car2="toyota"
.onom
.PP
If a
.code catch
has fewer parameters than there are throw arguments,
the excess arguments are ignored:
.IP code:
.mono
\ @(try)
@(throw e "banana" "apple" "pear")
@(catch e (fruit))
@(end)
.onom
.IP result:
.mono
\ fruit="banana"
.onom
.PP
If a
.code catch
has more parameters than there are throw arguments, the excess
parameters are left alone. They may be bound or unbound variables.
.IP code:
.mono
\ @(try)
@(trow e "honda")
@(catch e (car1 car2))
@car1 @car2
@(end)
.onom
.IP data:
.mono
\ honda toyota
.onom
.IP result:
.mono
\ car1="honda"
car2="toyota"
.onom
.PP
A
.code throw
argument passing a value to a
.code catch
parameter which is unbound causes
that parameter to be bound to that value.
.code throw
arguments are evaluated in the context of the
.codn throw ,
and the bindings
which are available there. Consideration of what parameters are bound
is done in the context of the catch.
.IP code:
.mono
\ @(bind c "c")
@(try)
@(forget c)
@(bind (a c) ("a" "lc"))
@(throw e a c)
@(catch e (b a))
@(end)
.onom
.IP result:
.mono
\ c="c"
b="a"
a="lc"
.onom
.PP
In the above example,
.code c
has a top-level binding to the string
.strn "c" ,
but then becomes unbound
via
.code forget
within the
.code try
construct, and rebound to the value
.strn lc .
Since the
.code try
construct is terminated by a
.codn throw ,
these modifications of the
binding environment are discarded. Hence, at the end of the query, variable
.code c
ends up bound to the original value
.strn c .
The
.code throw
still takes place
within the scope of the bindings set up by the
.code try
clause, so the values of
.code a
and
.code c
that are thrown are
.str a
and
.strn lc .
However, at the
.code catch
site, variable
.code a
does not have a binding. At that point, the binding to
.str a
established in
the
.code try
has disappeared already. Being unbound, the
.code catch
parameter
.code a
can take
whatever value the corresponding throw argument provides, so it ends up with
.strn lc .
There is a horizontal form of
.codn throw .
For instance:
.verb
abc@(throw e 1)
.brev
throws exception
.code e
if
.code abc
matches.
If
.code throw
is used to generate an exception derived from type
.code error
and that exception is not handled, \*(TX will issue diagnostics on the
.code *stderr*
stream and terminate. If an exception derived from
.code warning
is not handled, \*(TX will generate diagnostics on the
.code *stderr*
stream, after which control returns to the
.code throw
directive, and proceeds with the next directive.
If an exception not derived from
.code error
is thrown, control returns to the
.code throw
directive and proceeds with the next directive.
.dir defex
The
.code defex
directive allows the query writer to invent custom exception types,
which are arranged in a type hierarchy (meaning that some exception types are
considered subtypes of other types).
Subtyping means that if an exception type
.code B
is a subtype of
.codn A ,
then every
exception of type
.code B
is also considered to be of type
.codn A .
So a catch for type
.code A
will also catch exceptions of type
.codn B .
Every type is a supertype of itself: an
.code A
is a kind of
.codn A .
This implies that every type is a subtype of itself
also. Furthermore, every type is a subtype of the type
.codn t ,
which has no
supertype other than itself. Type
.code nil
is is a subtype of every type, including
itself. The subtyping relationship is transitive also. If
.code A
is a subtype
of
.codn B ,
and
.code B
is a subtype of
.codn C ,
then
.code A
is a subtype of
.codn C .
.code defex
may be invoked with no arguments, in which case it does nothing:
.verb
@(defex)
.brev
It may be invoked with one argument, which must be a symbol. This introduces a
new exception type. Strictly speaking, such an introduction is not necessary;
any symbol may be used as an exception type without being introduced by
.codn @(defex) :
.verb
@(defex a)
.brev
Therefore, this also does nothing, other than document the intent to use
a as an exception.
If two or more argument symbols are given, the symbols are all introduced as
types, engaged in a subtype-supertype relationship from left to right.
That is to say, the first (leftmost) symbol is a subtype of the next one,
which is a subtype of the next one and so on. The last symbol, if it
had not been already defined as a subtype of some type, becomes a
direct subtype of the master supertype
.codn t .
Example:
.verb
@(defex d e)
@(defex a b c d)
.brev
The first directive defines
.code d
as a subtype of
.codn e ,
and
.code e
as a subtype of
.codn t .
The second defines
.code a
as a subtype of
.codn b ,
.code b
as a subtype of
.codn c ,
and
.code c
as a subtype of
.codn d ,
which is already defined as a subtype of
.codn e .
Thus
.code a
is now a subtype of
.codn e .
The the above can be condensed to:
.verb
@(defex a b c d e)
.brev
Example:
.IP code:
.mono
\ @(defex gorilla ape primate)
@(defex monkey primate)
@(defex human primate)
@(collect)
@(try)
@(skip)
@(cases)
gorilla @name
@(throw gorilla name)
@(or)
monkey @name
@(throw monkey name)
@(or)
human @name
@(throw human name)
@(end)@#cases
@(catch primate (name))
@kind @name
@(output)
we have a primate @name of kind @kind
@(end)@#output
@(end)@#try
@(end)@#collect
.onom
.IP data:
.mono
\ gorilla joe
human bob
monkey alice
.onom
.IP output:
.mono
\ we have a primate joe of kind gorilla
we have a primate bob of kind human
we have a primate alice of kind monkey
.onom
.PP
Exception types have a pervasive scope. Once a type relationship is introduced,
it is visible everywhere. Moreover, the
.code defex
directive is destructive,
meaning that the supertype of a type can be redefined. This is necessary so
that something like the following works right:
.verb
@(defex gorilla ape)
@(defex ape primate)
.brev
These directives are evaluated in sequence. So after the first one, the
.code ape
type has the type
.code t
as its immediate supertype. But in the second directive,
.code ape
appears again, and is assigned the
.code primate
supertype, while retaining
.code gorilla
as a subtype. This situation could be diagnosed as an
error, forcing the programmer to reorder the statements, but instead
\*(TX obliges. However, there are limitations. It is an error to define a
subtype-supertype relationship between two types if they are already connected
by such a relationship, directly or transitively. So the following
definitions are in error:
.verb
@(defex a b)
@(defex b c)
@(defex a c)@# error: a is already a subtype of c, through b
@(defex x y)
@(defex y x)@# error: circularity; y is already a supertype of x.
.brev
.dir assert
The
.code assert
directive requires the remaining query or sub-query which follows it
to match. If the remainder fails to match, the
.code assert
directive throws an exception. If the directive is simply
.verb
@(assert)
.brev
Then it throws an assertion of type assert, which is a subtype of error.
The
.code assert
directive also takes arguments similar to the
.code throw
directive: an exception symbol and additional arguments which are bind
expressions, and may be unbound variables. The following assert directive, if
it triggers, will throw an exception of type
.codn foo ,
with arguments
.code 1
and
.strn 2 :
.verb
@(assert foo 1 "2")
.brev
Example:
.verb
@(collect)
Important Header
----------------
@(assert)
Foo: @a, @b
@(end)
.brev
Without the assertion in places, if the
.code "Foo: @a, @b"
part does not
match, then the entire interior of the
.code @(collect)
clause fails,
and the collect continues searching for another match.
With the assertion in place, if the text
.str "Important Header"
and its
underline match, then the remainder of the collect body must
match, otherwise an exception is thrown. Now the program will not
silently skip over any Important Header sections due to a problem
in its matching logic. This is particularly useful when the matching is varied
with numerous cases, and they must all be handled.
There is a horizontal
.code assert
directive also. For instance:
.verb
abc@(assert)d@x
.brev
asserts that if the prefix
.str abc
is matched, then it must be
followed by a successful match for
.strn "d@x" ,
or else an exception is thrown.
If the exception is not handled, and is derived from
.code error
then \*(TX issues diagnostics on the
.code *stderr*
stream and terminates. If the exception is derived from
.code warning
and not handled, \*(TX issues a diagnostic on
.code *stderr*
after which control returns to the
.code assert
directive. Control silently returns to the
.code assert
directive if an exception of any other kind is not handled.
When control returns to
.code assert
due to an unhandled exception, it behaves like a failed match,
similarly to the require directive.
.SH* TXR LISP
The \*(TX language contains an embedded Lisp dialect called \*(TL.
This language is exposed in \*(TX in a number of ways.
In any situation that calls for an expression, a Lisp
expression can be used, if it is preceded by the
.code @
character. The Lisp expression
is evaluated and its value becomes the value of that expression.
Thus, \*(TX directives are embedded in literal text using
.codn @ ,
and Lisp expressions
are embedded in directives using
.code @
also.
Furthermore, certain directives evaluate Lisp expressions without
requiring
.codn @ .
These are
.codn @(do) ,
.codn @(require) ,
.codn @(assert) ,
.code @(if)
and
.codn @(next) .
\*(TL code can be placed into files. On the command
line, \*(TX treats files with a
.str ".tl"
suffix as \*(TL code, and the
.code @(load)
directive does also.
\*(TX also provides an interactive listener for Lisp evaluation.
Lastly, \*(TL expressions can be evaluated via the
command line, using the
.code -e
and
.code -p
options.
.B
Examples:
Bind variable
.code a
to the integer 4:
.verb
@(bind a @(+ 2 2))
.brev
Bind variable
.code b
to the standard input stream. Note that
.code @
is not required on a Lisp variable:
.verb
@(bind a *stdin*)
.brev
Define several Lisp functions inside
.codn @(do) :
.verb
@(do
(defun add (x y) (+ x y))
(defun occurs (item list)
(cond ((null list) nil)
((atom list) (eql item list))
(t (or (eq (first list) item)
(occurs item (rest list)))))))
.brev
Trigger a failure unless previously bound variable
.code answer
is greater than 42:
.verb
@(require (> (int-str answer) 42)
.brev
.SS* Overview
\*(TL is a small and simple dialect, like Scheme, but much more similar to
Common Lisp than Scheme. It has separate value and function binding namespaces,
like Common Lisp (and thus is a Lisp-2 type dialect), and represents Boolean
.B true
and
.B false
with the symbols
.code t
and
.code nil
(note the case sensitivity of
identifiers denoting symbols!) Furthermore, the symbol
.code nil
is also the empty list, which terminates nonempty lists.
\*(TL has lexically scoped local variables and dynamic global variables,
similarly to Common Lisp, including the convention that
.code defvar
marks symbols for dynamic binding in local scopes. Lexical closures
are supported. \*(TL also supports global lexical variables via
.codn defvarl .
Functions are lexically scoped in \*(TL; they can be
defined in pervasive global environment using
.code defun
or in local scopes using
.code flet
and
.codn labels .
.SS* Additional Syntax
Much of the \*(TL syntax has been introduced in the previous sections of the
manual, since directive forms are based on it. There is some additional syntax
that is useful in \*(TL programming.
.NP* Symbol Tokens
The symbol tokens in \*(TL,
called a
.meta lident
(Lisp identifier) has a similar syntax to the
.meta bident
(braced identifier) in the \*(TX pattern language. It may consist of
all the same characters, as well as the
.code /
(slash) character which may not be used in a
.metn bident .
Thus a
.meta lident
may consist of these characters, in addition to letters, numbers and
underscores:
.mono
! $ % & * + - < = > ? \e ~ /
.onom
and may not look like a number.
A
.meta lident
may also include all of the Unicode characters which are permitted in a
.metn bident .
The one character which is allowed in a
.meta lident
but not in a
.meta bident
is
.code /
(forward slash).
A lone
.code /
is a valid
.meta lident
and consequently a symbol token in \*(TL. The token
.code /abc/
is also a symbol, and, unlike in a braced expression, is not a regular
expression. In \*(TL expressions, regular expressions are written with
a leading
.codn # .
.NP* Package Prefixes
If a symbol name contains a colon, the
.I lident
characters, if any, before that colon constitute the package prefix.
For example, the syntax
.code foo:bar
denotes
.code bar
symbol in the
.code foo
package.
It is a syntax error to read a symbol whose package doesn't exist.
If the package exists, but the symbol name doesn't exist in that package,
then the symbol is interned in that package.
If the package name is an empty string (the colon is preceded by nothing), the
package is understood to be the
.code keyword
package. The symbol is interned in that package.
The syntax
.code :test
denotes the symbol
.code test
in the
.code keyword
package, the same as
.codn keyword:test .
Symbols in the keyword package are self-evaluating. This means that
when a keyword symbol is evaluated as a form, the value of that form
is the keyword symbol itself. Exactly two non-keyword symbols also
have this special self-evaluating behavior:
the symbols
.code t
and
.code nil
in the user package, whose fully qualified names are
.code usr:t
and
.codn usr:nil .
The syntax
.code @foo:bar
denotes the meta prefix
.code @
being applied to the
.code foo:bar
symbol, not to a symbol in the
.code @foo
package.
The syntax
.code #:bar
denotes an uninterned symbol named
.codn bar ,
described in the next section.
.TP* "Dialect note:"
In ANSI Common Lisp, the
.code foo:bar
syntax does not intern the symbol
.code bar
in the
.code foo
package; the symbol must exist and be an exported symbol, or else the syntax is
erroneous. In ANSI Common Lisp, the syntax
.code foo::bar
does intern
.code foo
in the
.code bar
package. \*(TX's package system has no double-colon syntax, and lacks the concept of exported symbols.
.NP* Uninterned Symbols
Uninterned symbols are written with the
.code #:
prefix, followed by zero or more
.I lident
characters.
When an uninterned symbol is read, a new, unique symbol is constructed,
with the specified name. Even if two uninterned symbols have the same name,
they are different objects. The
.code make-sym
and
.code gensym
functions produce uninterned symbols.
"Uninterned" means "not entered into a package". Interning refers to a
process which combines package lookup with symbol creation, which ensures
that multiple occurrences of a symbol name in written syntax are all converted
to the same object: the first occurrence creates the symbol and associates it
with its name in a package. Subsequent occurrences do not create a new symbol,
but retrieve the existing one.
.NP* Consing Dot
Unlike other major Lisp dialects, \*(TL allows a consing dot with no forms
preceding it. This construct simply denotes the form which follows the dot.
That is to say, the parser implements the following transformation:
.verb
(. expr) -> expr
.brev
This is convenient in writing function argument lists that only take
variable arguments. Instead of the syntax:
.verb
(defun fun args ...)
.brev
the following syntax can be used:
.verb
(defun fun (. args) ...)
.brev
When a
.code lambda
form is printed, it is printed in the following style.
.verb
(lambda nil ...) -> (lambda () ...)
(lambda sym ...) -> (lambda (. sym) ...)
(lambda (sym) ...) -> (lambda (sym) ...)
.brev
In no other circumstances is
.code nil
printed as
.codn () ,
or an atom
.code sym
as
.codn "(. sym)" .
.NP* Referencing Dot
A dot token which is flanked by expressions on both sides, without any
intervening whitespace, is the referencing dot, and not the consing dot.
The referencing dot is a syntactic sugar which translated to the
.code qref
syntax ("quoted ref"). When evaluated as a form, this syntax denotes structure
access; see Structures. However, it is possible to put this syntax to use for
other purposes, in other contexts.
.verb
;; a.b may be almost any expressions
a.b <--> (qref a b)
a.b.c <--> (qref a b c)
a.(qref b c) <--> (qref a b c)
(qref a b).c <--> (qref (qref a b) c)
.brev
That is to say, this dot operator constructs a
.code qref
expression out of its left and right arguments. If the right argument
of the dot is already a qref expression (whether produced by another instance
of the dot operator, or expressed directly) it is merged. This requires
the qref dot operator to be right-to-left associative, so that
.code a.b.c
works by first translating
.code b.c
to
.codn "(qref b c)" ,
and then adjoining
.code a
to produce
.codn "(qref a b c)" .
If the referencing dot is immediately followed by a question mark, it forms
a single token, which produces the following syntactic variation:
.verb
a.?b <--> (t a).b <--> (qref (t a) b)
a.?b.?c <--> (t a).(t b).c <--> (qref (t a) (t b) c)
.brev
This syntax denotes
.I null-safe
access to structure slots.
.code a.?b
means that
.code a
may evaluate to
.codn nil ,
in which case the expression yields
.codn nil ;
otherwise,
.code a
must evaluate to a
.code struct
which has a slot
.codn b .
Integer tokens cannot be involved in this syntax, because they
form floating-point constants when juxtaposed with a dot.
Such ambiguous uses of floating-point tokens are diagnosed as syntax errors:
.verb
(a.4) ;; error: cramped floating-point literal
(a .4) ;; good: a followed by 0.4
.brev
.NP* Unbound Referencing Dot
Closely related to the referencing dot syntax is the unbound
referencing dot. This is a dot which is flanked by an expression on the right,
without any intervening whitespace, but is not preceded by an expression
Rather, it is preceded by whitespace,
or some punctuation such as
.codn [ ,
.code (
or
.codn ' .
This is a syntactic sugar which translates to
.code uref
syntax:
.verb
.a <--> (uref a)
.a.b <--> (uref a b)
.a.?b <--> (uref (t a) b)
.brev
If the unbound referencing dot is itself combined with a question
mark to form the
.code .?
token, then the translation to
.code uref
is as follows:
.verb
.?a <--> (uref t a)
.?a.b <--> (uref t a b)
.?a.?b <--> (uref t a (t b))
.brev
When the unbound referencing dot is applied to a dotted expression,
this can be understood as a conversion of
.code qref
to
.codn uref .
Indeed, this is exactly what happens if the unbound dot is applied to an
explicit
.code qref
expression:
.verb
.(qref a b) <--> (uref a b)
.brev
The unbound referencing dot takes its name from the semantics of the
.code uref
macro, which produces a function that implements late binding of an
object to a method slot. Whereas the expression
.code obj.a.b
denotes accessing object
.code obj
to retrieve slot
.code a
and then accessing slot
.code b
of the object from that slot, the expression
.code .a.b.
represents a "disembodied" reference: it produces a function which takes an
object as an argument and then performs the implied slot referencing on that
argument. When the function is called, it is said to bind the referencing to
the object. Hence that referencing is "unbound".
Whereas the expression
.code .a
produces a function whose argument must be an object,
.code .?a
produces a function whose argument may be
.codn nil .
The function detects this case and returns
.codn nil .
.NP* Quote and Quasiquote
.meIP >> ' expr
The quote character in front of an expression is used for suppressing evaluation,
which is useful for forms that evaluate to something other than themselves.
For instance if
.code "'(+ 2 2)"
is evaluated, the value is the three-element list
.codn "(+ 2 2)" ,
whereas if
.code "(+ 2 2)"
is evaluated, the value is
.codn 4 .
Similarly, the value of
.code 'a
is the symbol
.code a
itself, whereas the value of
.code a
is the contents of the variable
.codn a .
.meIP >> ^ qq-template
The caret in front of an expression is a quasiquote. A quasiquote is like
a quote, but with the possibility of substitution of material.
Under a quasiquote, form is considered to be a quasiquote template. The template
is considered to be a literal structure, except that it may contain
the notations
.mono
.meti >> , expr
.onom
and
.mono
.meti >> ,* expr
.onom
which denote non-constant parts.
A quasiquote gets translated into code which, when evaluated, constructs
the structure implied by
.metn qq-template ,
taking into account the unquotes and splices.
A quasiquote also processes nested quasiquotes specially.
If
.meta qq-template
does not contain any unquotes or splices (which match its
level of nesting), or is simply an atom, then
.mono
.meti >> ^ qq-template
.onom
is equivalent to
.mono
.meti >> ' qq-template .
.onom
in other words, it is like an ordinary quote. For instance
.code "^(a b ^(c ,d))"
is equivalent to
.codn "'(a b ^(c ,d))" .
Although there is an unquote ,d it
belongs to the inner quasiquote
.codn "^(c ,d)" ,
and the outer quasiquote does not have
any unquotes of its own, making it equivalent to a quote.
Dialect note: in Common Lisp and Scheme,
.code ^form
is written
.codn `form ,
and
quasiquotes are also informally known as backquotes. In \*(TX, the backquote
character
.code `
used for quasi string literals.
.meIP >> , expr
The comma character is used within a
.meta qq-template
to denote an unquote. Whereas the quasiquote suppresses evaluation,
similarly to the quote, the comma introduces an exception: an element
of a form which is evaluated. For example, list
.code "^(a b c ,(+ 2 2) (+ 2 2))"
is the list
.codn "(a b c 4 (+ 2 2))" .
Everything
in the quasiquote stands for itself, except for the
.code ",(+ 2 2)"
which is evaluated.
Note: if a variable is called
.codn *x* ,
then the syntax
.code ,*x*
means
.codn ",* x*" :
splice
the value of
.codn x* .
In this situation, whitespace between the comma and the
variable name must be used:
.codn ", *x*" .
.meIP >> ,* expr
The comma-star operator is used within quasiquote list to denote a splicing
unquote. The form which follows
.code ,*
must evaluate to a list. That list is spliced into
the structure which the quasiquote denotes. For example:
.code "'(a b c ,*(list (+ 3 3) (+ 4 4) d))"
evaluates to
.codn "(a b c 6 8 d)" .
The expression
.code "(list (+ 3 3) (+ 4 4))"
is evaluated to produce the list
.codn "(6 8)" ,
and this list is spliced into the quoted template.
.TP* "Dialect Notes:"
In other Lisp dialects, like Scheme and ANSI Common Lisp, the equivalent syntax
is usually
.code ,@
(comma at). The
.code @
character already has an assigned meaning in \*(TX, so
.code *
is used.
However,
.code *
is also a character that may appear in a symbol name, which creates
a potential for ambiguity. The syntax
.code ,*abc
denotes the application of the
.code ,*
splicing operator to the symbolic expression
.codn abc ;
to apply the ordinary non-splicing unquote to the symbol
.codn *abc ,
whitespace must be used:
.codn ", *abc" .
In \*(TX, the unquoting and splicing forms may freely appear outside of
a quasiquote template. If they are evaluated as forms, however, they
throw an exception:
.verb
,(+ 2 2) ;; error!
',(+ 2 2) --> ,(+ 2 2)
.brev
In other Lisp dialects, a comma not enclosed by backquote syntax is
treated as a syntax error by the reader.
.NP* Quasiquoting non-List Objects
Quasiquoting is supported over hash table and vector literals (see Vectors
and Hashes below). A hash table or vector literal can be quoted, like any
object, for instance:
.verb
'#(1 2 3)
.brev
The
.code "#(1 2 3)"
literal is turned into a vector atom right in the \*(TX parser,
and this atom is being quoted: this is
.mono
.meti (quote << atom )
.onom
syntactically, which evaluates to
.metn atom .
When a vector is quasi-quoted, this is a case of
.mono
.meti >> ^ atom
.onom
which evaluates to
.metn atom .
A vector can be quasiquoted, for example:
.verb
^#(1 2 3)
.brev
Unquotes can occur within a quasiquoted vector:
.verb
(let ((a 42))
^#(1 ,a 3)) ; value is #(1 42 3)
.brev
In this situation, the
.code ^#(...)
notation produces code which constructs a vector.
The vector in the following example is also a quasivector. It contains
unquotes, and though the quasiquote is not directly applied to it,
it is embedded in a quasiquote:
.verb
(let ((a 42))
^(a b c #(d ,a))) ; value is (a b c #(d 42))
.brev
Hash table literals have two parts: the list of hash construction
arguments and the key-value pairs. For instance:
.verb
#H((:eql-based) (a 1) (b 2))
.brev
where
.code (:eql-based)
indicates that this hash table's keys are treated using
.code eql
equality, and
.code "(a 1)"
and
.code "(b 2)"
are the key/value entries. Hash literals may be quasiquoted. In
quasiquoting, the arguments and pairs are treated as separate syntax; it is not
one big list. So the following is not a possible way to express the above
hash:
.verb
;; not supported: splicing across the entire syntax
(let ((hash-syntax '((:eql-based) (a 1) (b 2))))
^#H(,*hash-syntax))
.brev
This is correct:
.verb
;; fine: splicing hash arguments and contents separately
(let ((hash-args '(:eql-based))
(hash-contents '((a 1) (b 2))))
^#H(,hash-args ,*hash-contents))
.brev
.NP* Quasiquoting combined with Quasiliterals
When a quasiliteral is embedded in a quasiquote, it is possible to use
splicing to insert material into the quasiliteral.
Example:
.verb
(eval (let ((a 3)) ^`abc @,a @{,a} @{(list 1 2 ,a)}`))
-> "abc 3 3 1 2 3"
.brev
.NP* Vector Literals
.coIP "#(...)"
A hash token followed by a list denotes a vector. For example
.code "#(1 2 a)"
is a three-element vector containing the numbers
.code 1
and
.codn 2 ,
and the symbol
.codn a .
.NP* Struct Literals
.meIP >> #S( name >> { slot << value }*)
The notation
.code #S
followed by a nested list syntax denotes a struct literal.
The first item in the syntax is a symbol denoting the struct type
name. This must be the name of a struct type, otherwise the
literal is erroneous. Followed by the struct type are slot names
interleaved with their values. The values are literal expressions,
not subject to evaluation.
Each slot name which is present in the
literal must name a slot in the struct type, though not
all slots in the struct type must be present in the literal.
When a struct literal is read, the denoted struct type is
constructed as if by a call to
.code make-struct
with an empty
.meta plist
argument, followed by a sequence of assignments which store into each
.meta slot
the corresponding
.meta value
expression.
.NP* Hash Literals
.meIP <> #H(( hash-argument *) >> ( key << value )*)
The notation
.code #H
followed by list syntax denotes a hash table literal.
The first item in the syntax is a list of keywords. These are the same
keywords as are used when calling the function hash to construct
a hash table. Allowed keywords are:
.codn :equal-based ,
.codn :eql-based ,
.codn :eq-based ,
.codn :weak-keys ,
.codn :weak-values ,
and
.codn :userdata .
If the
.code :userdata
keyword is present,
it must be followed by an object; that object
specifies the hash table's user data, which
can be retrieved using the
.code hash-userdata
function.
The
.codn :equal-based ,
.code :eql-based
and
.code :eq-based
keywords are mutually exclusive.
An empty list can be specified as
.code nil
or
.codn () ,
which defaults to a
hash table based on the
.code eql
function, with no weak semantics or user data.
The entire syntax following
.code #H
may be an empty list; however, that empty list may not
be specified as
.codn nil ;
the empty parentheses notation is required.
The hash table key-value contents are specified as zero or more
two-element lists, whose first element specifies the
.meta key
and whose second specifies the
.metn value .
Both expressions are literal objects, not subject to evaluation.
.NP* Range Literals
.meIP >> #R( from << to )
The notation
.code #R
followed by a two-element list syntax denotes a range literal.
It combines
.meta from
and
.meta to
expressions, themselves literals not subject to
evaluation, producing the range object whose corresponding
.code to
and
.code from
fields are the objects denoted by these expressions.
.NP* Buffer Literals
.meIP <> #b' hex-data '
The notation
.code #b'
introduces a buffer object: a data representation for a
block of bytes. This
.code #b'
prefix must be followed
by a data section and a closing quote.
The data section consists of hexadecimal digits, among which
may be interspersed whitespace: tabs, spaces and newlines.
There must be an even number of digits, or else the
notation is ill-formed. The whitespace is ignored, and
pairs of successive hex digits specify bytes.
If there are no hex digits, then a zero length buffer
is specified.
Buffers may be constructed by the
.code make-buf
function, and other means such as the
.code ffi-get
function.
Note that the
.code #b
prefix is also used for binary numbers. In that syntax, it
is followed by an optional sign, and then a mixture of one
or more of the digits
.code 0
or
.codn 1 .
.NP* Tree Node Literals
.meIP >> #N([ key >> [ left <> [ right ]]])
The notation
.code #N
followed by list syntax denotes a tree node literal. The list syntax must be a
proper list that has up to three elements. If the list is empty, it may not
be written as
.codn nil .
A tree node is an object of type
.codn tnode .
Every
.code tnode
has three elements: a
.metn key ,
a
.meta left
link and a
.meta right
link. They may be objects of any type.
If the tree node literal syntax omits any of these, they default to
.codn nil .
.NP* Tree Literals
.meIP >> #T([([ keyfun >> [ lessfun <> [ equalfun ]]]) << item *])
The notation
.code #T
followed by list syntax denotes a tree literal, which specifies an
object of type
.codn tree .
Objects of type
.code tree
are search trees.
The list syntax which follows
.code #T
may be empty. If so, it cannot be written as
.codn nil .
The first element of the
.code #T
syntax, if present, must be a list of zero to three elements.
These elements are symbols giving the names of the
.code tree
object's
.IR "key abstraction functions" .
.meta keyfun
specifies the key function which is applied to each element to
retrieve its key. If it is omitted, the object shall use the
.code identity
function as its key.
The
.meta lessfun
specifies the name of the comparison function by which keys are compared
for inequality. It defaults to
.codn less .
The
.meta equalfun
specifies the function by which keys are compared for equality. It
defaults to
.codn equal .
A symbol which is specified as the name of any of these three special
functions must be an element of the list stored in the special variable
.codn *tree-fun-whitelist* ,
otherwise the string literal is diagnosed as erroneous.
Note: this is due to security considerations, since these three
functions are executed during the processing of tree syntax.
A tree object is constructed from a tree literal by first creating an empty
tree endowed with the three key abstraction functions that are indicated in the
syntax, either explicitly or as defaults. Then, every
.meta element
object is constructed from its respective literal syntax and inserted into
the tree.
.coNP The @ .. notation
In \*(TL, there is a special "dotdot" notation consisting of a pair of dots.
This can be written between successive atoms or compound expressions, and is a
shorthand for
.codn rcons .
That is to say,
.code "A .. B"
translates to
.codn "(rcons A B)" ,
and so for instance
.code "(a b .. (c d) e .. f . g)"
means
.codn "(a (rcons b (c d)) (rcons e f) . g)" .
The
.code rcons
function constructs a range object, which denotes a pair of values.
Range objects are most commonly used for referencing subranges of
sequences.
For instance, if
.code L
is a list, then
.code "[L 1 .. 3]"
computes a sublist of
.code L
consisting of
elements 1 through 2 (counting from zero).
Note that if this notation is used in the dot position of an improper
list, the transformation still applies. That is, the syntax
.code "(a . b .. c)"
is valid and produces the object
.code "(a . (rcons b c))"
which is another way of writing
.codn "(a rcons b c)" ,
which is quite probably nonsense.
The notation's
.code ..
operator associates right to left, so that
.code a..b..c
denotes
.codn "(rcons a (rcons b c))" .
Note that range objects are not printed using the dotdot notation.
A range literal has the syntax of a two-element list, prefixed by
.codn #R .
(See Range Literals above).
In any context where the dotdot notation may be used, and where
it is evaluated to its value, a range literal may also be specified.
If an evaluated dotdot notation specifies two constant expressions, then
an equivalent range literal can replace it. For instance the
form
.code "[L 1 .. 3]"
can also be written
.codn "[L #R(1 3)]" .
The two are syntactically different, and so if these expressions are being
considered for their syntax rather than value, they are not the same.
.NP* The DWIM Brackets
\*(TL has a square bracket notation. The syntax
.code [...]
is a shorthand
way of writing
.codn "(dwim ...)" .
The
.code []
syntax is useful for situations
where the expressive style of a Lisp-1 dialect is useful.
For instance if
.code foo
is a variable which holds a function object, then
.code "[foo 3]"
can be used to call it, instead of
.codn "(call foo 3)" .
If foo is a vector, then
.code "[foo 3]"
retrieves the fourth element, like
.codn "(vecref foo 3)" .
Indexing over lists,
strings and hash tables is possible, and the notation is assignable.
Furthermore, any arguments enclosed in
.code []
which are symbols are treated
according to a modified namespace lookup rule.
More details are given in the documentation for the
.code dwim
operator.
.NP* Compound Forms
In \*(TL, there are two types of compound forms: the Lisp-2 style
compound forms, denoted by ordinary lists that are expressed with parentheses.
There are Lisp-1 style compound forms denoted by the DWIM Brackets, described
in the previous section.
The first position of an ordinary Lisp-2 style compound form, is expected to
have a function or operator name. Then arguments follow. There may
also be an expression in the dotted position, if the form is a function call.
If the form is a function call then the arguments are evaluated. If any of the
arguments are symbols, they are treated according to Lisp-2 namespacing rules.
A function name may be a symbol, or else any of the syntactic forms given in the
description of the function
.codn func-get-name .
.NP* Dot Position in Function Calls
If there is an expression in the dotted position of a function call
expression, it is also evaluated, and the resulting value is involved in the
function call in a special way.
Firstly, note that a compound form cannot be used in the dot position,
for obvious reasons, namely that
.code "(a b c . (foo z))"
does not mean that there is
a compound form in the dot position, but denotes an alternate spelling for
.codn "(a b c foo z)" ,
where foo behaves as a variable.
If the dot position of a compound form is an atom, then the behavior
may be understood according to the following transformations:
.verb
(f a b c ... . x) --> (apply (fun f) a b c ... x)
[f a b c ... . x] --> [apply f a b c ... x]
.brev
In addition to atoms, meta-expressions and meta-variables can appear in the dot
position, even though their underlying syntax is comprised of a compound
expression. This appears to work according to a transformation pattern
which superficially appears to be the same as that for atoms:
.verb
(f a b c ... . @x) --> (apply (fun f) a b c ... @x)
.brev
However, in this situation, the
.code @x
is actually the form
.code "(sys:var x)"
and the dotted form is actually a proper list. The transformation is
in fact taking place over a proper list, like this:
.verb
(f a b c ... sys:var x) --> (apply (fun f) a b c ... (sys:var @x))
.brev
That is to say, the \*(TL form expander reacts to the presence of a
.code sys:var
or
.code sys:expr
atom in embedded in the form. That symbol and the items which follow it
are wrapped in an additional level of nesting, converted into a single
compound form element.
Effectively, in all these cases, the dot notation constitutes a shorthand for
.codn apply .
Examples:
.verb
;; a contains 3
;; b contains 4
;; c contains #(5 6 7)
;; s contains "xyz"
(foo a b . c) ;; calls (foo 3 4 5 6 7)
(foo a) ;; calls (foo 3)
(foo . s) ;; calls (foo #\ex #\ey #\ez)
(list . a) ;; yields 3
(list a . b) ;; yields (3 . 4)
(list a . c) ;; yields (3 5 6 7)
(list* a c) ;; yields (3 . #(5 6 7))
(cons a . b) ;; error: cons isn't variadic.
(cons a b . c) ;; error: cons requires exactly two arguments.
[foo a b . c] ;; calls (foo 3 4 5 6 7)
[c 1] ;; indexes into vector #(5 6 7) to yield 6
(call (op list 1 . @1) 2) ;; yields (1 . 2)
.brev
Note that the atom in the dot position of a function call may
be a symbol macro. Since the semantics works as if by
transformation to an apply form in which the original dot
position atom is an ordinary argument, the symbol macro
may produce a compound form.
Thus:
.verb
(symacrolet ((x 2))
(list 1 . x)) ;; yields (1 . 2)
(symacrolet ((x (list 1 2)))
(list 1 . x)) ;; yields (1 1 2)
.brev
That is to say, the expansion of
.code x
is not substituted into the form
.code "(list 1 . x)"
but rather the transformation to
.code apply
syntax takes place first, and
so the substitution of
.code x
takes place in a form resembling
.codn "(apply (fun list) 1 x)" .
Dialect Note:
In some other Lisp dialects like ANSI Common Lisp, the improper list syntax may
not be used as a function call; a function called apply (or similar) must be
used for application even if the expression which gives the trailing arguments
is a symbol. Moreover, applying sequences other than lists is not supported.
.NP* Improper Lists as Macro Calls
\*(TL allows macros to be called using forms which are improper lists.
These forms are simply destructured by the usual macro parameter list
destructuring. To be callable this way, the macro must have an argument
list which specifies a parameter match in the dot position. This dot position
must either match the terminating atom of the improper list form,
or else match the trailing portion of the improper list form.
For instance if a macro mac is defined as
.verb
(defmacro mac (a b . c) ...)
.brev
then it may not be invoked as
.code "(mac 1 . 2)"
because the required argument
.code b
is not satisfied, and so the
.code 2
argument cannot match the dot position
.code c
as required. The macro may be called as
.code "(mac 1 2 . 3)"
in which case
.code c
receives the form
.codn 3 .
If it is called as
.code "(mac 1 2 3 . 4)"
then
.code c
receives the improper list form
.codn "3 . 4" .
.NP* Regular Expression Literals
In \*(TL, the
.code /
character can occur in symbol names, and the
.code /
token
is a symbol. Therefore the
.code /regex/
syntax is not used for denoting regular expressions; rather, the
.code #/regex/
syntax is used.
.NP* Notation for Circular and Shared Structure
\*(TL supports a printed notation called
.I "circle notation"
which accurately articulates
the representation of objects which contain shared substructures as well
as circular references. The notation is supported as a means of
input, and is also optionally produced as output, controlled by the
.code *print-circle*
variable.
Ordinarily, shared substructure in printed objects is not
evident, except in the case of multiple occurrences of interned symbols,
in whose semantics it is implicit that they refer to the same object.
Other shared structure is printed as separate copies which look like
distinct objects. For instance, the object produced by
.code "(let ((shared '(1 2))) (list shared shared))"
is printed as
.codn "((1 2) (1 2))" ,
where it is not clear that the two occurrences of
.code "(1 2)"
are actually the same object. Under the circle notation, this object
can be represented as
.codn "(#5=(1 2) #5#)" .
The
.code #5=
part introduces a reference label, associating the arbitrarily
chosen non-negative integer 5 with the object which follows.
The subsequent notation
.code #5#
simply refers to the object labeled by 5, reproducing that object
by reference. The result is a two-element list which has the same
.code "(1 2)"
in two places.
Circular structure presents a greater challenge to printing: namely, if it is
printed by a naive recursive descent, it results in infinite output, and
possibly stack exhaustion due to recursion. The circle notation detects
and handles circular references. For instance, the object produced by
.code "(let ((c (list 1))) (rplacd c c))"
produces a circular list which looks like an infinite list of 1's:
.codn "(1 1 1 1 ...)" .
This cannot be printed. However, under the circle notation, it can
be represented as
.codn "#1=(1 . #1#)" .
The entire object itself is labeled by the integer 1. Then, enclosed
within the syntax of that labeled object itself, a reference occurs
to the label. This circular label reference represents the corresponding
circular reference in the object.
A detailed description of the notational elements follows:
.meIP <> # digits = < object
The
.code #=
syntax introduces an object label which denotes the
object whose printed representation follows. The label is identified by
the integer value arising from digits
.meta digits
which are one or more decimal digits. Note: the value zero is permitted;
even though when the notation is produced by the \*(TL printer, labeling
begins at 1. Negative values are not possible because a leading sign
is not part of the syntax.
There may be no more than one definition for a given label within the syntactic
scope being parsed, otherwise a syntax error occurs.
In \*(TX pattern language code,
an entire source file is parsed as one unit, and so scope for the circular
notation's references is the entire source file. Files processed by
.code @(include)
have their own scope. The scope for labels in \*(TL source code is the
top-level expression in which they appear. Consequently, references
in one \*(TL top-level expression cannot reach definitions in another.
.meIP <> # digits #
The
.code ##
syntax denotes a label reference: the repetition of an object that was
previously labeled by the integer given by
.metn digits .
If no such label had been introduced in the syntactic scope,
a syntax error occurs.
An object was previously labeled by
.meta digits
if a
.code #=
definition occurs in the same syntactic scope as the reference,
and is applied to an object which either encloses the reference,
or lexically precedes the reference. Forward references such as
.code "(#1# #1=(1 2))"
are not supported.
.TP* "Note:"
Circular notation can span hash table literals. The syntax
.code "#1=#H((:eql-based) (#1# #1#))"
denotes an
.codn eql -based
hash table which contains one entry, in which that
same table itself is both the key and value. This kind of
circularity is not supported for
.codn equal -based
hash tables. The analogous syntax
.code "#1=#H(() (#1# #1#))"
produces a hash table in an inconsistent state.
.TP* "Dialect note:"
Circle notation is taken from Common Lisp,
intended to be unsurprising to users familiar with that
language.
The implementation is based on descriptions in the ANSI Common Lisp
document, judiciously taking into account the content of the X3J13 Cleanup
Issues named PRINT-CIRCLE-STRUCTURE:USER-FUNCTIONS-WORK and
PRINT-CIRCLE-SHARED:RESPECT-PRINT-CIRCLE.
.NP* Notation for Erasing Objects
.meIP #; < expr
The \*(TL notation
.code #;
in TXR Lisp indicates that the expression
.meta expr
is to be read and then discarded, as if it were replaced by whitespace.
This is useful for temporarily "commenting out" an expression.
.TP* Notes:
Whereas it is valid for a \*(TL source file to be empty, it is
a syntax error if a \*(TL source file contains nothing but one or more
objects which are each suppressed by a preceding
.codn #; .
In the interactive listener, an input line consisting of nothing but
commented-out objects is similarly a syntax error.
The notation does not cascade; consecutive occurrences of
.code #;
trigger a syntax error.
The notation interacts with the circle notation. Firstly, if an object
which is erased by
.code #;
contains circular-referencing instances of the label notation,
those instances refer to
.codn nil .
Secondly, commented-out objects may introduce labels
which are subsequently referenced in
.metn expr .
An example of the first situation occurs in:
.verb
#;(#1=(#1#))
.brev
Here the
.code #1#
label is a circular reference because it refers to an object which
is a parent of the object which contains that reference. Such a reference
is only satisfied by a "backpatching" process once the entire surrounding syntax
is processed to the top level. The erasure perpetrated by
.code #;
causes the
.code #1#
label reference to be replaced by
.codn nil ,
and therefore the labeled object is the object
.codn (nil) .
An example of the second situation is
.verb
#;(#2=(a b c)) #2#
.brev
Here, even though the expression
.code "(#2=(a b c))"
is suppressed, the label definition which it has introduced persists into the
following object, where the label reference
.code #2#
resolves to
.codn "(a b c)" .
A combination of the two situations occurs in
.verb
#;(#1=(#1#)) #1#
.brev
which yields
.codn "(nil)" .
This is because the
.code #1=
label is available; but the earlier
.code #1#
reference, being a circular reference inside an erased object, had lapsed to
.codn nil .
.SS* Generalization of List Accessors
In ancient Lisp in the 1960's, it was not possible to apply the operations
.code car
and
.code cdr
to the
.code nil
symbol (empty list), because it is not a
.code cons
cell. In
the InterLisp dialect, this restriction was lifted: these operations were
extended to accept
.code nil
(and return
.codn nil ).
The convention was adopted in
other Lisp dialects such as MacLisp and eventually in Common Lisp. Thus there
exists an object which is not a cons, yet which takes
.code car
and
.codn cdr .
In \*(TL, this relaxation is extended further. For the sake of convenience,
the operations
.code car
and
.codn cdr ,
are made to work with strings and vectors:
.verb
(cdr "") -> nil
(car "") -> nil
(car "abc") -> #\ea
(cdr "abc") -> "bc"
(cdr #(1 2 3)) -> #(2 3)
(car #(1 2 3)) -> 1
.brev
Moreover, structure types which define the methods
.codn car ,
.code cdr
and
.code nullify
can also be treated in the same way.
The
.code ldiff
function is also extended in a special way. When the right parameter
a non-list sequence, then it uses the equal equality test rather than eq for
detecting the tail of the list.
.verb
(ldiff "abcd" "cd") -> (#\ea #\eb)
.brev
The
.code ldiff
operation starts with
.str "abcd"
and repeatedly applies
.code cdr
to produce
.str "bcd"
and
.strn "cd" ,
until the suffix is equal to the second argument:
.mono
(equal "cd" "cd")
.onom
yields true.
Operations based on
.codn car ,
.code cdr
and
.codn ldiff ,
such as
.code keep-if
and
.code remq
extend to
strings and vectors.
Most derived list processing operations such as
.code remq
or
.code mapcar
obey the following
rule: the returned object follows the type of the leftmost input list object.
For instance, if one or more sequences are processed by
.codn mapcar ,
and the
leftmost one is a character string, the function is expected to return
characters, which are converted to a character string. However, in the
event that the objects produced cannot be assembled into that type of
sequence, a list is returned instead.
For example
.mono
[mapcar list "ab" "12"]
.onom
returns
.codn "((#\ea #\eb) (#\e1 #\e2))" ,
because a string cannot hold lists of characters. However
.mono
[mappend list "ab" "12"]
.onom
returns
.strn "a1b2" .
The lazy versions of these functions such as
.code mapcar*
do not have this behavior;
they produce lazy lists.
.SS* Generalization of Iteration
\*(TL implements a unified paradigm for iterating over sequence-like
container structures and abstract spaces such as bounded and unbounded ranges
of integers. This concept is based around an iterator abstraction which is
directly compatible with Lisp cons cell traversal in the sense that when
iteration takes place over lists, the iterator instance is nothing but a cons
cell.
An iterator is created using the constructor function
.code iter-begin
which takes a single argument. The argument denotes a space to be traversed;
the iterator provides the means for that traversal.
When the
.code iter-begin
function is applied to a list (a
.code cons
cell or the
.code nil
object), the return value is that object itself. The remaining functions
in the iterator API then behave like aliases for list processing functions.
The
.code iter-more
function behaves like
.codn identity ,
.code iter-item
behaves like
.code car
and
.code iter-step
behaves like
.codn cdr .
For example, the following loops not only produce identical behavior,
but the
.code iter
variable steps through the
.code cons
cells in the same manner in both:
.verb
;; print all symbols in the list (a b c d):
(let ((iter '(a b c d)))
(while iter
(prinl (car iter))
(set iter (cdr iter))))
;; likewise:
(let ((iter (iter-begin '(a b c d))))
(while (iter-more iter)
(prinl (iter-item iter))
(set iter (iter-step iter))))
.brev
There are three important differences.
Firstly, both examples will still work
if the list
.code "(a b c d)"
is replaced by a different kind of sequence, such as the string
.str abcd
or the vector
.codn "#(a b c d)" .
However, the former example will not execute efficiently on these objects.
The reason is that the
.code cdr
function will construct successive suffixes of the string and list object.
That requires not only the allocation of memory, but changes the running time
complexity of the loop from linear to quadratic.
Secondly, the former example with
.cod3 car / cdr
will not work correctly if the sequence is an empty non-list sequence, like
the null string or empty vector. Rectifying this problem requires the
.code nullify
function to be used:
.verb
;; print all symbols in the list (a b c d):
(let ((iter (nullify "abcd")))
(while iter
(prinl (car iter))
(set iter (cdr iter))))
.brev
The
.code nullify
function converts empty sequences of all kinds into the empty list
.codn nil .
Thirdly, the second
example will work even if the input list is replaced with certain objects
which are not sequences at all:
.verb
;; Print the integers from 0 to 3
(let ((iter (iter-begin 0..4)))
(while (iter-more iter)
(prinl (iter-item iter))
(set iter (iter-step iter))))
;; Print incrementing integers starting at 1,
;; breaking out of the loop after 100.
(let ((iter (iter-begin 1)))
(while (iter-more iter)
(if (eql 100 (prinl (iter-item iter)))
(return))
(set iter (iter-step iter))))
.brev
In \*(TL, numerous functions that appear as list processing functions in other
contemporary Lisp dialects, and historically, are actually sequence processing
functions based on the above iterator paradigm.
.SS* Callable Objects
In \*(TL, sequences (strings, vectors and lists) as well as hashes and
regular expressions can be used as functions everywhere, not just with the DWIM
brackets.
Sequences work as one or two-argument functions. With a single argument, an
element is selected by position and returned. With two arguments, a range is
extracted and returned.
Moreover, when a sequence is used as a function of one argument, and the
argument is a range object rather than an integer, then the call is equivalent
to the two-argument form. This is the basis for array slice syntax like
.mono
["abc" 0..1] .
.onom
Hashes also work as one or two argument functions, corresponding to the
arguments of the gethash function.
A regular expression behaves as a one, two, or three argument function, which
operates on a string argument.
It returns the leftmost matching substring, or else
.codn nil .
.B Example 1:
.verb
(mapcar "abc" '(2 0 1)) -> (#\ec #\ea #\eb)
.brev
Here,
.code mapcar
treats the string
.str abc
as a function of one argument (since there
is one list argument). This function maps the indices
.codn 0 ,
.code 1
and
.code 2
to the
corresponding characters of string
.strn abc .
Through this function, the list of integer indices
.code "(2 0 1)"
is taken to the list of characters
.codn "(#\ec #\ea #\eb)" .
.B Example 2:
.verb
(call '(1 2 3 4) 1..3) -> (2 3)
.brev
Here, the shorthand
.code "1 .. 3"
denotes
.codn "(rcons 1 3)" .
A range used as an argument
to a sequence performs range extraction: taking a slice starting at
index 1, up to and not including index 3, as if by the call
.codn "(sub '(1 2 3 4) 1 3)" .
.B Example 3:
.verb
(call '(1 2 3 4) '(0 2)) -> (1 2)
.brev
A list of indices applied to a sequence is equivalent to using the
select function, as if
.code "(select '(1 2 3 4) '(0 2))"
were called.
.B Example 4:
.verb
(call #/b./ "abcd") -> "bc"
.brev
Here, the regular expression, called as a function, finds the matching
substring
.str bc
within the argument
.strn abcd .
.SS* Special Variables
Similarly to Common Lisp, \*(TL is lexically scoped by default, but
also has dynamically scoped (a.k.a "special") variables.
When a variable is defined with
.code defvar
or
.codn defparm ,
a binding for the symbol is
introduced in the global name space, regardless of in what scope the
.code defvar
form occurs.
Furthermore, at the time the defvar form is evaluated, the symbol which
names the variable is tagged as special.
When a symbol is tagged as special, it behaves differently when it is used
in a lexical binding construct like
.codn let ,
and all other such constructs
such as function parameter lists. Such a binding is not the usual lexical
binding, but a "rebinding" of the global variable. Over the dynamic scope
of the form, the global variable takes on the value given to it by the
rebinding. When the form terminates, the prior value of the variable
is restored. (This is true no matter how the form terminates; even if by
an exception.)
Because of this "pervasive special" behavior of a symbol that has been
used as the name of a global variable, a good practice is to make global
variables have visually distinct names via the "earmuffs" convention:
beginning and ending the name with an asterisk.
.TP* "Example:"
.verb
(defvar *x* 42) ;; *x* has a value of 42
(defun print-x ()
(format t "~a\en" *x*))
(let ((*x* "abc")) ;; this overrides *x*
(print-x)) ;; *x* is now "abc" and so that is printed
(print-x) ;; *x* is 42 again and so "42" is printed
.brev
.TP* "Dialect Note 1:"
The terms
.I bind
and
.I binding
are used differently in \*(TL compared to ANSI Common Lisp.
In \*(TL binding is an association between a symbol and an abstract storage
location. The association is registered in some namespace, such as the global
namespace or a lexical scope. That storage location, in turn, contains a
value. In ANSI Lisp, a binding of a dynamic variable is the association between
the symbol and a value. It is possible for a dynamic variable to exist, and
not have a value. A value can be assigned, which creates a binding.
In \*(TL, an assignment is an operation which transfers a value into
a binding, not one which creates a binding.
In ANSI Lisp, a dynamic variable can exist which has no value. Accessing
the value signals a condition, but storing a value is permitted; doing so
creates a binding. By contrast, in \*(TL a global variable cannot exist without
a value. If a
.code defvar
form doesn't specify a value, and the variable doesn't exist, it is
created with a value of
.codn nil .
.TP* "Dialect Note 2:"
Unlike ANSI Common Lisp, \*(TL has global lexical variables in addition to
special variables. These are defined using
.code defvarl
and
.codn defparml .
The only difference is that when variables are introduced by these macros,
the symbols are not marked special, so their binding in lexical scopes
is not altered to dynamic binding.
Many variables in \*(TL's standard library are global lexicals.
Those which are special variables obey the "earmuffs" convention
in their naming. For instance
.codn s-ifmt ,
.code log-emerg
and
.code sig-hup
are global lexicals, because they provide constant values
for which overriding doesn't make sense. On the other hand the standard
output stream variable
.code *stdout*
is special. Overriding it over a dynamic scope is useful, as a means of
redirecting the output of functions which write to the
.code *stdout*
stream.
.TP* "Dialect Note 3:"
In Common Lisp,
.code defparm
is known as
.codn defparameter .
.SS* Syntactic Places and Accessors
The \*(TL feature known as
.I syntactic places
allows programs to use
the syntax of a form which is used to
.I access
a value from an environment or
object, as an expression which denotes a
.I place
where a value may be
.I stored.
They are almost exactly the
same concept as "generalized references" in Common Lisp, and are related to
"lvalues" in languages in the C family, or "designators" in Pascal.
.NP* Symbolic Places
A symbol is a is a syntactic place if it names a variable. If
.code a
is a variable, then it may be assigned using the
.code set
operator: the form
.code "(set a 42)"
causes
.code a
to have the integer value 42.
.NP* Compound Places
A compound expression can be a syntactic place, if its leftmost constituent is
as symbol which is specially registered, and if the form has the correct syntax
for that kind of place, and suitable semantics. Such an expression is a compound
place.
An example of a compound place is a
.code car
form. If
.code c
is an expression denoting a
.code cons
cell, then
.code "(car c)"
is not only an expression which retrieves the value of the
.code car
field of the cell. It is also a syntactic place which denotes that field as
a storage location. Consequently, the expression
.mono
(set (car c) "abc")
.onom
stores the character string
.str "abc"
in that location. Although the same effect can be obtained with
.mono
(rplaca c "abc")
.onom
the syntactic place frees the programmer from having to remember
different update functions for different kinds of places.
There are
various other advantages. \*(TL provides a plethora of operators
for modifying a place in addition to
.codn set .
Subject to certain usage restrictions, these operators work uniformly on all
places. For instance, the expression
.code "(rotate (car x) [str 3] y)"
causes three different kinds of places to exchange contents,
while the three expressions denoting those places
are evaluated only once. New kinds of place update macros like
.code rotate
are quite easily defined, as are new kinds of compound places.
.NP* Accessor Functions
When a function call form such as the above
.code "(car x)"
is a syntactic place, then the function is called an
.IR accessor .
This term is used throughout this document to denote functions
which have associated syntactic places.
.NP* Macro Call Syntactic Places
Syntactic places can be macros (global and lexical), including symbol macros.
So for instance in
.code "(set x 42)"
the
.code x
place can actually be a symbolic macro which expands to, say,
.codn "(cdr y)" .
This means that the assignment is effectively
.codn "(set (cdr y) 42)" .
.NP* User-Defined Syntactic Places and Place Operators
Syntactic places, as well as operators upon syntactic places,
are both open-ended. Code can be written quite easily in \*(TL to introduce
new kinds of places, as well as new place-mutating operators.
New places can be introduced with the help of the
.codn defplace ,
.code define-accessor
or
.code defset
macros, or possibly the
.code define-place-macro
macro in simple cases when a new syntactic place can be expressed as a
transformation to the syntax of an existing place.
Three ways exist for developing new place update macros (place operators).
They can be written using the ordinary macro definer
ordinary macro definer
.codn defmacro ,
with the help of special utility macros called
.codn with-update-expander ,
.codn with-clobber-expander ,
and
.codn with-delete-expander .
They can also be written using
.code defmacro
in conjunction with the operators
.code placelet
or
.codn placelet* .
Simple update macros similar to
.code inc
and
.code push
can be written compactly using
.codn define-modify-macro .
.NP* Deletable Places
Unlike generalized references in Common Lisp, \*(TL syntactic
places support the concept of deletion. Some kinds of places
can be deleted, which is an action distinct from (but does not preclude) being
overwritten with a value. What exactly it means for a place to be deleted,
or whether that is even permitted, depends on the kind of place.
For instance a place which denotes a lexical variable may not be deleted,
whereas a global variable may be.
A place which denotes a hash table entry may be deleted, and results in the
entry being removed from the hash table. Deleting a place in a list
causes the trailing items, if any, or else the terminating atom, to
move in to close the gap. Users may define new kinds of places
which support deletion semantics.
.NP* Evaluation of Places
To bring about their effect, place operators must evaluate one or
more places. Moreover, some of them evaluate additional forms which are not
places. Which arguments of a place operator form are places and which are
ordinary forms depends on its specific syntax. For all the built-in place
operators, the position of an argument in the syntax determines whether it is
treated as (and consequently required to be) a syntactic place, or whether it is
an ordinary form.
All built-in place operators perform the evaluation of place and non-place
argument forms in strict left to right order.
Place forms are evaluated not in order to compute a value, but in order to
determine the storage location. In addition to determining a storage location,
the evaluation of a place form may possibly give rise to side effects.
Once a place is fully evaluated, the storage location can then be accessed.
Access to the storage location is not considered part of the evaluation of a
place. To determine a storage location means to compute some hidden referential
object which provides subsequent access to that location without the need for a
re-evaluation of the original place form. (The subsequent access to the
place through this referential object may still require a multi-step traversal
of a data structure; minimizing such steps is a matter of optimization.)
Place forms may themselves be compounds, which contain subexpressions that must
be evaluated. All such evaluation for the built-in places takes place in left
to right order.
Certain place operators, such as
.code shift
and
.codn rotate ,
exhibit an unspecified behavior with regard to the timing of the access
of the prior value of a place, relative to the evaluation of places
which occur later in the same place operator form. Access to the prior values
may be delayed until the entire form is evaluated, or it may be interleaved
into the evaluation of the form. For example, in the form
.codn "(shift a b c 1)" ,
the prior value of
.code a
can be accessed and saved as soon as
.code a
is evaluated, prior to the evaluation of
.codn b .
Alternatively,
.code a
may be accessed and saved later, after the evaluation of
.code b
or after the evaluation of all the forms. This issue affects the behavior of
place-modifying forms whose subforms contain side effects. It is recommended
that such forms not be used in programs.
.NP* Nested Places
Certain place forms are required to have one or more arguments which
are themselves places. The prime example of this, and the only example from
among built-in syntactic places, are DWIM forms. A DWIM form has the syntax
.mono
.mets (dwim < obj-place < index <> [ alt ])
.onom
and the square-bracket-notation equivalent:
.mono
.mets >> [ obj-place < index <> [ alt ]]
.onom
Note that not only is the entire form a place, denoting some element or element
range of
.metn obj-place ,
but there is the added constraint that
.meta obj-place
must also itself be a syntactic place.
This requirement is necessary, because it supports the behavior that
when the element or element range is updated, then
.meta obj-place
is also potentially updated.
After the assignment
.mono
(set [obj 0..3] '("forty" "two"))
.onom
not only is the range of places denoted by
.code "[obj 0..3]"
replaced by the list of strings
.mono
("forty" "two")
.onom
but
.code obj
may also be overwritten with a new value.
This behavior is necessary because the DWIM brackets notation maintains
the illusion of an encapsulated array-like container over several dis-similar
types, including Lisp lists. But Lisp lists do not behave as fully
encapsulated containers. Some mutations on Lisp lists return new objects,
which then have to stored (or otherwise accepted) in place of the original
objects in order to maintain the array-like container illusion.
.NP* Built-In Syntactic Places
The following is a summary of the built-in place forms, in addition to symbolic
places denoting variables. New syntactic place forms can be
defined by \*(TX programs.
.mono
.mets (car << object )
.mets (first << object )
.mets (rest << object )
.mets (second << object )
.mets (third << object )
.mets ...
.mets (tenth << object )
.mets (last < object <> [ num ])
.mets (butlast < object <> [ num ])
.mets (cdr << object )
.mets (caar << object )
.mets (cadr << object )
.mets (cdar << object )
.mets (cddr << object )
.mets ...
.mets (cdddddr << object )
.mets (nthcdr < index << obj )
.mets (nthlast < index << obj )
.mets (butlastn < num << obj )
.mets (last < num << obj )
.mets (nth < index << obj )
.mets (ref < seq << idx )
.mets (sub < sequence >> [ from <> [ to ]])
.mets (vecref < vec << idx )
.mets (chr-str < str << idx )
.mets (gethash < hash < key <> [ alt ])
.mets (hash-userdata << hash )
.mets (dwim < obj-place < index <> [ alt ])
.mets (sub-list < obj >> [ from <> [ to ]])
.mets (sub-vec < obj >> [ from <> [ to ]])
.mets (sub-str < str >> [ from <> [ to ]])
.mets >> [ obj-place < index <> [ alt ]] ;; equivalent to dwim
.mets (symbol-value << symbol-valued-form )
.mets (symbol-function << function-name-valued-form )
.mets (symbol-macro << symbol-valued-form )
.mets (fun << function-name )
.mets (force << promise )
.mets (errno)
.mets (slot < struct-obj << slot-name-valued-form )
.mets (qref < struct-obj << slot-name ) ;; by macro-expansion to (slot ...)
.mets >< struct-obj . slot-name ;; equivalent to qref
.mets (sock-peer << socket )
.mets (carray-sub < carray >> [ from <> [ to ]])
.mets (sub-buf < buf >> [ from <> [ to ]])
.mets (left << node )
.mets (right << node )
.mets (key << node )
.onom
.NP* Built-In Place-Mutating Operators
The following is a summary of the built-in place mutating macros.
They are described in detail in their own sections.
.meIP (set >> { place << new-value }*)
Assigns the values of expressions to places, performing assignments in left to right order,
returning the value assigned to the rightmost place.
.meIP (pset >> { place << new-value }*)
Assigns the values of expressions to places, performing the determination of
places and evaluation of the expressions left to right, but the assignment
in parallel. Returns the value assigned to the rightmost place.
.meIP (zap < place <> [ new-value ])
Assigns
.meta new-value
to place, defaulting to
.codn nil ,
and returns the prior value.
.meIP (flip << place )
Logically toggles the Boolean value of
.metn place ,
and returns the new value.
.meIP (test-set << place )
If
.meta place
contains
.codn nil ,
stores
.code t
into the place and returns
.code t
to indicate that the store took place.
Otherwise does nothing and returns
.codn nil .
.meIP (test-clear << place )
If
.meta place
contains a Boolean true value, stores
.code nil
into the place and returns
.code t
to indicate that the store took place.
Otherwise does nothing and returns
.codn nil .
.meIP (compare-swap < place < cmp-fun < cmp-val << store-val )
Examines the value of
.meta place
and compares it to
.meta cmp-val
using the comparison function given by the function name
.metn cmp-fun .
If the comparison is false, returns
.codn nil .
Otherwise, stores the
.meta store-val
value into
.meta place
and returns
.codn t .
.meIP (inc < place <> [ delta ])
Increments
.meta place
by
.metn delta ,
which defaults to 1, and returns the new value.
.meIP (dec < place <> [ delta ])
Decrements
.meta place
by
.metn delta ,
which defaults to 1, and returns the new value.
.meIP (pinc < place <> [ delta ])
Increments
.meta place
by
.metn delta ,
which defaults to 1, and returns the old value.
.meIP (pdec < place <> [ delta ])
Decrements
.meta place
by
.metn delta ,
which defaults to 1, and returns the old value.
.meIP (test-inc < place >> [ delta <> [ from-val ]])
Increments
.meta place
by
.meta delta
and returns
.code t
if the previous value was
.code eql
to
.metn from-val ,
where
.meta delta
defaults to 1
and
.meta from-val
defaults to zero.
.meIP (test-dec < place >> [ delta <> [ to-val ]])
Decrements
.meta place
by
.meta delta
and returns
.code t
if the new value is
.code eql
to
.metn to-val ,
where
.meta delta
defaults to 1
and
.meta to-val
defaults to 0.
.meIP (swap < left-place << right-place )
Exchanges the values of
.meta left-place
and
.metn right-place .
.meIP (push < item << place )
Pushes
.meta item
into the list stored in
.code place
and returns
.codn item .
.meIP (pop << place )
Pop the list stored in
.meta place
and returns the popped value.
.meIP (shift << place + << shift-in-value)
Treats one or more places as a "multi-place shift register".
Values are shifted to the left among the places. The
rightmost place receives
.metn shift-in-value ,
and the value of the leftmost place emerges as the return value.
.meIP (rotate << place *)
Treats zero or more places as a "multi-place rotate register".
The places exchange values among themselves, by a rotation
by one place to the left. The value of the leftmost place
goes to the rightmost place, and that value is returned.
.meIP (del << place )
Deletes a place which supports deletion, and returns
the value which existed in that place prior to deletion.
.meIP (lset <> { place }+ << list-expr )
Sets multiple places to values obtained from successive
elements of
.metn sequence .
.meIP (upd < place << opip-arg *)
Applies an
.codn opip -style
operational pipeline to the value of
.meta place
and stores the result back into
.metn place .
.PP
.SS* Namespaces and Environments
\*(TL is a Lisp-2 dialect: it features separate namespaces for
functions and variables.
.NP* Global Functions and Operator Macros
In \*(TL, global functions and operator macros co-exist, meaning that the same
symbol can be defined as both a macro and a function.
There is a global namespace for functions,
into which functions can be introduced with the
.code defun
macro. The global function environment can be inspected and modified using the
.code symbol-function
accessor.
There is a global namespace for macros, into which
macros are introduced with the
.code defmacro
macro. The global function environment can be inspected and modified using the
.code symbol-macro
accessor.
If a name
.code x
is defined as both a function and a macro, then an expression of the form
.code "(x ...)"
is expanded by the macro, whereas an expression of the form
.code "[x ...]"
refers to the function. Moreover, the macro can produce a call to the
function. The expression
.code "(fun x)"
will retrieve the function object.
.NP* Global and Dynamic Variables
There is a global namespace for variables also.
The operators
.code defvar
and
.code defparm
introduce bindings into this namespace. These operators have the
side effect of marking a symbol as a special variable,
of the symbol are treated as dynamic variables, subject to
rebinding. The global variable namespace together with the special dynamic
rebinding is called the dynamic environment.
The dynamic environment can be inspected and modified using the
.code symbol-value
accessor.
The operators
.code defvarl
and
.code defparml
introduce bindings into the global namespace without marking
symbols as special variables. Such bindings are called global lexical
variables.
.NP* Global Symbol Macros
Symbol macros may be defined over the global variable namespace
using
.codn defsymacro .
Note that whereas a symbol may simultaneously have both a function and macro
binding in the global namespace, a symbol may not simultaneously have
a variable and symbol macro binding.
.NP* Lexical Environments
In addition to global and dynamic namespaces, \*(TL provides lexically scoped
binding for functions, variables, macros, and symbol macros.
Lexical variable binding are introduced with
.codn let ,
.code let*
or various binding macros derived from these. Lexical functions are bound
with
.code flet
and
.codn labels .
Lexical macros are established with
.code macrolet
and lexical symbol macros with
.codn symacrolet .
Macros receive an environment parameter with which they may expand
forms in their correct environment, and perform some limited introspection
over that environment in order to determine the nature of bindings,
or the classification of forms in those environments. This introspection
is provided by
.codn lexical-var-p ,
.codn lexical-fun-p ,
and
.codn lexical-lisp1-binding .
Lexical operator macros and lexical functions can also co-exist in the
following way. A lexical function shadows a global or lexical macro
completely. However, the reverse is not the case. A lexical macro shadows
only those uses of a function which look like macro calls. This is
succinctly demonstrated by the following form:
.verb
(flet ((foo () 43))
(macrolet ((foo () 44))
(list (fun foo) (foo) [foo])))
-> (#<interpreted fun: lambda nil> 44 43)
.brev
The
.code "(fun foo)"
and
.code [fun]
expressions are oblivious to the macro; the macro expansion process
process the symbol
.code foo
in those contexts. However the form
.code (foo)
is subject to macro-expansion and replaced with
.codn 44 .
If the
.code flet
and
.code macrolet
are reversed, the behavior is different:
.verb
(macrolet ((foo () 44))
(flet ((foo () 43))
(list (fun foo) (foo) [foo])))
-> (#<interpreted fun: lambda nil> 43 43)
.brev
All three forms refer to the function, which lexically shadows the macro.
.NP* Pattern Language and Lisp Scope Nesting
\*(TL expressions can be embedded in the \*(TX pattern language in various
ways. Likewise, the pattern language can be invoked from \*(TL. This
brings about the possibility that Lisp code attempts to access
pattern variables bound in the pattern language. The \*(TX pattern language
can also attempt to access \*(TL variables.
The rules are as follows, but they have undergone historic changes. See the
COMPATIBILITY section, in particular notes under 138 and 121, and also 124.
A Lisp expression evaluated from the \*(TX pattern language executes
in a null lexical environment. The current set of pattern variables captured
up to that point by the pattern language are installed as dynamic variables.
They shadow any Lisp global variables (whether those are defined
by
.code defvar
or
.codn defvarl ).
In the reverse direction, a variable reference from the \*(TX pattern
language searches the pattern variable space first. If a variable doesn't
exist there, then the lookup refers to the \*(TL global variable space.
The pattern language doesn't see Lisp lexical variables.
When Lisp code is evaluated from the pattern language, the pattern variable
bindings are not only installed as dynamic variables for the sake of their
visibility from Lisp, but they are also specially stored in a dynamic
environment frame. When \*(TX pattern code is re-entered from Lisp, these
bindings are picked up from the closest such environment frame, allowing the
nested invocation of pattern code to continue with the bindings captured by
outer pattern code.
Concisely, in any context in which a symbol has both a binding as a Lisp global
variable as well as a pattern variable, that symbol refers to the pattern
variable. Pattern variables are propagated through Lisp evaluation into
nested invocations of the pattern language.
The pattern language can also reference
Lisp variables using the
.code @
prefix, which is a consequence of that prefix introducing an expression that is
evaluated as Lisp, the name of a variable being such an expression.
.SH* LISP OPERATOR, FUNCTION AND MACRO REFERENCE
.SS* Conventions
The following sections list all of the special operators, macros
and functions in \*(TL.
In these sections, syntax is indicated using these conventions:
.meIP < word
.ie n \{\
A symbol in angle brackets
.\}
.el \{\
A symbol in
.meta fixed-width-italic
font
.\}
denotes some syntactic unit: it
may be a symbol or compound form. The syntactic unit is explained
in the corresponding Description section.
.meIP {syntax}* << word *
This indicates a repetition of zero or more of the given
syntax enclosed in the braces or syntactic unit.
The curly braces may be omitted if the scope of the
.code *
is clear.
.meIP {syntax}+ << word +
This indicates a repetition of one or more of the given
syntax enclosed in the braces or syntactic unit.
The curly braces may be omitted if the scope of the
.code +
is clear.
.coIP {syntax | syntax | ...}
This indicates a choice among alternatives.
May be combined with
.code +
or
.code *
repetition.
.meIP [syntax] <> [ word ]
Square brackets indicate optional syntax.
.coIP '[' ']'
The quoted square brackets indicate literal brackets which appear
in the syntax, which they do without quotes. For instance
.code "'['foo [ bar ]']'"
is a pattern denotes the two possible expressions
.code "[foo]"
and
.codn "[foo bar]" .
.meIP syntax -> < result
The arrow notation is used in examples to indicate that the evaluation
of the given syntax produces a value, whose printed representation is
.metn result .
.SS* Form Evaluation
A compound expression with a symbol as its first element, if
intended to be evaluated, denotes either an operator invocation or a function
call. This depends on whether the symbol names an operator or a function.
When the form is an operator invocation, the interpretation of the meaning of
that form is under the complete control of that operator.
If the compound form is a function call, the remaining forms, if any, denote
argument expressions to the function. They are evaluated in left to right
order to produce the argument values, which are passed to the function. An
exception is thrown if there are not enough arguments, or too many. Programs
can define named functions with the defun operator
Some operators are macros. There exist predefined macros in the library, and
macro operators can also be user-defined using the macro-defining operator
.codn defmacro .
Operators that are not macros are called special operators.
Macro operators work as functions which are given the source code of the form.
They analyze the form, and translate it to another form which is substituted in
their place. This happens during a code walking phase called the expansion
phase, which is applied to each top-level expression prior to evaluation. All
macros occurring in a form are expanded in the expansion phase, and subsequent
evaluation takes place on a structure which is devoid of macros. All that
remains are the executable forms of special operators, function calls,
symbols denoting either variables or themselves, and atoms such as numeric
and string literals.
Special operators can also perform code transformations during the expansion
phase, but that is not considered macroexpansion, but rather an adjustment
of the representation of the operator into an required executable form.
In effect, it is post-macro compilation phase.
Note that Lisp forms occurring in \*(TX pattern language are not individual
top-level forms. Rather, the entire \*(TX query is parsed at the same time, and
the macros occurring in its Lisp forms are expanded at that time.
.coNP Operator @ quote
.synb
.mets (quote << form )
.syne
.desc
The
.code quote
operator, when evaluated, suppresses the evaluation of
.metn form ,
and instead returns
.meta form
itself as an object. For example, if
.meta form
is a symbol, then
.meta form
is not evaluated to the symbol's value; rather
the symbol itself is returned.
Note: the quote syntax
.mono
.meti >> ' form
.onom
is translated to
.mono
.meti (quote << form ).
.onom
.TP* Example:
.verb
;; yields symbol a itself, not value of variable a
(quote a) -> a
;; yields three-element list (+ 2 2), not 4.
(quote (+ 2 2)) -> (+ 2 2)
.brev
.SS* Variable Binding
Variables are associations between symbols and storage locations
which hold values. These associations are called
.IR bindings .
Bindings are held in a context called an
.IR environment .
.I Lexical
environments hold local variables, and nest according to the syntactic
structure of the program. Lexical bindings are always introduced by a
some form known as a
.IR "binding construct" ,
and the corresponding environment is instantiated during the evaluation
of that construct. There also exist bindings outside of any binding
construct, in the so-called
.I global environment .
Bindings in the global environment can be temporarily shadowed by
lexically-established binding in the
.I dynamic environment .
See the Special Variables section above.
Certain special symbols cannot be used as variable names, namely the
symbols
.code t
and
.codn nil ,
and all of the keyword symbols (symbols in the keyword package), which are
denoted by a leading colon. When any of these symbols is evaluated as
a form, the resulting value is that symbol itself. It is said that these
special symbols are self-evaluating or self-quoting, similarly to all
other atom objects such as numbers or strings.
When a form consisting of a symbol, other than the above special symbols, is
evaluated, it is treated as a variable, and yields the value of
the variable's storage location. If the variable doesn't exist,
an exception is thrown.
Note: symbol forms may also denote invocations of symbol macros. (See the
operators
.code defsymacro
and
.codn symacrolet ).
All macros, including symbol macros, which occur inside
a form are fully expanded prior to the evaluation of a form, therefore
evaluation does not consider the possibility of a symbol being
a symbol macro.
.coNP Operator @ defvar and macro @ defparm
.synb
.mets (defvar < sym <> [ value ])
.mets (defparm < sym << value )
.syne
.desc
The
.code defvar
operator binds a name in the variable namespace of the global environment.
Binding a name means creating a binding: recording, in some namespace of some
environment, an association between a name and some named entity. In the
case of a variable binding, that entity is a storage location for a value.
The value of a variable is that which has most recently been written into the
storage location, and is also said to be a value of the binding, or stored
in the binding.
If the variable named
.meta sym
already exists in the global environment, the
form has no effect; the
.meta value
form is not evaluated, and the value of the
variable is unchanged.
If the variable does not exist, then a new binding is introduced, with a value
given by evaluating the
.meta value
form. If the form is absent, the variable is initialized
to
.codn nil .
The
.meta value
form is evaluated in the environment
in which the
.code defvar
form occurs, not necessarily in the global environment.
The symbols
.code t
and
.code nil
may not be used as variables, and neither
can be keyword symbols: symbols denoted by a leading colon.
In addition to creating a binding, the
.code defvar
operator also marks
.meta sym
as the name of a special variable. This changes what it means to bind
that symbol in a lexical binding construct such as the
.code let
operator, or a function parameter list. See the section "Special Variables" far
above.
The
.code defparm
macro behaves like
.code defvar
when a variable named
.meta sym
doesn't already exist.
If
.meta sym
already denotes a variable binding in the global namespace,
.code defparm
evaluates the
.meta value
form and assigns the resulting value to the variable.
The following equivalence holds:
.verb
(defparm x y) <--> (prog1 (defvar x) (set x y))
.brev
The
.code defvar
and
.code defparm
forms return
.metn sym .
.coNP Macros @ defvarl and @ defparml
.synb
.mets (defvarl < sym <> [ value ])
.mets (defparml < sym << value )
.syne
.desc
The
.code defvarl
and
.code defparml
macros behave, respectively, almost exactly like
.code defvar
and
.codn defparm .
The difference is that these operators do not mark
.meta sym
as special.
If a global variable
.meta sym
does not previously exist, then after the evaluation of
either of these forms
.mono
.meti (boundp << sym )
.onom
is true, but
.mono
.meti (special-var-p << sym )
.onom
isn't.
If
.meta sym
had been already introduced as a special variable, it stays that way
after the evaluation of
.code defvarl
or
.codn defparml .
.coNP Operators @ let and @ let*
.synb
.mets (let >> ({ sym | >> ( sym << init-form )}*) << body-form *)
.mets (let* >> ({ sym | >> ( sym << init-form )}*) << body-form *)
.syne
.desc
The
.code let
and
.code let*
operators introduce a new scope with variables and
evaluate forms in that scope. The operator symbol, either
.code let
or
.codn let* ,
is followed by a list which can contain any mixture of
.meta sym
or
.mono
.meti >> ( sym << init-form )
.onom
pairs.
Each
.meta sym
must be a symbol, and specifies the name of variable to be instantiated and
initialized.
The
.mono
.meti >> ( sym << init-form )
.onom
variant specifies that the new variable
.meta sym
receives an initial value from the
evaluation of
.metn init-form .
The plain
.meta sym
variant specifies a variable which is initialized to
.codn nil .
The
.metn init-form -s
are evaluated in order, by both
.code let
and
.codn let* .
The symbols
.code t
and
.code nil
may not be used as variables, and neither
can be keyword symbols: symbols denoted by a leading colon.
The difference between
.code let
and
.code let*
is that in
.codn let* ,
later
.codn init-form -s
are in scope of the variables established by earlier variables in the same
.code let*
construct. In plain
.codn let ,
the
.metn init-form -s
are evaluated in a scope which does not include any of the variables.
When the variables are established, the
.metn body-form -s
are evaluated in order. The value of the last
.meta body-form
becomes the return value of the
.codn let .
If there are no
.metn body-form -s,
then the return value
.code nil
is produced.
The list of variables may be empty.
The list of variables may contain duplicate
.metn sym -s
if the operator is
.codn let* .
In that situation, a given
.meta init-form
has in scope the rightmost duplicate of any given
.meta sym
that has been previously established.
The
.metn body-form -s
have in scope the rightmost duplicate of any
.meta sym
in the construct.
Therefore, the following form calculates the value 3:
.verb
(let* ((a 1)
(a (succ a))
(a (succ a)))
a)
.brev
Each duplicate is a separately instantiated binding, and may be independently
captured by a lexical closure placed in a subsequent
.codn init-form :
.verb
(let* ((a 0)
(f1 (lambda () (inc a)))
(a 0)
(f2 (lambda () (inc a))))
(list [f1] [f1] [f1] [f2] [f2] [f2]))
--> (1 2 3 1 2 3)
.brev
The preceding example shows that there are two mutable variables named
.code a
in independent scopes, each respectively captured by the separate closures
.code f1
and
.codn f2 .
Three calls to
.code f1
increment the first
.code a
while the second
.code a
retains its initial value.
Under
.codn let ,
the behavior of duplicate variables is unspecified.
Implementation note: the \*(TX compiler diagnoses and rejects duplicate
symbols in
.code let
whereas the interpreter ignores the situation.
When the names of a special variables is specified in
.code let
or
.code let*
remain, a new binding is created for them in the dynamic environment, rather
than the lexical environment.
In
.codn let* ,
later
.metn init-form -s
are evaluated in a dynamic scope in which previous dynamic variables
are established, and later dynamic variables are not yet established.
A special variable may appear multiple times in a
.codn let* ,
just like a lexical variable. Each duplicate occurrence extends the
dynamic environment with a new dynamic binding.
All these dynamic environments are removed when the
.code let
or
.code let*
form terminates. Dynamic environments aren't captured by lexical
closures, but are captured in delimited continuations.
.TP* Examples:
.verb
(let ((a 1) (b 2)) (list a b)) -> (1 2)
(let* ((a 1) (b (+ a 1))) (list a b (+ a b))) -> (1 2 3)
(let ()) -> nil
(let (:a nil)) -> error, :a and nil can't be used as variables
.brev
.SS* Functions
.coNP Operator @ defun
.synb
.mets (defun < name <> ( param * [: << opt-param *] [. << rest-param ])
.mets \ \ << body-form )
.syne
.desc
The
.code defun
operator introduces a new function in the global function namespace.
The function is similar to a lambda, and has the same parameter syntax
and semantics as the
.code lambda
operator.
Note that the above syntax synopsis describes only the canonical
parameter syntax which remains after parameter list macros are
expanded. See the section Parameter List Macros.
Unlike in
.codn lambda ,
the
.metn body-form -s
of a
.code defun
are surrounded by a block.
The name of this block is the same as the name of the function, making it
possible to terminate the function and return a value using
.mono
.meti (return-from < name << value ).
.onom
For more information, see the definition of the block operator.
A function may call itself by name, allowing for recursion.
The special symbols
.code t
and
.code nil
may not be used as function names. Neither can keyword symbols.
It is possible to define methods as well as macros with
.codn defun ,
as an alternative to the
.code defmeth
and
.code defmacro
forms.
To define a method, the syntax
.mono
.meti (meth < type << name )
.onom
should be used as the argument to the
.meta name
parameter. This gives rise to the syntax
.mono
.meti (defun (meth < type << name ) < args << form *)
.onom
which is equivalent to the
.mono
.meti (defmeth < type < name < args << form *)
.onom
syntax.
Macros can be defined using
.mono
.meti (macro << name )
.onom
as the
.meta name
parameter of
.codn defun .
This way of defining a macro doesn't support destructuring;
it defines the expander as an ordinary function with an ordinary
argument list. To work, the function must accept two arguments:
the entire macro call form that is to be expanded, and the
macro environment. Thus, the macro definition syntax is
.mono
.meti (defun (macro << name ) < form < env << form *)
.onom
which is equivalent to the
.mono
.meti (defmacro < name (:form < form :env << env ) << form *)
.onom
syntax.
.TP* "Dialect Note:"
In ANSI Common Lisp, keywords may be used as function names.
In TXR Lisp, they may not.
.TP* "Dialect Note:"
A function defined by
.code defun
may co-exist with a macro defined by
.codn defmacro .
This is not permitted in ANSI Common Lisp.
.coNP Operator @ lambda
.synb
.mets (lambda <> ( param * [: << opt-param *] [. << rest-param ])
.mets \ \ << body-form )
.mets (lambda < rest-param
.mets \ \ << body-form )
.syne
.desc
The
.code lambda
operator produces a value which is a function. Like in most other
Lisps, functions are objects in \*(TL. They can be passed to functions as
arguments, returned from functions, aggregated into lists, stored in variables,
.IR "et cetera" .
Note that the above syntax synopsis describes only the canonical
parameter syntax which remains after parameter list macros are
expanded. See the section Parameter List Macros.
The first argument of
.code lambda
is the list of parameters for the function. It
may be empty, and it may also be an improper list (dot notation) where the
terminating atom is a symbol other than
.codn nil .
It can also be a single symbol.
The second and subsequent arguments are the forms making up the function body.
The body may be empty.
When a function is called, the parameters are instantiated as variables that
are visible to the body forms. The variables are initialized from the values of
the argument expressions appearing in the function call.
The dotted notation can be used to write a function that accepts
a variable number of arguments. There are two ways write a function that
accepts only a variable argument list and no required arguments:
.mono
.mets (lambda (. << rest-param ) ...)
.mets (lambda < rest-param ...)
.onom
(These notations are syntactically equivalent because the list notation
.code "(. X)"
actually denotes the object
.code X
which isn't wrapped in any list).
The keyword symbol
.code :
(colon) can appear in the parameter list. This is
the symbol in the keyword package whose name is the empty string. This
symbol is treated specially: it serves as a separator between
required parameters and optional parameters. Furthermore, the
.code :
symbol has a role to play in function calls: it can be specified as an argument
value to an optional parameter by which the caller indicates that the
optional argument is not being specified. It will be processed exactly
that way.
An optional parameter can also be written in the form
.mono
.meti >> ( name < expr <> [ sym ]).
.onom
In this situation, if the call does not specify a value for the parameter
(or specifies a value as the keyword
.code :
(colon)) then the parameter takes on the
value of the expression
.metn expr .
This expression is only evaluated when its value is required.
If
.meta sym
is specified, then
.meta sym
will be
introduced as an additional binding with a Boolean value which indicates
whether or not the optional parameter had been specified by the caller.
Each
.code expr
that is evaluated is evaluated an environment in which
all of the previous parameters are visible, in addition to the surrounding
environment of the lambda. For instance:
.verb
(let ((default 0))
(lambda (str : (end (length str)) (counter default))
(list str end counter)))
.brev
In this
.codn lambda ,
the initializing expression for the optional parameter
end is
.codn "(length str)" ,
and the
.code str
variable it refers to is the previous
argument. The initializer for the optional variable counter is
the expression default, and it refers to the binding established
by the surrounding let. This reference is captured as part of the
.codn lambda 's
lexical closure.
Keyword symbols, and the symbols
.code t
and
.code nil
may not be used as parameter names.
The behavior is unspecified if the same symbol is specified
more than once anywhere in the parameter list, whether as a parameter name or as
the indicator
.code sym
in an optional parameter or any combination.
Implementation note: the \*(TX compiler diagnoses and rejects duplicate
symbols in
.code lambda
whereas the interpreter ignores the situation.
.TP* Examples:
.IP "Counting function:"
This function, which takes no arguments, captures the
variable
.codn counter .
Whenever this object is called, it increments
.code counter
by
.code 1
and returns the incremented value.
.verb
(let ((counter 0))
(lambda () (inc counter)))
.brev
.IP "Function that takes two or more arguments:"
The third and subsequent arguments are aggregated into a list passed as the
single parameter
.codn z :
.verb
(lambda (x y . z) (list 'my-arguments-are x y z))
.brev
.IP "Variadic function:"
.verb
(lambda args (list 'my-list-of-arguments args))
.brev
.IP "Optional arguments:"
.verb
[(lambda (x : y) (list x y)) 1] -> (1 nil)
[(lambda (x : y) (list x y)) 1 2] -> (1 2)
.brev
.coNP Macros @ flet and @ labels
.synb
.mets (flet >> ({( name < param-list << function-body-form *)}*)
.mets \ \ << body-form *)
.mets (labels >> ({( name < param-list << function-body-form *)}*)
.mets \ \ << body-form *)
.syne
.desc
The
.code flet
and
.code labels
macros bind local, named functions in the lexical scope.
Note that the above syntax synopsis describes only the canonical
parameter syntax which remains after parameter list macros are
expanded. See the section Parameter List Macros.
The difference between
.code flet
and
.code labels
is that a function defined by
.code labels
can see itself, and therefore recurse directly by name. Moreover, if multiple
functions are defined by the same labels construct, they all have each other's
names in scope of their bodies.
By contrast, a
.codn flet -defined
function does not have itself in scope and cannot recurse.
Multiple functions in the same
.code flet
do not have each other's names in their scopes.
More formally, the
.metn function-body-form -s
and
.meta param-list
of the functions defined by
.code labels
are in a scope in which all of the function
names being defined by that same
.code labels
construct are visible.
Under both
.code labels
and
.codn flet ,
the local functions that are defined are
lexically visible to the main
.metn body-form -s.
Note that
.code labels
and
.code flet
are properly scoped with regard to macros.
During macro expansion, function bindings introduced by these
macro operators shadow macros defined by
.code macrolet
and
.codn defmacro .
Furthermore, function bindings introduced by
.code labels
and
.code flet
also shadow symbol macros defined by
.codn symacrolet ,
when those symbol macros occur as arguments of a
.code dwim
form.
See also: the
.code macrolet
operator.
.TP* "Dialect Note:"
The
.code flet
and
.code labels
macros do not establish named blocks around the body forms
of the local functions which they bind. This differs from
ANSI Common Lisp, whose local function have implicit named blocks,
allowing for
.code return-from
to be used.
.TP* Examples:
.verb
;; Wastefully slow algorithm for determining evenness.
;; Note:
;; - mutual recursion between labels-defined functions
;; - inner is-even bound by labels shadows the outer
;; one bound by defun so the (is-even n) call goes
;; to the local function.
(defun is-even (n)
(labels ((is-even (n)
(if (zerop n) t (is-odd (- n 1))))
(is-odd (n)
(if (zerop n) nil (is-even (- n 1)))))
(is-even n)))
.brev
.coNP Function @ call
.synb
.mets (call < function << argument *)
.syne
.desc
The
.code call
function invokes
.metn function ,
passing it the given arguments, if any.
.TP* Examples:
Apply arguments
.code "1 2"
to a
.code lambda
which adds them to produce
.codn 3 :
.verb
(call (lambda (a b) (+ a b)) 1 2)
.brev
Useless use of
.code call
on a named function; equivalent to
.codn "(list 1 2)" :
.verb
(call (fun list) 1 2)
.brev
.coNP Functions @ apply and @ iapply
.synb
.mets (apply < function <> [ arg * << trailing-args ])
.mets (iapply < function <> [ arg * << trailing-args ])
.syne
.desc
The
.code apply
function invokes
.metn function ,
optionally passing to it an argument
list. The return value of the
.code apply
call is that of
.metn function .
If no arguments are present after
.metn function ,
then
.meta function
is invoked without arguments.
If one argument is present after
.metn function ,
then it is interpreted as
.metn trailing-args .
If this is a sequence (a list, vector or string),
then the elements of the sequence are passed as individual arguments to
.metn function .
If
.meta trailing-args
is not a sequence, then
.meta function
is invoked
with an improper argument list, terminated by the
.meta trailing-args
atom.
If two or more arguments are present after
.metn function ,
then the last of these arguments is interpreted as
.metn trailing-args .
The previous arguments represent leading arguments which are applied to
.metn function ,
prior to the arguments taken from
.metn trailing-args .
Note that if
.meta trailing-args
value is an atom or an improper list, the function is then
invoked with an improper argument list. Only a variadic
function may be invoked with an improper argument lists.
Moreover, all of the function's required and optional
parameters must be satisfied by elements of the
improper list, such that the terminating atom either
matches the
.meta rest-param
directly (see the
.code lambda
operator) or else the
.meta rest-param
receives an improper list terminated by that atom.
To treat the terminating atom of an improper list as an
ordinary element which can satisfy a required or optional
function parameter, the
.code iapply
function may be used, described next.
The
.code iapply
function ("improper apply") is similar to
.codn apply ,
except with regard to the treatment of
.metn trailing-args .
Firstly, under
.codn iapply ,
if
.meta trailing-args
is an atom other than
.code nil
(possibly a sequence, such as a vector or string),
then it is treated as an ordinary argument:
.meta function
is invoked with a proper argument list, whose last element is
.metn trailing-args .
Secondly, if
.meta trailing-args
is a list, but an improper list, then the terminating atom of
.meta trailing-args
becomes an individual argument.
This terminating atom is not split into multiple arguments,
even if it is a sequence.
Thus, in all possible cases,
.code iapply
treats an extra
.cod2 non- nil
atom as an argument, and never calls
.meta function
with an improper argument list.
.TP* Examples:
.verb
;; '(1 2 3) becomes arguments to list, thus (list 1 2 3).
(apply (fun list) '(1 2 3)) -> (1 2 3)
;; this effectively invokes (list 1 2 3 4)
(apply (fun list) 1 2 '(3 4)) -> (1 2 3 4)
;; this effectively invokes (list 1 2 . 3)
(apply (fun list) 1 2 3)) -> (1 2 . 3)
;; "abc" is separated into characters
;; which become arguments of list
(apply (fun list) "abc") -> (#\ea #\eb #\ec)
.brev
.TP* "Dialect Note:"
Note that some uses of this function that are necessary in other Lisp dialects
are not necessary in \*(TL. The reason is that in \*(TL, improper list
syntax is accepted as a compound form, and performs application:
.verb
(foo a b . x)
.brev
Here, the variables
.code a
and
.code b
supply the first two arguments for
.codn foo .
In
the dotted position,
.code x
must evaluate to a list or vector. The list or
vector's elements are pulled out and treated as additional arguments for
.codn foo .
This syntax can only be used if
.code x
is a symbolic form or an atom. It
cannot be a compound form, because
.code "(foo a b . (x))"
and
.code "(foo a b x)"
are equivalent structures.
.coNP Operator @ fun
.synb
.mets (fun << function-name )
.syne
.desc
The
.code fun
operator retrieves the function object corresponding to a named
function in the current lexical environment.
The
.meta function-name
may be a symbol denoting a named function: a built in
function, or one defined by
.codn defun .
The
.meta function-name
may also take any of the forms specified in the description of the
.code func-get-name
function. If such a
.meta function-name
refers to a function which exists, then the
.code fun
operator yields that function.
Note: the
.code fun
operator does not see macro bindings via their symbolic names
with which they are defined by
.codn defmacro .
However, the name syntax
.mono
.meti (macro << name )
.onom
may be used to refer to macros. This syntax is documented in the
description of
.codn func-get-name .
It is also possible to
retrieve a global macro expander using the function
.codn symbol-macro .
.coNP Operator @ dwim
.synb
.mets (dwim << argument *)
.mets <> '[' argument *']'
.mets (set (dwim < obj-place < index <> [ alt ]) << new-value )
.mets (set >> '[' obj-place < index <> [ alt ]']' << new-value )
.syne
.desc
The
.code dwim
operator's name is an acronym: DWIM may be taken to mean
"Do What I Mean", or alternatively, "Dispatch, in a Way that is
Intelligent and Meaningful".
The notation
.code [...]
is a shorthand which denotes
.codn "(dwim ...)" .
Note that since the
.code [
and
.code ]
are used in this document for indicating optional syntax,
in the above Syntax synopsis the quoted notation
.code '['
and
.code ']'
denotes bracket tokens which literally appear in the syntax.
The
.code dwim
operator takes a variable number of arguments, which are
treated as expressions to be individually macro-expanded
and evaluated, using the same rules.
This means that the first argument isn't a function name, but an ordinary
expression which can simply compute a function object (or, more generally,
a callable object).
Furthermore, for those arguments of
.code dwim
which are symbols (after all macro-expansion is performed), the evaluation
rules are altered. For the purposes of resolving symbols to values, the
function and variable binding namespaces are considered to be merged into a
single space, creating a situation that is similar to a Lisp-1 style
dialect.
This special Lisp-1 evaluation is not recursively applied. All arguments of
.code dwim
which, after macro expansion, are not symbols are evaluated using the
normal Lisp-2 evaluation rules. Thus, the DWIM operator must be used
in every expression where the Lisp-1 rules for reducing symbols to
values are desired.
If a symbol has bindings both in the variable and function namespace in scope,
and is referenced by a dwim argument, this constitutes a conflict which is
resolved according to two rules. When nested scopes are concerned, then an
inner binding shadows an outer binding, regardless of their kind. An inner
variable binding for a symbol shadows an outer or global function binding, and
.IR "vice versa" .
If a symbol is bound to both a function and variable in the global namespace,
then the variable binding is favored.
Macros do not participate in the special scope conflation, with one
exception. What this means is that the space of symbol macros is not folded
together with the space of operator macros. An argument of
.code dwim
that is a symbol might be
symbol macro, variable or function, but it cannot be interpreted as the name of
a operator macro.
The exception is this: from the perspective of a
.code dwim
form, function bindings can shadow symbol macros. If a
function binding is defined in an inner scope relative to a symbol macro for
the same symbol,
using
.code flet
or
.codn labels ,
the function hides the symbol macro. In other words, when
macro expansion processes an argument of a
.code dwim
form, and that argument is a symbol, it is treated specially
in order to provide a consistent name lookup behavior. If the innermost
binding for that symbol is a function binding, it refers to that
function binding, even if a more outer symbol macro binding exists,
and so the symbol is not expanded using the symbol macro.
By contrast, in an ordinary form, a symbolic argument never resolves
to a function binding. The symbol refers to either a symbol macro or a
variable, whichever is nested closer.
If, after macro expansion, the leftmost argument of the
.code dwim
is the name of a special operator or macro, the
.code dwim
form doesn't denote an invocation of that operator or macro. A
.code dwim
form is an invocation of the
.code dwim
operator, and the leftmost argument of that operator, if it is a symbol, is
treated as a binding to be resolved in the variable or function namespace,
like any other argument.
Thus
.code "[if x y]"
is an invocation of the
.code if
function, not the
.code if
operator.
How many arguments are required by the
.code dwim
operator depends on the type of
object to which the first argument expression evaluates. The possibilities
are:
.RS
.meIP >> [ function << argument *]
Call the given function object with the given arguments.
.meIP >> [ symbol << argument *]
If the first expression evaluates to a symbol, that symbol
is resolved in the function namespace, and then
the resulting function, if found, is called with the
given arguments.
.meIP >> [ sequence << index ]
Retrieve an element from
.metn sequence ,
at the specified
.metn index ,
which is a nonnegative integer.
This form is also a syntactic place.
If a value is stored to this place, it replaces the
element.
The place may also be deleted, which has the effect of removing the element
from the sequence, shifting the elements at higher indices, if any, down one
element position, and shortening the sequence by one.
If the place is deleted, and if
.meta sequence
is a list, then the
.meta sequence
form itself must be a place.
.meIP >> [ sequence << from-index..to-below-index ]
Retrieve the specified range of elements.
The range of elements is specified in the
.code from
and
.code to
fields of a range object. The
.code ..
(dotdot) syntactic sugar denotes it construction via the
.code rcons
function. See the section on Range Indexing below.
This form is also a syntactic place. Storing a value in this place
has the effect of replacing the subsequence with
a new subsequence. Deleting the place has the
effect of removing the specified subsequence
from
.metn sequence .
If
.meta sequence
is a list, then the
.meta sequence
form must itself be a place.
The
.meta new-value
argument in a range assignment can be a string, vector or list,
regardless of whether the target is a string, vector or list.
If the target is a string, the replacement sequence must be
a string, or a list or vector of characters.
.meIP >> [ sequence << index-list ]
Elements specified
by
.metn index-list ,
which may be a list or vector,
are extracted from
.meta sequence
and returned as a sequence
of the same kind as
.metn sequence .
This form is equivalent to
.mono
.meti (select < sequence << where-index )
.onom
except when the target of an assignment operation.
This form is a syntactic place if
.meta sequence
is one. If a sequence is assigned to this place,
then elements of the sequence are distributed to the
specified locations.
The following equivalences hold between index-list-based indexing
and the
.code select
and
.code replace
functions, except that
.code set
always returns the value assigned, whereas
.code replace
returns its first argument:
.verb
[seq idx-list] <--> (select seq idx-list)
(set [seq idx-list] new) <--> (replace seq new idx-list)
.brev
Note that unlike the select function, this does not support
.mono
.meti >> [ hash << index-list ]
.onom
because since hash keys may be lists, that syntax is
indistinguishable from a simple hash lookup where
.meta index-list
is the key.
.meIP >> [ hash < key <> [ alt ]]
Retrieve a value from the hash table corresponding to
.metn key ,
or else return
.meta alt
if there is no such entry. The expression
.meta alt
is always evaluated, whether or not its value is used.
.meIP >> [ regex >> [ start <> [ from-end ]] < string ]
Determine whether regular expression
.meta regex
matches
.metn string ,
and in that case return the
(possibly empty) leftmost matching substring.
Otherwise, return
.codn nil .
If
.meta start
is specified, it gives the starting position where
the search begins, and if
.meta from-end
is given, and has a value other than
.codn nil ,
it specifies a search from right to left. These optional
arguments have the same conventions and semantics as
their equivalents in the
.code search-regst
function.
Note that
.meta string
is always required, and is always the rightmost argument.
.meIP >> [ struct << arg *]
The structure instance
.meta struct
is inquired whether it supports a method named by the symbol
.metn lambda .
If so, that method is invoked on the object. The method
receives
.meta struct
followed by the value of every
.metn arg .
If this form is used as a place, then the object must
support a
.code lambda-set
method.
.meIP >> [ carray << index ]
.meIP >> [ carray << from-index..to-below-index ]
Element and range indexing is possible on object of type
.code carray
which manipulate arrays in a foreign ("C language") representation,
and are closely associated with the Foreign Function Interface (FFI).
Just like in the case of sequences, the semantics of referencing
.code carray
objects with the bracket notation is based on the functions
.codn ref ,
.codn refset ,
.code sub
and
.codn replace .
These, in turn, rely on the specialized functions.
.codn carray-ref ,
.codn carray-refset ,
.code carray-sub
and
.codn carray-replace .
.meIP >> [ buf << index ]
Indexing is supported for objects of type
.codn buf .
This provides a way to access and store the individual bytes
of a buffer.
.RE
.PP
.TP* "Range Indexing:"
Vector and list range indexing is based from zero, meaning
that the first element is numbered zero, the second one
and so on.
zero. Negative values are allowed; the value
.code -1
refers to the last element of the vector or
list, and
.code -2
to the second last and so forth. Thus the range
.code "1 .. -2"
means
"everything except for the first element and the last two".
The symbol
.code t
represents the position one past the end of the vector, string or
list, so
.code "0 .. t"
denotes the entire list or vector, and the range
.code "t .. t"
represents the empty range just beyond the last element.
It is possible to assign to
.codn "t .. t" .
For instance:
.verb
(defvar list '(1 2 3))
(set [list t .. t] '(4)) ;; list is now (1 2 3 4)
.brev
The value zero has a "floating" behavior when used as the end of a range.
If the start of the range is a negative value, and the end of the
range is zero, the zero is interpreted as being the position past the
end of the sequence, rather than the first element. For instance the range
.code -1..0
means the same thing as
.codn -1..t .
Zero at the start of a range
always means the first element, so that
.code 0..-1
refers to all the elements except for the last one.
.TP* Notes:
The dwim operator allows for a Lisp-1 flavor of programming in \*(TL,
which is principally a Lisp-2 dialect.
A Lisp-1 dialect is one in which an expression like
.code "(a b)"
treats both a and b
as expressions subject to the same evaluation rules\(emat least, when
.code a
isn't an operator or an operator macro. This means that the symbols
.code a
and
.code b
are resolved to values in the same namespace. The form denotes a function call
if the value of variable
.code a
is a function object. Thus in a Lisp-1, named functions do not exist as
such: they are just variable bindings. In a Lisp-1, the form
.code "(car 1)"
means that there
is a variable called
.codn car ,
which holds a function, which is retrieved from that
variable and the argument
.code 1
is applied to it. In the expression
.codn "(car car)" ,
both occurrences of
.code car
refer to the variable, and so this form applies the
.code car
function to itself. It is almost certainly meaningless.
In a Lisp-2
.code "(car 1)"
means that there is a function called
.codn car ,
in the function namespace. In the expression
.code "(car car)"
the two occurrences refer to different bindings:
one is a function and the other a variable.
Thus there can exist a variable
.code car
which holds a cons cell object, rather than the
.code car
function, and the form makes sense.
The Lisp-1 approach is useful for functional programming, because it eliminates
cluttering occurrences of the call and fun operators. For instance:
.verb
;; regular notation
(call foo (fun second) '((1 a) (2 b)))
;; [] notation
[foo second '((1 a) (2 b))]
.brev
Lisp-1 dialects can also provide useful extensions by giving a meaning
to objects other than functions in the first position of a form,
and the
.code dwim/[...]
syntax does exactly this.
\*(TL is a Lisp-2 because Lisp-2 also has advantages. Lisp-2 programs
which use macros naturally achieve hygiene because lexical variables do
not interfere with the function namespace. If a Lisp-2 program has
a local variable called
.codn list ,
this does not interfere with the hidden use of the function
.code list
in a macro expansion in the same block of code. Lisp-1 dialects have to
provide hygienic macro systems to attack this problem. Furthermore, even when
not using macros, Lisp-1 programmers have to avoid using the names of functions
as lexical variable names, if the enclosing code might use them.
The two namespaces of a Lisp-2 also naturally accommodate symbol macros and
operator macros. Whereas functions and variables can be represented in a
single namespace readily, because functions are data objects, this is not so
with symbol macros and operator macros, the latter of which are distinguished
syntactically by their position in a form. In a Lisp-1 dialect, given
.codn "(foo bar)" ,
either of the two symbols could be a symbol macro, but only
.code foo
can possibly be an operator macro. Yet, having only a single namespace, a
Lisp-1 doesn't permit
.codn "(foo foo)" ,
where
.code foo
is simultaneously a symbol macro and an operator macro, though the situation is
unambiguous by syntax even in Lisp-1. In other words, Lisp-1 dialects do not
entirely remove the special syntactic recognition given to the leftmost
position of a compound form, yet at the same time they prohibit
the user from taking full advantage of it by providing only one namespace.
\*(TL provides
the "best of both worlds": the DWIM brackets notation provides a model of
Lisp-1 computation that is purer than Lisp-1 dialects (since the leftmost
argument is not given any special syntactic treatment at all)
while the Lisp-2 foundation provides a traditional Lisp environment with its
"natural hygiene".
.coNP Function @ functionp
.synb
.mets (functionp << obj )
.syne
.desc
The
.code functionp
function returns
.code t
if
.meta obj
is a function, otherwise it returns
.codn nil .
.coNP Function @ copy-fun
.synb
.mets (copy-fun << function )
.syne
.desc
The
.code copy-fun
function produces and returns a duplicate of
.metn function ,
which must be a function.
A duplicate of a function is a distinct function object not
.code eq
to the original function, yet which accepts the same arguments
and behaves exactly the same way as the original.
If a function contains no captured environment, then a copy made of that
function by
.code copy-fun
is indistinguishable from the original function in every regard,
except for being a distinct object that compares unequal to the original
under the
.code eq
function.
If a function contains a captured environment, then a copy of that function
made by
.code copy-fun
has its own copy of that environment. If the copied function changes the
values of captured lexical variables, the original function is not affected by
these changes and
.IR "vice versa" .
The entire lexical environment is copied; the copy and original function do not
share any portion of the environment at any level of nesting.
.SS* Sequencing, Selection and Iteration
.coNP Operators @ progn and @ prog1
.synb
.mets (progn << form *)
.mets (prog1 << form *)
.syne
.desc
The
.code progn
operator evaluates forms in order, and returns the value
of the last form. The return value of the form
.code (progn)
is
.codn nil .
The
.code prog1
operator evaluates forms in order, and returns the value
of the first form. The return value of the form
.code (prog1)
is
.codn nil .
Various other operators such as
.code let
also arrange for the evaluation
of a body of forms, the value of the last of which is returned.
These operators are said to feature an implicit
.codn progn .
.coNP Operator @ cond
.synb
.mets (cond >> {( test << form *)}*)
.syne
.desc
The
.code cond
operator provides a multi-branching conditional evaluation of
forms. Enclosed in the cond form are groups of forms expressed as lists.
Each group must be a list of at least one form.
The forms are processed from left to right as follows: the first form,
.metn test ,
in each group is evaluated. If it evaluates true, then the remaining
forms in that group, if any, are also evaluated. Processing then terminates and
the result of the last form in the group is taken as the result of cond.
If
.meta test
is the only form in the group, then result of
.meta test
is taken
as the result of
.codn cond .
If the first form of a group yields
.codn nil ,
then processing continues with the
next group, if any. If all form groups yield
.codn nil ,
then the cond form yields
.codn nil .
This holds in the case that the syntax is empty:
.code (cond)
yields
.codn nil .
.coNP Macros @, caseq @ caseql and @ casequal
.synb
.mets (caseq < test-form << normal-clause * <> [ else-clause ])
.mets (caseql < test-form << normal-clause * <> [ else-clause ])
.mets (casequal < test-form << normal-clause * <> [ else-clause ])
.syne
.desc
These three macros arrange for the evaluation of
.metn test-form ,
whose value is then compared against the key or keys in each
.meta normal-clause
in turn.
When the value matches a key, then the remaining forms of
.meta normal-clause
are evaluated, and the value of the last form is returned; subsequent
clauses are not evaluated. When the value doesn't match any of the keys
of a
.meta normal-clause
then the next
.meta normal-clause
is tested.
If all these clauses are exhausted, and there is no
.metn else-clause ,
then the value nil is returned. Otherwise, the forms in the
.meta else-clause
are evaluated, and the value of the last one is returned.
If there are no forms, then
.code nil
is returned.
The syntax of a
.meta normal-clause
takes on these two forms:
.mono
.mets >> ( key << form *)
.onom
where
.meta key
may be an atom which denotes a single key, or else a list
of keys. There is a restriction that the symbol
.code t
may not be used
as
.metn key .
The form
.code (t)
may be used as a key to match that symbol.
The syntax of an
.meta else-clause
is:
.mono
.mets (t << form *)
.onom
which resembles a form that is often used as the final clause
in the
.code cond
syntax.
The three forms of the case construct differ from what type of
test they apply between the value of
.meta test-form
and the keys.
The
.code caseq
macro generates code which uses the
.code eq
function's
equality. The
.code caseql
macro uses
.codn eql ,
and
.code casequal
uses
.codn equal .
.TP* Example
.verb
(let ((command-symbol (casequal command-string
(("q" "quit") 'quit)
(("a" "add") 'add)
(("d" "del" "delete") 'delete)
(t 'unknown))))
...)
.brev
.coNP Macros @, caseq* @ caseql* and @ casequal*
.synb
.mets (caseq* < test-form << normal-clause * <> [ else-clause ])
.mets (caseql* < test-form << normal-clause * <> [ else-clause ])
.mets (casequal* < test-form << normal-clause * <> [ else-clause ])
.syne
.desc
The
.codn caseq* ,
.codn caseql* ,
and
.code casequal*
macros are similar to the macros
.codn caseq ,
.codn caseql ,
and
.codn casequal ,
differing from them in only the following regard. The
.metn normal-clause ,
of these macros has the form
.mono
.meti >> ( evaluated-key << form *)
.onom
where
.code evaluated-key
is either an atom, which is evaluated to produce a key, or else
else a compound form, whose elements are evaluated as forms, producing
multiple keys. This evaluation takes place at macro-expansion time,
in the global environment.
The
.meta else-clause
works the same way under these macros as under
.code caseq
.IR "et al" .
Note that although in a
.metn normal-clause ,
.meta evaluated-key
must not be the atom
.codn t ,
there is no restriction against it being
an atom which evaluates to
.code t.
In this situation, the value
.code t
has no special meaning.
The
.meta evaluated-key
expressions are evaluated in the order in which they appear in
the construct, at the time the
.codn caseq* ,
.code caseql*
or
.code casequal*
macro is expanded.
Note: these macros allow the use of variables and global symbol
macros as case keys.
.TP* Example:
.verb
(defvarl red 0)
(defvarl green 1)
(defvarl blue 2)
(let ((color blue))
(caseql* color
(red "hot")
((green blue) "cool")))
--> "cool"
.brev
.coNP Operator/function @ if
.synb
.mets (if < cond < t-form <> [ e-form ])
.mets '['if < cond < then <> [ else ]']'
.syne
.desc
There exist both an
.code if
operator and an
.code if
function. A list form with the symbol
.code if
in the fist position is interpreted as an invocation of the
.code if
operator.
The function can be accessed using the DWIM bracket notation and in other
ways.
The
.code if
operator provides a simple two-way-selective evaluation control.
The
.meta cond
form is evaluated. If it yields true then
.meta t-form
is evaluated, and that form's return value becomes the return value of the
.codn if .
If
.meta cond
yields false, then
.meta e-form
is evaluated and its return value is taken to be that of
.codn if .
If
.meta e-form
is omitted, then the behavior is as if
.meta e-form
were specified as
.codn nil .
The
.code if
function provides no evaluation control. All of arguments
are evaluated from left to right. If the
.meta cond
argument is true, then it
returns the
.meta then
argument, otherwise it returns the value of the
.meta else
argument if present, otherwise it returns
.codn nil .
.coNP Operator/function @ and
.synb
.mets (and << form *)
.mets '['and << arg *']'
.syne
.desc
There exist both an
.code and
operator and an
.code and
function. A list form with the
symbol
.code and
in the fist position is interpreted as an invocation of the
operator. The function can be accessed using the DWIM bracket notation and in
other ways.
The
.code and
operator provides three functionalities in one. It computes the
logical "and" function over several forms. It controls evaluation (a.k.a.
"short-circuiting"). It also provides an idiom for the convenient substitution
of a value in place of
.code nil
when some other values are all true.
The
.code and
operator evaluates as follows. First, a return value is
established and initialized to the value
.codn t .
The
.metn form -s,
if any, are
evaluated from left to right. The return value is overwritten with
the result of each form. Evaluation stops when all forms are exhausted,
or when
.code nil
is stored in the return value.
When evaluation stops, the operator yields the return value.
The
.code and
function provides no evaluation control; it receives all of its
arguments fully evaluated. If it is given no arguments, it returns
.codn t .
If it is given one or more arguments, and any of them are
.codn nil ,
it returns
.codn nil .
Otherwise it returns the value of the last argument.
.TP* Examples:
.verb
(and) -> t
(and (> 10 5) (stringp "foo")) -> t
(and 1 2 3) -> 3 ;; shorthand for (if (and 1 2) 3).
.brev
.coNP Operator/function @ or
.synb
.mets (or << form *)
.mets '['or << arg *']'
.syne
.desc
There exist both an
.code or
operator and an
.code or
function. A list form with the
symbol
.code or
in the fist position is interpreted as an invocation of the
operator. The function can be accessed using the DWIM bracket notation and in
other ways.
The or operator provides three functionalities in one. It computes the
logical "or" function over several forms. It controls evaluation (a.k.a.
"short-circuiting"). The behavior of
.code or
also provides an idiom for the selection of the first non-nil value from a
sequence of forms.
The
.code or
operator evaluates as follows. First, a return value is
established and initialized to the value
.codn nil .
The
.metn form -s,
if any,
are evaluated from left to right. The return value is overwritten
with the result of each
.metn form .
Evaluation stops when all forms are
exhausted, or when a true value is stored into the return value.
When evaluation stops, the operator yields the return value.
The
.code or
function provides no evaluation control; it receives all of its
arguments fully evaluated. If it is given no arguments, it returns
.codn nil .
If all of its arguments are
.codn nil ,
it also returns
.codn nil .
Otherwise, it
returns the value of the first argument which isn't
.codn nil .
.TP* Examples:
.verb
(or) -> nil
(or 1 2) -> 1
(or nil 2) -> 2
(or (> 10 20) (stringp "foo")) -> t
.brev
.coNP Macros @ when and @ unless
.synb
.mets (when < expression << form *)
.mets (unless < expression << form *)
.syne
.desc
The when macro operator evaluates
.metn expression .
If
.meta expression
yields
true, and there are additional forms, then each
.meta form
is evaluated.
The value of the last form is becomes the result value of the when form.
If there are no forms, then the result is
.codn nil .
The
.code unless
operator is similar to when, except that it reverses the
logic of the test. The forms, if any, are evaluated if, and only if
.meta expression
is false.
.coNP Macros @ while and @ until
.synb
.mets (while < expression << form *)
.mets (until < expression << form *)
.syne
.desc
The
.code while
macro operator provides a looping construct. It evaluates
.metn expression .
If
.meta expression
yields
.codn nil ,
then the evaluation of the
.code while
form
terminates, producing the value
.codn nil .
Otherwise, if there are additional forms,
then each
.meta form
is evaluated. Next, evaluation returns to
.metn expression ,
repeating all of the previous steps.
The
.code until
macro operator is similar to while, except that the until form
terminates when
.meta expression
evaluates true, rather than false.
These operators arrange for the evaluation of all their enclosed forms
in an anonymous block. Any of the
.metn form -s,
or
.metn expression ,
may use
the
.code return
operator to terminate the loop, and optionally to specify
a result value for the form.
The only way these forms can yield a value other than
.code nil
is if the
.code return
operator is used to terminate the implicit anonymous block,
and is given an argument, which becomes the result value.
.coNP Macros @ while* and @ until*
.synb
.mets (while* < expression << form *)
.mets (until* < expression << form *)
.syne
.desc
The
.code while*
and
.code until*
macros are similar, respectively, to the macros
.code while
and
.codn until .
They differ in one respect: they begin by evaluating the
.metn form -s
one time unconditionally, without first evaluating
.metn expression .
After this evaluation, the subsequent behavior is
like that of
.code while
or
.codn until .
Another way to regard the behavior is that that these forms execute
one iteration unconditionally, without evaluating the termination test prior to
the first iteration. Yet another view is that these constructs relocate the
test from the "top of the loop" to the "bottom of the loop".
.coNP Macro @ whilet
.synb
.mets (whilet >> ({ sym | >> ( sym << init-form )}+)
.mets \ \ << body-form *)
.syne
.desc
The
.code whilet
macro provides a construct which combines iteration with variable
binding.
The evaluation of the form takes place as follows. First, fresh bindings are
established for
.metn sym -s
as if by the
.code let*
operator.
It is an error for the list of variable bindings to be empty.
After the establishment of the bindings, the the value of the
.meta sym
is tested. If the value is
.codn nil ,
then
.code whilet
terminates. Otherwise,
.metn body-form -s
are evaluated in the scope of the variable bindings, and then
.code whilet
iterates from the beginning, again establishing fresh bindings for the
.metn sym -s,
and testing the value of the last
.metn sym .
All evaluation takes place in an anonymous block, which can be
terminated with the
.code return
operator. Doing so terminates the loop.
If the
.code whilet
loop is thus terminated by an explicit
.codn return ,
a return value can be specified. Under normal termination, the return value is
.codn nil .
In the syntax, a small convenience is permitted. Instead of the last
.mono
.meti >> ( sym << init-form )
.onom
it is permissible for the syntax
.mono
.meti <> ( init-form )
.onom
to appear, the
.meta sym
being omitted. A machine-generated variable is substituted
in place of the missing
.meta sym
and that variable is then initialized from
.meta init-form
and used as the basis of the test.
.TP* Examples:
.verb
;; read lines of text from *stdin* and print them,
;; until the end-of-stream condition:
(whilet ((line (get-line)))
(put-line line))
;; read lines of text from *stdin* and print them,
;; until the end-of-stream condition occurs or
;; a line is identical to the character string "end".
(whilet ((line (get-line))
(more (and line (nequal line "end"))))
(put-line line))
.brev
.coNP Macros @ iflet and @ whenlet
.synb
.mets (iflet >> {({ sym | >> ( sym << init-form )}+) | << atom-form }
.mets \ \ < then-form <> [ else-form ])
.mets (whenlet >> {({ sym | >> ( sym << init-form )}+) | << atom-form }
.mets \ \ << body-form *)
.syne
.desc
The
.code iflet
and
.code whenlet
macros combine the variable binding of
.code let*
with conditional evaluation of
.code if
and
.codn when ,
respectively.
In either construct's syntax, a non-compound form
.meta atom-form
may appear in place of the variable binding list. In this case,
.meta atom-form
is evaluated as a form, and the construct is equivalent to
its respective ordinary
.code if
or
.code when
counterpart.
If the list of variable bindings is empty, it is interpreted as the atom
.code nil
and treated as an
.codn atom-form .
If one or more bindings are specified rather than
.metn atom-form ,
then the evaluation of these forms takes
place as follows. First, fresh bindings are established for
.metn sym -s
as if by the
.code let*
operator.
Then, the last variable's value is tested. If it is not
.code nil
then the test is true, otherwise false.
In the syntax, a small convenience is permitted. Instead of the last
.mono
.meti >> ( sym << init-form )
.onom
it is permissible for the syntax
.mono
.meti <> ( init-form )
.onom
to appear, the
.meta sym
being omitted. A machine-generated variable is substituted
in place of the missing
.meta sym
and that variable is then initialized from
.meta init-form
and used as the basis of the test. This is intended to be useful
in situations in which
.meta then-form
or
.meta else-form
do not require access to the tested value.
In the case of the
.code iflet
operator, if the test is true, the operator evaluates
.meta then-form
and yields its value. Otherwise the test is false, and if the
optional
.meta else-form
is present, that is evaluated instead and its value is returned.
If this form is missing, then
.code nil
is returned.
In the case of the
.code whenlet
operator, if the test is true, then the
.metn body-form -s,
if any, are evaluated. The value of the last one is
returned, otherwise
.code nil
if the forms are missing.
If the test is false, then evaluation of
.metn body-form -s
is skipped, and
.code nil
is returned.
.TP* Examples:
.verb
;; dispose of foo-resource if present
(whenlet ((foo-res (get-foo-resource obj)))
(foo-shutdown foo-res)
(set-foo-resource obj nil))
;; Contrast with: above, using when and let
(let ((foo-res (get-foo-resource obj)))
(when foo-res
(foo-shutdown foo-res)
(set-foo-resource obj nil)))
;; print frobosity value if it exceeds 150
(whenlet ((fv (get-frobosity-value))
(exceeds-p (> fv 150)))
(format t "frobosity value ~a exceeds 150\en" fv))
;; same as above, taking advantage of the
;; last variable being optional:
(whenlet ((fv (get-frobosity-value))
((> fv 150)))
(format t "frobosity value ~a exceeds 150\en" fv))
;; yield 4: 3 interpreted as atom-form
(whenlet 3 4)
;; yield 4: nil interpreted as atom-form
(iflet () 3 4)
.brev
.coNP Macro @ condlet
.synb
.mets (condlet
.mets \ \ ([({ sym | >> ( sym << init-form )}+) | << atom-form ]
.mets \ \ \ << body-form *)*)
.syne
.desc
The
.code condlet
macro generalizes
.codn iflet .
Each argument is a compound consisting of at least one item: a list of
bindings or
.metn atom-form .
This item is followed by zero or more
.metn body-form -s.
If the are are no
.metn body-form -s
then the situation is treated as if there were a single
.meta body-form
specified as
.codn nil .
The arguments of
.code condlet
are considered in sequence, starting with the
leftmost.
If the argument's left item is an
.meta atom-form
then the form is evaluated. If it yields true, then the
.metn body-form -s
next to it are evaluated in order, and the
.code condlet
form terminates, yielding the value obtained from the last
.metn body-form .
If
.meta atom-form
yields false, then the next argument is considered, if there is one.
If the argument's left item is a list of bindings, then it is processed
with exactly the same logic as under the
.code iflet
macro. If the last binding contains a true value, then the
adjoining
.metn body-form -s
are evaluated in a scope in which all of the bindings are visible, and
.code condlet
terminates, yielding the value of the last
.metn body-form .
Otherwise, the next argument of
.code condlet
is considered (processed in a scope in which the bindings produced
by the current item are no longer visible).
If
.code condlet
runs out of arguments, it terminates and returns
.codn nil .
.TP* Example:
.verb
(let ((l '(1 2 3)))
(condlet
;; first arg
(((a (first l) ;; a binding gets 1
(b (second l)) ;; b binding gets 2
(g (> a b)))) ;; last variable g is nil
'foo) ;; not evaluated
;; second arg
(((b (second l) ;; b gets 2
(c (third l)) ;; c gets 3
(g (> b c)))) ;; last variable g is true
'bar))) ;; condlet terminates
--> bar ;; result is bar
.brev
.coNP Macro @ ifa
.synb
.mets (ifa < cond < then <> [ else ])
.syne
.desc
The
.code ifa
macro provides a anaphoric conditional operator resembling the
.code if
operator. Around the evaluation of the
.meta then
and
.meta else
forms, the symbol
.code it
is implicitly bound to a subexpression of
.metn cond ,
a subexpression which is thereby identified as the
.IR it-form .
This
.code it
alias provides a convenient reference to that place or value, similar to the
word "it" in the English language, and similar anaphoric pronouns in other
languages.
If
.code it
is bound to a place form, the binding is established
as if using the
.code placelet
operator: the form is evaluated only once, even if the
.code it
alias is used multiple times in the
.meta then
or
.meta else
expressions. Otherwise, if the form is not a syntactic place
.code it
is bound as an ordinary lexical variable to
the form's value.
An
.I it-candidate
is an an expression viable for having its value or storage location
bound to the
.code it
symbol. An it-candidate is any expression which is not a constant expression
according to the
.code constantp
function, and not a symbol.
The
.code ifa
macro imposes applies several rules to the
.meta cond
expression:
.RS
.IP 1.
The
.meta cond
expression must be either an atom, a function call form,
or a
.code dwim
form. Otherwise the
.code ifa
expression is ill-formed, and throws an exception at
macro-expansion time. For the purposes of these rules,
a
.code dwim
form is considered as a function call expression, whose first
argument is the second element of the form. That is to say,
.code "[f x]"
which is equivalent to
.code "(dwim f x)"
is treated similarly to
.code "(f x)"
as a one-argument call.
.IP 2.
If the
.meta cond
expression is a function call with two or more arguments,
at most one of them may be an it-candidate.
If two or more arguments are it-candidates, the situation
is ambiguous. The
.code ifa
expression is ill-formed and throws an exception at macro-expansion
time.
.IP 3.
If
.meta cond
is an atom, or a function call expression with no arguments,
then the
.code it
symbol is not bound. Effectively,
.code ifa
macro behaves like the ordinary
.code if
operator.
.IP 4.
If
.meta cond
is a function call or
.code dwim
expression with exactly one argument, then the
.code it
variable is bound to the argument expression, except when
the function being called is
.codn not ,
.codn null ,
or
.codn false .
This binding occurs regardless of whether the expression is
an it-candidate.
.IP 5.
If
.meta cond
is a function call with exactly one argument to the Boolean negation
function which goes by one of the three names
.codn not ,
.codn null ,
or
.codn false ,
then that situation is handled by a rewrite according to the following pattern:
.mono
.mets (ifa (not << expr ) < then << else ) -> (ifa < expr < else << then )
.onom
which applies likewise for
.code null
or
.code false
substituted for
.codn not .
The Boolean inverse function is removed, and the
.meta then
and
.meta else
expressions are exchanged.
.IP 6.
If
.meta cond
is a function call with two or more arguments, then it is only
well-formed if at most one of those arguments is an it-candidate.
If there is one such argument, then the
.code it
variable is bound to it.
.IP 7.
Otherwise the variable is bound
to the leftmost argument expression, regardless of whether that
argument expression is an it-candidate.
.RE
.IP
In all other regards, the
.code ifa
macro behaves similarly to
.codn if .
The
.meta cond
expression is evaluated, and, if applicable,
the value of, or storage location denoted by the appropriate argument is
captured and bound to the variable
.code it
whose scope extends over the
.meta then
form, as well as over
.metn else ,
if present.
If
.meta cond
yields a true value, then
.meta then
is evaluated and the resulting value is returned, otherwise
.meta else
is evaluated if present and its value is returned.
A missing
.meta else
is treated as if it were the
.code nil
form.
.TP* Examples:
.verb
(ifa t 1 0) -> 1
;; Rule 6: it binds to (* x x), which is
;; the only it-candidate.
(let ((x 6) (y 49))
(ifa (> y (* x x)) ;; it binds to (* x x)
(list it)))
-> (36)
;; Rule 4: it binds to argument of evenp,
;; even though 4 isn't an it-candidate.
(ifa (evenp 4)
(list it))
-> (4)
;; Rule 5:
(ifa (not (oddp 4))
(list it))
-> (4)
;; Rule 7: no candidates: choose leftmost
(let ((x 6) (y 49))
(ifa (< 1 x y)
(list it)))
-> (1)
-> (4)
;; Violation of Rule 1:
;; while is not a function
(ifa (while t (print 42))
(list it))
--> exception!
;; Violation of Rule 2:
(let ((x 6) (y 49))
(ifa (> (* y y y) (* x x)))
(list it))
--> exception!
.brev
.coNP Macro @ conda
.synb
.mets (conda >> {( test << form *)}*)
.syne
.desc
The
.code conda
operator provides a multi-branching conditional evaluation of
forms, similarly to the
.code cond
operator. Enclosed in the cond form are groups of forms expressed as lists.
Each group must be a list of at least one form.
The
.code conda
operator is anaphoric: it expands into a nested structure of zero or more
.code ifa
invocations, according to these patterns:
.verb
(conda) -> nil
(conda (x y ...) ...) -> (ifa x (progn y ...) (conda ...))
.brev
Thus,
.code conda
inherits all the restrictions on the
.meta test
expressions from
.codn ifa ,
as well as the anaphoric
.code it
variable feature.
.coNP Macro @ whena
.synb
.mets (whena < test << form *)
.syne
.desc
The
.code whena
macro is similar to the
.code when
macro, except that it is anaphoric in exactly the same manner as the
.code ifa
macro. It may be understood as conforming to the following equivalence:
.verb
(whena x f0 f2 ...) <--> (if x (progn f0 f2 ...))
.brev
.coNP Macro @ dotimes
.synb
.mets (dotimes >> ( var < count-form <> [ result-form ])
.mets \ \ << body-form *)
.syne
.desc
The
.code dotimes
macro implements a simple counting loop.
.meta var
is established as a variable, and initialized to zero.
.meta count-form
is evaluated one time to produce a limiting value, which should be a number.
Then, if the value of
.meta var
is less than the limiting value, the
.metn body-form -s
are evaluated,
.meta var
is incremented by one, and the process repeats with a new comparison
of
.meta var
against the limiting value possibly leading to another evaluation of
the forms.
If
.meta var
is found to equal or exceed the limiting value, then the loop terminates.
When the loop terminates, its return value is
.code nil
unless a
.meta result-form
is present, in which case the value of that form specifies the return value.
.metn body-form -s
as well as
.meta result-form
are evaluated in the scope in which the binding of
.meta var
is visible.
.coNP Operators @, each @, each* @, collect-each @, collect-each* @ append-each and @ append-each*
.synb
.mets (each >> ({( sym << init-form )}*) << body-form *)
.mets (each* >> ({( sym << init-form )}*) << body-form *)
.mets (collect-each >> ({( sym << init-form )}*) << body-form *)
.mets (collect-each* >> ({( sym << init-form )}*) << body-form *)
.mets (append-each >> ({( sym << init-form )}*) << body-form *)
.mets (append-each* >> ({( sym << init-form )}*) << body-form *)
.syne
.desc
These operators establish a loop for iterating over the elements of one or more
sequences. Each
.meta init-form
must evaluate to an iterable object that is suitable as an argument for the
.code iter-begin
function.
The sequences are then iterated in
parallel over repeated evaluations of the
.metn body-form -s,
with each
.meta sym
variable being assigned to successive elements of its sequence. The shortest
list determines the number of iterations, so if any of the
.metn init-form -s
evaluate to
an empty sequence, the body is not executed.
If the list of
.mono
.meti >> ( sym << init-form )
.onom
pairs itself is empty, then an infinite loop is specified.
The body forms are enclosed in an anonymous block, allowing the
.code return
operator to terminate the loop prematurely and optionally specify
the return value.
The
.code collect-each
and
.code collect-each*
variants are like
.code each
and
.codn each* ,
except that for each iteration, the resulting value of the body is collected
into a list. When the iteration terminates, the return value of the
.code collect-each
or
.code collect-each*
operator is this collection.
The
.code append-each
and
.code append-each*
variants are like
.code each
and
.codn each* ,
except that for each iteration other than the last, the resulting value of the
body must be a list. The last iteration may produce either an atom or a list.
The objects produced by the iterations are combined together as if they
were arguments to the append function, and the resulting value is the
value of the
.code append-each
or
.code append-each*
operator.
The alternate forms denoted by the adorned symbols
.codn each* ,
.code collect-each*
and
.codn append-each* ,
differ from
.codn each ,
.code collect-each
and
.code append-each
in the following way. The plain forms evaluate the
.metn init-form -s
in an environment in which none of the
.code sym
variables are yet visible. By contrast, the alternate
forms evaluate each
.meta init-form
in an environment in which bindings for the
previous
.meta sym
variables are visible. In this phase of evaluation,
.meta sym
variables are list-valued: one by one they are each bound to the list object
emanating from their corresponding
.metn init-form .
Just before the first loop
iteration, however, the
.meta sym
variables are assigned the first item from each
of their lists.
.TP* Note:
The semantics of
.code collect-each
may be understood in terms of an equivalence to a code pattern involving
.codn mapcar :
.mono
(collect-each ((x xinit) (mapcar (lambda (x y)
(y yinit)) <--> body)
body) xinit yinit)
.onom
The
.code collect-each*
variant may be understood in terms of the following equivalence involving
.code let*
for sequential binding and
.codn mapcar :
.mono
(collect-each* ((x xinit) (let* ((x xinit)
(y yinit)) <--> (y yinit))
body) (mapcar (lambda (x y)
body)
x y))
.onom
However, note that the
.code let*
as well as each invocation of the
.code lambda
binds fresh instances of the variables, whereas these operators are permitted
to bind a single instance of the variables, which are first initialized with
the initializing expressions, and then re-used as iteration variables which are
stepped by assignment.
The other operators may be understood likewise, with the substitution
of the
.code mapdo
function in the case of
.code each
and
.code each*
and of the
.code mappend
function in the case of
.code append-each
and
.codn append-each* .
.TP* Example:
.mono
;; print numbers from 1 to 10 and whether they are even or odd
(each* ((n 1..11) ;; n is just a range object in this scope
(even (collect-each ((m n)) (evenp m))))
;; n is an integer in this scope
(format t "~s is ~s\en" n (if even "even" "odd")))
.onom
.TP* Output:
.mono
1 is "odd"
2 is "even"
3 is "odd"
4 is "even"
5 is "odd"
6 is "even"
7 is "odd"
8 is "even"
9 is "odd"
10 is "even"
.onom
.coNP Operators @ for and @ for*
.synb
.mets ({for | for*} >> ({ sym | >> ( sym << init-form )}*)
.mets \ \ \ \ \ \ \ \ \ \ \ \ \ >> ([ test-form << result-form *])
.mets \ \ \ \ \ \ \ \ \ \ \ \ \ <> ( inc-form *)
.mets \ \ << body-form *)
.syne
.desc
The
.code for
and
.code for*
operators combine variable binding with loop iteration.
The first argument is a list of variables with optional initializers,
exactly the same as in the
.code let
and
.code let*
operators. Furthermore, the
difference between
.code for
and
.code for*
is like that between
.code let
and
.code let*
with regard to this list of variables.
The
.code for
and
.code for*
operators execute these steps:
.RS
.IP 1.
Establish an anonymous block over the entire form, allowing
the
.code return
operator to be used to terminate the loop.
.IP 2.
Establish bindings for the specified variables similarly to
.code let
and
.codn let* .
The variable bindings are visible over the
.metn test-form ,
each
.metn result-form ,
each
.meta inc-form
and each
.metn body-form .
.IP 3.
Evaluate
.metn test-form .
If
.meta test-form
yields
.codn nil ,
then the loop terminates. Each
.meta result-form
is evaluated, and the value of the last of these
forms is is the result value of the loop.
If there are no
.metn result-form -s
then the result value is
.codn nil .
If the
.meta test-form
is omitted, then the test
is taken to be true, and the loop does not terminate.
.IP 4.
Otherwise, if
.meta test-form
yields true, then each
.meta body-form
is evaluated in turn. Then, each
.code inc-form
is evaluated in turn and processing resumes at step 2.
.RE
.IP
Furthermore, the
.code for
and
.code for*
operators establish an anonymous block,
allowing the
.code return
operator to be used to terminate at any point.
.coNP Macros @ doloop and @ doloop*
.synb
.mets ({doloop | doloop*}
.mets \ \ ({ sym | >> ( sym >> [ init-form <> [ step-form ])}*)
.mets \ \ >> ([ test-form << result-form *])
.mets \ \ << tagbody-form *)
.syne
.desc
The
.code doloop
and
.code doloop*
macros provide an iteration construct inspired by the ANSI Common Lisp
.code do
and
.code do*
macros.
Each
.meta sym
element in the form must be a symbol suitable for use as a variable name.
The
.metn tagbody-form -s
are placed into an implicit
.codn tagbody ,
meaning that a
.meta tagbody-form
which is an integer, character or symbol is interpreted
as a
.code tagbody
label which may be the target of a control transfer via the
.code go
macro.
The
.code doloop
macro binds each
.meta sym
to the value produced by evaluating the adjacent
.metn init-form .
Then, in the environment in which these variables now exist,
.meta test-form
is evaluated. If that form yields
.codn nil ,
then the loop terminates. The
.metn result-form -s
are evaluated, and the value of the last one is returned.
If
.metn result-form -s
are absent, then
.code nil
is returned.
If
.meta test-form
is also absent, then the loop terminates and returns
.codn nil .
If
.meta test-form
produces a true value, then
.metn result-form -s
are not evaluated. Instead, the implicit
.code tagbody
comprised of the
.metn tagbody-form -s
is evaluated.
If that evaluation terminates normally, the loop variables are
then updated by assigning to each
.meta sym
the value of
.metn step-form .
The following defaulting behaviors apply in regard to the variable
syntax. For each
.meta sym
which has an associated
.meta init-form
but no
.metn step-form ,
the
.meta init-form
is duplicated and taken as the
.metn step-form .
Thus a variable specification like
.code "(x y)"
is equivalent to
.codn "(x y y)" .
If both forms are omitted, then the
.meta init-form
is taken to be
.codn nil ,
and the
.meta step-form
is taken to be
.metn sym .
This means that the variable form
.code "(x)"
is equivalent to
.code "(x nil x)"
which has the effect that
.code x
retains its current value when the next loop iteration begins.
Lastly, the
.meta sym
variant is equivalent to
.mono
.meti <> ( sym )
.onom
so that
.code x
is also equivalent to
.codn "(x nil x)" .
The differences between
.code doloop
and
.code doloop*
are:
.code doloop
binds the variables in parallel, similarly to
.codn let ,
whereas
.code doloop*
binds sequentially, like
.codn let* ;
moreover,
.code doloop
performs the
.meta step-form
assignments in parallel as if using a single
.mono
.meti (pset < sym0 < step-form-0 < sym1 < step-form-1 ...)
.onom
form, whereas
.code doloop*
performs the assignment sequentially as if using
.code set
rather than
.codn pset .
The
.code doloop
and
.code doloop*
macros establish an anonymous
.codn block ,
allowing early return from the loop, with a value, via the
.code return
operator.
.TP* "Dialect Note:"
These macros are substantially different from the ANSI Common Lisp
.code do
and
.code do*
macros. Firstly, the termination logic is inverted; effectively they
implement "while" loops, whereas their ANSI CL counterparts implement
"until" loops. Secondly, in the ANSI CL macros, the defaulting of
the missing
.meta step-form
is different. Variables with no
.meta step-form
are not updated. In particular, this means that the form
.code "(x y)"
is not equivalent to
.codn "(x y y)" ;
the ANSI CL macros do not feature the automatic replication of
.meta init-form
into the
.meta step-form
position.
.coNP Macros @, each-prod @ collect-each-prod and @ append-each-prod
.synb
.mets (each-prod >> ({( sym << init-form )}*) << body-form *)
.mets (collect-each-prod >> ({( sym << init-form )}*) << body-form *)
.mets (append-each-prod >> ({( sym << init-form )}*) << body-form *)
.syne
.desc
The macros
.codn each-prod ,
.code collect-each-prod
and
.code append-each-prod
have a similar syntax to
.codn each ,
.code collect-each
and
.codn collect-each-prod .
However, instead of iterating over sequences in parallel, they iterate over
the Cartesian product of the elements from the sequences.
The difference between
.code collect-each
and
.code collect-each-prod
is analogous to that between the functions
.code mapcar
and
.codn maprod .
These macros can be understood as providing syntactic sugar according to the
pattern established by the following equivalences:
.mono
(each-prod (mapdo (lambda (x y)
((x xinit) body)
(y yinit)) <--> xinit
body) yinit)
(collect-each-prod (maprod (lambda (x y)
((x xinit) body)
(y yinit)) <--> xinit
body) yinit)
(append-each-prod (maprend (lambda (x y)
((x xinit) body)
(y yinit)) <--> xinit
body) yinit)
.onom
However, note that each invocation of the
.code lambda
binds fresh instances of the variables, whereas these operators are
permitted to bind a single instance of the variables, which are then stepped by
assignment.
.TP* Example:
.mono
(collect-each-prod ((a '(a b c))
(n #(1 2)))
(cons a n))
--> ((a . 1) (a . 2) (b . 1) (b . 2) (c . 1) (c . 2))
.onom
.coNP Macros @, each-prod* @ collect-each-prod* and @ append-each-prod*
.synb
.mets (each-prod* >> ({( sym << init-form )}*) << body-form *)
.mets (collect-each-prod* >> ({( sym << init-form )}*) << body-form *)
.mets (append-each-prod* >> ({( sym << init-form )}*) << body-form *)
.syne
.desc
The macros
.codn each-prod* ,
.code collect-each-prod*
and
.code append-each-prod*
are variants of
.codn each-prod* ,
.code collect-each-prod*
and
.code append-each-prod*
with sequential binding.
These macros can be understood as providing syntactic sugar according to the
pattern established by the following equivalences:
.mono
(each-prod* (let* ((x xinit)
((x xinit) (y yinit))
(y yinit)) <--> (mapdo (lambda (x y) body)
body) x y)
(collect-each-prod* (let* ((x xinit)
((x xinit) (y yinit))
(y yinit)) <--> (maprod (lambda (x y) body)
body) x y)
(append-each-prod* (let* ((x xinit)
((x xinit) (y yinit))
(y yinit)) <--> (maprend (lambda (x y) body)
body) x y)
.onom
However, note that the
.code let*
as well as each invocation of the
.code lambda
binds fresh instances of the variables, whereas these operators are permitted
to bind a single instance of the variables, which are first initialized with
the initializing expressions, and then re-used as iteration variables which are
stepped by assignment.
.TP* Example:
.mono
(collect-each-prod* ((a "abc")
(b (upcase-str a)))
`@a@b`)
--> ("aA" "aB" "aC" "bA" "bB" "bC" "cA" "cB" "cC")
.onom
.coNP Operators @ block and @ block*
.synb
.mets (block < name << body-form *)
.mets (block* < name-form << body-form *)
.syne
.desc
The
.code block
operator introduces a named block around the execution of
some forms. The
.meta name
argument must be a symbol. Since a block name is not
a variable binding, keyword symbols are permitted, and so are the symbols
.code t
and
.codn nil .
A block named by the symbol nil is slightly special: it is
understood to be an anonymous block.
The
.code block*
operator differs from
.code block
in that it evaluates
.metn name-form ,
which is expected to produce a symbol. The resulting symbol
is used for the name of the block.
A named or anonymous block establishes an exit point for the
.code return-from
or
.code return
operator, respectively. These operators can be invoked within a block
to cause its immediate termination with a specified return value.
A block also establishes a prompt for a
.IR "delimited continuation" .
Anywhere in a block, a continuation can be captured using the
.code sys:capture-cont
function. Delimited continuations are described in the section
Delimited Continuations. A delimited continuation allows an apparently
abandoned block to be restarted at the capture point, with the
entire call chain and dynamic environment between the prompt and the capture
point intact.
Blocks in \*(TL have dynamic scope. This means that the following
situation is allowed:
.verb
(defun func () (return-from foo 42))
(block foo (func))
.brev
The function can return from the
.code foo
block even though the
.code foo
block
does not lexically surround
.codn foo .
It is because blocks are dynamic that the
.code block*
variant exists; for lexically scoped blocks, it would make little
sense to have support a dynamically computed name.
Thus blocks in \*(TL provide dynamic non-local returns, as well
as returns out of lexical nesting.
It is permitted for blocks to be aggressively
.codn progn -converted
by compilation. This means that a
.code block
form which meets certain criteria is converted to a
.code progn
form which surrounds the
.metn body-form -s
and thus no longer establishes an exit point.
A
.code block
form will be spared from
.codn progn -conversion
by the compiler if it meets the following rules.
.RS
.IP 1
Any
.meta body-form
references the block's
.meta name
in a
.codn return ,
.codn return-from ,
.code sys:abscond-from
or
.code sys:capture-cont
expression.
.IP 2
The form contains at least one direct call to a function
not in the standard \*(TL library.
.IP 3
The form contains at least one direct call to the functions
.codn sys:capture-cont ,
.codn return* ,
.codn sys:abscond* ,
.codn match-fun ,
.codn eval ,
.codn load ,
.codn compile ,
.code compile-file
or
.codn compile-toplevel .
.IP 4
The form references any of the functions in rules 2 and 3
as a function binding via the
.code dwim
operator (or the DWIM brackets notation) or via the
.code fun
operator.
.IP 5
The form is a
.code block*
form; these are spared from the optimization.
.RE
.IP
Removal of blocks under the above rules means that some use of blocks which
works in interpreted code will not work in compiled programs. Programs which
adhere to the rules are not affected by such a difference.
Additionally, the compiler may
.codn progn -convert
blocks in contravention of the above rules, but only if doing so makes no
difference to visible program behavior.
.TP* Examples:
.verb
(defun helper ()
(return-from top 42))
;; defun implicitly defines a block named top
(defun top ()
(helper) ;; function returns 42
(prinl 'notreached)) ;; never printed
(defun top2 ()
(let ((h (fun helper)))
(block top (call h)) ;; may progn-convert
(block top (call 'helper)) ;; may progn-convert
(block top (helper)))) ;; not removed
.brev
In the above examples, the block containing
.code "(call h)"
may be converted to
.code progn
because it doesn't express a
.B direct
call to the
.code helper
function. The block which calls
.code helper
using
.code "(call 'helper)"
is also not considered to be making a direct call.
.TP* "Dialect Note:"
In Common Lisp, blocks are lexical. A separate mechanism consisting of
catch and throw operators performs non-local transfer based on symbols.
The \*(TL example:
.verb
(defun func () (return-from foo 42))
(block foo (func))
.brev
is not allowed in Common Lisp, but can be transliterated to:
.verb
(defun func () (throw 'foo 42))
(catch 'foo (func))
.brev
Note that foo is quoted in CL. This underscores the dynamic nature of
the construct.
.code throw
itself is a function and not an operator. Also note that the CL
example, in turn, is even more closely transcribed back into
\*(TL simply by replacing its
.code throw
and
.code catch
with
.code return*
and
.codn block* :
.verb
(defun func () (return* 'foo 42))
(block* 'foo (func))
.brev
Common Lisp blocks also do not support delimited continuations.
.coNP Operators @ return and @ return-from
.synb
.mets (return <> [ value ])
.mets (return-from < name <> [ value ])
.syne
.desc
The
.code return
operator must be dynamically enclosed within an anonymous
block (a block named by the symbol
.codn nil ).
It immediately terminates the
evaluation of the innermost anonymous block which encloses it, causing
it to return the specified value. If the value is omitted, the anonymous
block returns
.codn nil .
The
.code return-from
operator must be dynamically enclosed within a named block
whose name matches the
.meta name
argument. It immediately terminates the
evaluation of the innermost such block, causing it to return the specified
value. If the value is omitted, that block returns
.codn nil .
.TP* Example:
.verb
(block foo
(let ((a "abc\en")
(b "def\en"))
(pprint a *stdout*)
(return-from foo 42)
(pprint b *stdout*)))
.brev
Here, the output produced is
.strn "abc" .
The value of
.code b
is not printed
because.
.code return-from
terminates block
.codn foo ,
and so the second pprint form is not evaluated.
.coNP Function @ return*
.synb
.mets (return* < name <> [ value ])
.syne
.desc
The
.code return*
function is similar to the the
.code return-from
operator, except that
.code name
is an ordinary function parameter, and so when
.code return*
is used, an argument expression must be specified which evaluates
to a symbol. Thus
.code return*
allows the target block of a return to be dynamically computed.
The following equivalence holds between the operator and function:
.verb
(return-from a b) <--> (return* 'a b)
.brev
Expressions used as
.meta name
arguments to
.code return*
which do not simply quote a symbol have no equivalent in
.codn return-from .
.coNP Macros @ tagbody and @ go
.synb
.mets (tagbody >> { form | << label }*)
.mets (go << label )
.syne
.desc
The
.code tagbody
macro provides a form of the "go to" control construct. The arguments of a
.code tagbody
form are a mixture of zero or more forms and
.IR "go labels" .
The latter consist of those arguments which are symbols, integers or
characters. Labels are not considered by
.code tagbody
and
.code go
to be forms, and are not subject to macro expansion or evaluation.
The
.code go
macro is available inside
.codn tagbody .
It is erroneous for a
.code go
form to occur outside of a
.codn tagbody .
This situation is diagnosed by global macro called
.codn go ,
which unconditionally throws an error.
In the absence of invocations of
.code go
or other control transfers, the
.code tagbody
macro evaluates each
.meta form
in left to right order. The go labels are ignored.
After the last
.meta form
is evaluated, the
.code tagbody
form terminates, and yields
.codn nil .
Any
.meta form
itself, or else any of its sub-forms, may be the form
.mono
.meti (go << label )
.onom
where
.meta label
matches one of the go labels of a surrounding
.codn tagbody .
When this
.code go
form is evaluated, then the evaluation of
.meta form
is immediately abandoned, and control transfers to the specified
label. The forms are then evaluated in left-to-right order starting
with the form immediately after that label. If the label is not
followed by any forms, then the
.code tagbody
terminates. If
.meta label
doesn't match to any label in any surrounding
.codn tagbody ,
the
.code go
form is erroneous.
The abandonment of a
.meta form
by invocation of
.code go
is a dynamic transfer. All necessary unwinding inside
.meta form
takes place.
The go labels are lexically scoped, but dynamically bound. Their scope
being lexical means that the labels are not visible to forms which are not
enclosed within the
.codn tagbody ,
even if their evaluation is invoked from that
.codn tagbody .
The dynamic binding means that the labels of a
.code tagbody
form are established when it begins evaluating, and removed when
that form terminates. Once a label is removed, it is not available
to be the target of a
.code go
control transfer, even if that
.code go
form has the label in its lexical scope. Such an attempted transfer
is erroneous.
It is permitted for
.code tagbody
forms to nest arbitrarily. The labels of an inner
.code tagbody
are not visible to an outer
.codn tagbody .
However, the reverse is true: a
.code go
form in an inner
.code tagbody
may branch to a label in an outer
.codn tagbody ,
in which case the entire inner
.code tagbody
terminates.
In cases where the same objects are used as labels
by an inner and outer
.codn tagbody ,
the inner labels shadow the outer labels.
There is no restriction on what kinds of symbols may be labels.
Symbols in the
.code keyword
package as well as the symbols
.code t
and
.code nil
are valid
.code tagbody
labels.
.TP* "Dialect Note:"
ANSI Common Lisp
.code tagbody
supports only symbols and integers as labels (which are called "go tags");
characters are not supported.
.TP* Examples:
.verb
;; print the numbers 1 to 10
(let ((i 0))
(tagbody
(go skip) ;; forward goto skips 0
again
(prinl i)
skip
(when (<= (inc i) 10)
(go again))))
;; Example of erroneous usage: by the time func is invoked
;; by (call func) the tagbody has already terminated. The
;; lambda body can still "see" the label, but it doesn't
;; have a binding.
(let (func)
(tagbody
(set func (lambda () (go label)))
(go out)
label
(prinl 'never-reached)
out)
(call func))
;; Example of unwinding when the unwind-protect
;; form is abandoned by (go out). Output is:
;; reached
;; cleanup
;; out
(tagbody
(unwind-protect
(progn
(prinl 'reached)
(go out)
(prinl 'notreached))
(prinl 'cleanup))
out
(prinl 'out))
.brev
.coNP Macros @ prog and @ prog*
.synb
.mets (prog >> ({ sym | >> ( sym << init-form )}*)
.mets \ \ >> { body-form | << label }*)
.mets (prog* >> ({ sym | >> ( sym << init-form )}*)
.mets \ \ >> { body-form | << label }*)
.syne
.desc
The
.code prog
and
.code progn*
macros combine the features of
.code let
and
.codn let* ,
respectively,
anonymous block and
.codn tagbody .
The
.code prog
macro treats the
.meta sym
and
.code init-form
expressions similarly to
.codn let ,
establishing variable bindings in parallel.
The
.code prog*
macro treats these expressions in a similar way to
.codn let* .
The forms enclosed are treated like the argument forms of the
.code tagbody
macro: labels are permitted, along with use of
.codn go .
Finally, an anonymous block is established around all of the enclosed
forms (both the
.metn init-form -s
and
.metn body-forms -s)
allowing the use of
.code return
to terminate evaluation with a value.
The
.code prog
macro may be understood according to the following equivalence:
.verb
(prog vars forms ...) <--> (block nil
(let vars
(tagbody forms ...)))
.brev
Likewise, the
.code prog*
macro follows an analogous equivalence, with
.code let
replaced by
.codn let* .
.SS* Evaluation
.coNP Function @ eval
.synb
.mets (eval < form <> [ env ])
.syne
.desc
The
.code eval
function treats the
.meta form
object as a Lisp expression, which is expanded and
evaluated. The side effects implied by the form are performed, and the value
which it produces is returned. The optional
.meta env
object specifies an environment for
resolving the function and variable references encountered in the expression.
If this argument is omitted
.code nil
then evaluation takes place in the global environment.
The
.meta form
is not expanded all at once. Rather, it is treated by the following algorithm:
.RS
.IP 1
First, if
.meta form
is a macro, it is macro-expanded as if by an application of the function
.codn macroexpand .
.IP 2
If the resulting expanded form is a
.codn progn ,
.codn compile-only ,
or
.code eval-only
form, then
.code eval
iterates over that form's argument expressions, passing each expression to a
recursive call to
.code eval
using the same
.metn env .
.IP 3
Otherwise, if the expanded form isn't one of the above three kinds of
expressions, it is subject to a full expansion and evaluation.
.RE
.IP
This algorithm allows a sequence of top-level forms to be combined into a
single top-level form, even when the expansion of forms occurring later in the
sequence depends on the evaluation effects of forms earlier in the sequence.
For instance, a form like
.code "(progn (defmacro foo ()) (foo))"
may be processed with
.codn eval ,
because the above algorithm ensures that the
.code "(defmacro foo ())"
expression is fully evaluated first, thereby providing the
macro definition required by
.codn "(foo)" .
This expansion and evaluation order is important because the semantics of
.code eval
forms the reference model for how the
.code load
function processes top-level forms.
See also: the
.code make-env
function.
.coNP Function @ constantp
.synb
.mets (constantp < form <> [ env ])
.syne
.desc
The
.code constantp
function determines whether
.meta form
is a constant form, with respect to environment
.metn env .
If
.meta env
is absent, the global environment is used.
The
.meta env
argument is used for macro-expanding
.metn form .
Currently,
.code constantp
returns true for any form which, after macro-expansion, is any of
the following: a compound form with the symbol
.code quote
in its first position; a non-symbolic atom; or one of the symbols
which evaluate to themselves and cannot be bound as variables.
These symbols are the keyword symbols, and the symbols
.code t
and
.codn nil .
In the future,
.code constantp
will be able to recognize more constant forms, such as calls to certain
functions whose arguments are constant forms.
.coNP Function @ make-env
.synb
.mets (make-env >> [ var-bindings >> [ fun-bindings <> [ next-env ]]])
.syne
.desc
The
.code make-env
function creates an environment object suitable as the
.code env
parameter.
The
.meta var-bindings
and
.meta fun-bindings
parameters, if specified,
should be association lists, mapping symbols to objects. The objects in
.meta fun-bindings
should be functions, or objects callable as functions.
The
.meta next-env
argument, if specified, should be an environment.
Note: bindings can also be added to an environment using the
.code env-vbind
and
.code env-fbind
functions.
.coNP Functions @ env-vbind and @ env-fbind
.synb
.mets (env-vbind < env < symbol << value )
.mets (env-fbind < env < symbol << value )
.syne
.desc
These functions bind a symbol to a value in either the function or variable
space of environment
.codn env .
Values established in the function space should be functions or objects that
can be used as functions such as lists, strings, arrays or hashes.
If
.meta symbol
already exists in the environment, in the given space, then its
value is updated with
.codn value .
If
.meta env
is specified as
.codn nil ,
then the binding takes place in the global environment.
.coNP Functions @, env-vbindings @ env-fbindings and @ env-next
.synb
.mets (env-vbindings << env )
.mets (env-fbindings << env )
.mets (env-next << env )
.syne
.desc
These function retrieve the components of
.metn env ,
which must be an environment. The
.code env-vbindings
function retrieves the the association list representing variable
bindings. Similarly, the
.code env-fbindings
retrieves the association list of function bindings.
The
.code env-next
function retrieves the next environment, if
.meta env
has one, otherwise
.codn nil .
If
.code e
is an environment constructed by the expression
.codn "(make-env v f n)" ,
then
.code "(env-vbindings e)"
retrieves
.codn v ,
.code "(env-fbindings e)"
retrieves
.code f
and
.code "(env-next e)"
returns
.codn n .
.SS* Global Environment
.coNP Accessors @, symbol-function @ symbol-macro and @ symbol-value
.synb
.mets (symbol-function >> { symbol | < method-name | << lambda-expr })
.mets (symbol-macro << symbol )
.mets (symbol-value << symbol )
.mets (set (symbol-function >> { symbol | << method-name }) << new-value )
.mets (set (symbol-macro << symbol ) << new-value )
.mets (set (symbol-value << symbol ) << new-value )
.syne
.desc
If given a
.meta symbol
argument, the
.code symbol-function
function retrieves the value of the global function binding of the
given
.meta symbol
if it has one: that is, the function object bound to the
.metn symbol .
If
.meta symbol
has no global function binding, then
.code nil
is returned.
The
.code symbol-function
function supports method names of the form
.mono
.meti (meth < struct << slot )
.onom
where
.meta struct
names a struct type, and
.meta slot
is either a static slot or one of the keyword symbols
.code :init
or
.code :postinit
which refer to special functions associated with a structure type.
Names in this format are returned by the
.meta func-get-name
function. The
.code symbol-function
function also supports names of the form
.mono
.meti (macro << name )
.onom
which denote macros. Thus,
.code symbol-function
provides unified access to functions, methods and macros.
If a
.code lambda
expression is passed to
.codn symbol-function ,
then the expression is macro-expanded and if that is successful, the function
implied by that expression is returned.
It is unspecified whether this function is interpreted or compiled.
The
.code symbol-macro
function retrieves the value of the global macro binding of
.meta symbol
if it has one.
Note: the name of this function has nothing to do with symbol macros;
it is named for consistency with
.code symbol-function
and
.codn symbol-value ,
referring to the "macro-expander binding of the symbol cell".
The value of a macro binding is a function object.
Intrinsic macros are C functions in the \*(TX kernel, which receive
the entire macro call form and macro environment, performing their
own destructuring. Currently, macros written in \*(TL are represented
as curried C functions which carry the following list object in their
environment cell:
.mono
.mets (#<environment object> < macro-parameter-list << body-form *)
.onom
Local macros created by
.code macrolet
have
.code nil
in place of the environment object.
This representation is likely to change or expand to include other
forms in future \*(TX versions.
The
.code symbol-value
function retrieves the value stored in the dynamic binding of
.meta symbol
that is apparent in the current context. If the variable has no dynamic
binding, then
.code symbol-value
retrieves its value in the global environment.
If
.meta symbol
has no variable binding, but is defined as a global symbol macro,
then the value of that symbol macro binding is retrieved.
The value of a symbol macro binding is simply the replacement form.
Rather than throwing an exception, each of these functions returns
.code nil
if the argument symbol doesn't have the binding in the respective
namespace or namespaces which that function searches.
A
.codn symbol-function ,
.codn symbol-macro ,
or
.code symbol-value
form denotes a place, if
.meta symbol
has a binding of the respective kind. This place may be assigned to or
deleted. Assignment to the place causes the denoted binding to have a new
value. Deleting a place with the
.code del
macro removes the binding,
and returns the previous contents of that binding. A binding
denoted by a
.code symbol-function
form is removed using
.codn fmakunbound ,
one denoted by by
.code symbol-macro
is removed using
.code mmakunbound
and a binding denoted by
.code symbol-value
is removed using
.codn makunbound .
Deleting a method via
.code symbol-function
is not possible; an attempt to do so has no effect.
Storing a value, using any one of these three accessors, to a nonexistent
variable, function or macro binding, is not erroneous. It has has the effect of
creating that binding.
Using
.code symbol-function
accessor to assign to a lambda expression is erroneous.
Deleting a binding, using any of these three accessors, when the binding does not
exist, also isn't erroneous. There is no effect and the
.code del
operator yields
.code nil
as the prior value, consistent with the behavior when accessors are used to
retrieve a nonexistent value.
.TP* "Dialect note:"
In ANSI Common Lisp, the
.code symbol-function
function retrieves a function, macro or special operator binding
of a symbol.
These are all in one space and may not co-exist. In \*(TL, it
retrieves a symbol's function binding only. The
.code symbol-macro
function doesn't exist in Common Lisp.
.coNP Functions @, boundp @ fboundp and @ mboundp
.synb
.mets (boundp << symbol )
.mets (fboundp >> { symbol | < method-name | << lambda-expr })
.mets (mboundp << symbol )
.syne
.desc
.code boundp
returns
.code t
if the
.meta symbol
is bound as a variable or symbol macro in the global
environment, otherwise
.codn nil .
.code fboundp
returns
.code t
if the
.meta symbol
has a function binding in the global
environment, the method specified by
.meta method-name
exists, or a lambda expression argument is given.
Otherwise it returns nil
.codn nil .
.code mboundp
returns
.code t
if the symbol has an operator macro binding in the global environment,
otherwise
.codn nil .
.TP* "Dialect Notes:"
The
.code boundp
function in ANSI Common Lisp doesn't report that
global symbol macros have a binding. They are not considered
bindings. In \*(TL, they are considered bindings.
The ANSI Common Lisp
.code fboundp
yields true if its argument has a function, macro or operator
binding. The behavior of the Common Lisp expression
.code "(fboundp x)"
in Common Lisp can be obtained in \*(TL using the
.verb
(or (fboundp x) (mboundp x) (special-operator-p x))
.brev
expression.
The
.code mboundp
function doesn't exist in ANSI Common Lisp.
.coNP Functions @, makunbound @ fmakunbound and @ mmakunbound
.synb
.mets (makunbound << symbol )
.mets (fmakunbound << symbol )
.mets (mmakunbound << symbol )
.syne
.desc
The function
.code makunbound
the binding of
.meta symbol
from either the dynamic environment or the global symbol
macro environment. After the call to
.codn makunbound ,
.meta symbol
appears to be unbound.
If the
.code makunbound
call takes place in a scope in which there exists a dynamic rebinding of
.metn symbol ,
the information for restoring the previous binding is not
affected by
.codn makunbound .
When that scope terminates, the previous binding will be restored.
If the
.code makunbound
call takes place in a scope in which the dynamic binding for
.code symbol
is the global binding, then the global binding is removed.
When the global binding is removed, then
if
.meta symbol
was previously marked as special (for instance
by
.codn defvar )
this marking is removed.
Otherwise if
.meta symbol
has a global symbol macro binding, that binding is removed.
If
.meta symbol
has no apparent dynamic binding, and no global symbol macro binding,
.code makunbound
does nothing.
In all cases,
.code makunbound
returns
.metn symbol .
.TP* "Dialect Note:"
The behavior of
.code makunbound
differs from its counterpart in ANSI Common Lisp.
The
.code makunbound
function in Common Lisp only removes a value from a dynamic variable. The
dynamic variable does not cease to exist, it only ceases to have a value
(because a binding is a value). In \*(TL, the variable ceases to exist. The
binding of a variable isn't its value, it is the variable itself: the
association between a name and an abstract storage location, in some
environment. If the binding is undone, the variable disappears.
The
.code makunbound
function in Common Lisp does not remove global symbol macros,
which are not considered to be bindings in the variable namespace.
That is to say, the Common Lisp
.code boundp
does not report true for symbol macros.
The Common Lisp
.code makunbound
also doesn't remove the special attribute from a symbol. If a variable
is introduced with
.code defvar
and then removed with
.codn makunbound ,
the symbol continues to exhibit dynamic binding rather than lexical
in subsequent scopes. In \*(TL, if a global binding is removed, so
is the special attribute.
.coNP Functions @ fmakunbound and @ mmakunbound
.synb
.mets (fmakunbound << symbol )
.mets (mmakunbound << symbol )
.syne
.desc
The function
.code fmakunbound
removes any binding for
.meta symbol
from the function namespace of the global environment. If
.meta symbol
has no such binding, it does nothing.
In either case, it returns
.metn symbol .
The function
.code mmakunbound
removes any binding for
.meta symbol
from the operator macro namespace of the global environment. If
.meta symbol
has no such binding, it does nothing.
In either case, it returns
.metn symbol .
.TP* "Dialect Note:"
The behavior of
.code fmakunbound
differs from its counterpart in ANSI Common Lisp. The
.code fmakunbound
function in Common Lisp removes a function or macro binding, which
do not coexist.
The
.code mmakunbound
function doesn't exist in Common Lisp.
.coNP Function @ func-get-form
.synb
.mets (func-get-form << func )
.syne
.desc
The
.code func-get-form
function retrieves a source code form of
.metn func ,
which must be an interpreted function. The source code form has the syntax
.mono
.meti >> ( name < arglist << body-form *) .
.onom
.coNP Function @ func-get-name
.synb
.mets (func-get-name < func <> [ env ])
.syne
.desc
The
.code func-get-name
tries to resolve the function object
.meta func
to a name. If that is not possible, it returns
.codn nil .
The resolution is performed by an exhaustive search through
up to three spaces.
If an environment is specified by
.metn env ,
then this is searched first. If a binding is found in that
environment which resolves to the function, then the search
terminates and the binding's symbol is returned as the
function's name.
If the search through environment
.meta env
fails, or if that argument is not specified, then the
global environment is searched for a function binding
which resolves to
.metn func .
If such a binding is found, then the search terminates,
and the binding's symbol is returned. If two or more
symbols in the global environment resolve to the function,
it is not specified which one is returned.
If the global function environment search fails,
then the function is considered as a possible macro.
The global macro environment is searched for a macro
binding whose expander function is
.metn func ,
similarly to the way the function environment was
searched. If a binding is found, then the syntax
.mono
.meti (macro << name )
.onom
is returned, where
.meta name
is the name of the global macro binding that was found
which resolves to
.metn func .
If two or more global macro bindings share
.metn func ,
it is not specified which of those bindings provides
.metn name .
If the global macro search fails, then
.meta func
is considered as a possible method.
The static slot space of all struct types is searched for
a slot which contains
.metn func .
If such a slot is found, then the method name is returned,
consisting of the syntax
.mono
.meti (meth < type << name )
.onom
where
.meta type
is a symbol denoting the struct type and
.meta name
is the static slot of the struct type which holds
.metn func .
A check is also performed whether
.meta func
might be equal to one of the two special functions of
a structure type: its
.meta initfun
or
.metn postinitfun ,
in which case it is returned as either the
.mono
.meti (meth < type :init)
.onom
or the
.mono
.meti (meth < type :postinit)
.onom
syntax.
If
.meta func
is an interpreted function not found under any name,
then a lambda expression denoting that function
is returned in the syntax
.mono
.meti (lambda < args << form *)
.onom
If
.meta func
cannot be identified as a function, then
.code nil
is returned.
.coNP Function @ func-get-env
.synb
.mets (func-get-env << func )
.syne
.desc
The
.code func-get-env
function retrieves the environment object associated with
function
.metn func .
The environment object holds the captured bindings of a
lexical closure.
.coNP Functions @ fun-fixparam-count and @ fun-optparam-count
.synb
.mets (fun-fixparam-count << func )
.mets (fun-optparam-count << func )
.syne
.desc
The
.code fun-fixparam-count
reports
.metn func 's
number of fixed parameters. The fixed parameters consist of the required
parameters and the optional parameters. Variadic functions have a parameter
which captures the remaining arguments which are in excess of the fixed
parameters. That parameter is not considered a fixed parameter and therefore
doesn't contribute to this count.
The
.code fun-optparam-count
reports
.metn func 's
number of optional parameters.
The
.meta func
argument must be a function.
Note: if a function isn't variadic (see the
.meta fun-variadic
function) then the value reported by
.code fun-fixparam-count
represents the maximum number of arguments which can be passed to the function.
The minimum number of required arguments can be calculated for any function by
subtracting the value from
.code fun-optparam-count
from the value from
.codn fun-fixparam-count .
.coNP Function @ fun-variadic
.synb
.mets (fun-variadic << func )
.syne
.desc
The
.code fun-variadic
function returns
.code t
if
.meta func
is a variadic function, otherwise
.codn nil .
The
.meta func
argument must be a function.
.coNP Function @ interp-fun-p
.synb
.mets (interp-fun-p << obj )
.syne
.desc
The
.code interp-fun-p
function returns
.code t
if
.meta obj
is an interpreted function, otherwise it returns
.codn nil .
.coNP Function @ vm-fun-p
.synb
.mets (vm-fun-p << obj )
.syne
.desc
The
.code vm-fun-p
function returns
.code t
if
.meta obj
a function compiled for the virtual machine: a function representation produced
by means of the functions
.codn compile-file ,
.code compile-toplevel
or
.codn compile .
If
.meta obj
is of any other type, the function returns
.codn nil .
.coNP Function @ special-var-p
.synb
.mets (special-var-p << obj )
.syne
.desc
The
.code special-var-p
function returns
.code t
if
.meta obj
is a symbol marked for special variable binding, otherwise it returns
.codn nil .
Symbols are marked special by
.code defvar
and
.codn defparm .
.coNP Function @ special-operator-p
.synb
.mets (special-operator-p << obj )
.syne
.desc
The
.code special-operator-p
function returns
.code t
if
.meta obj
is a symbol which names a special operator, otherwise it returns
.codn nil .
.SS* Object Type
In \*(TL, objects obey the following type hierarchy. In this type hierarchy,
the internal nodes denote abstract types: no object is an instance of
an abstract type. Nodes in square brackets indicate an internal structure
in the type graph, invisible to programs, and angle
brackets indicate a plurality of types which are not listed by name:
.verb
t ----+--- [cobj types] ---+--- hash
| |
| +--- hash-iter
| |
| +--- stream
| |
| +--- random-state
| |
| +--- regex
| |
| +--- buf
| |
| +--- tree
| |
| +--- tree-iter
| |
| +--- cptr
| |
| +--- dir
| |
| +--- struct-type
| |
| +--- <all structures>
| |
| +--- ... others
|
|
+--- sequence ---+--- string ---+--- str
| | |
| | +--- lstr
| | |
| | +--- lit
| |
| +--- list ---+--- null
| | |
| | +--- cons
| | |
| | +--- lcons
| |
| +--- vec
| |
| +--- <structures with car or length methods>
|
+--- number ---+--- float
| |
| +--- integer ---+--- fixnum
| |
| +--- bignum
|
+--- sym
|
+--- env
|
+--- range
|
+--- tnode
|
+--- pkg
|
+--- fun
.brev
In addition to the above hierarchy, the following relationships also exist:
.verb
t ---+--- atom --- <any type other than cons> --- nil
|
+--- cons ---+--- lcons --- nil
|
+--- nil
sym --- null
struct ---- <all structures>
.brev
That is to say, the types are exhaustively partitioned into atoms and conses;
an object is either a
.code cons
or else it isn't, in which case it is the abstract
type
.codn atom .
The
.code cons
type is odd in that it is both an abstract type,
serving as a supertype for the type
.code lcons
and it is also a concrete type in that regular conses are of
this type.
The type
.code nil
is an abstract type which is empty. That is to say, no object is of
type
.codn nil .
This type is considered the abstract subtype of every other type,
including itself.
The type
.code nil
is not to be confused with the type
.code null
which is the type of the
.code nil
symbol.
Because the type of
.code nil
is the type
.code null
and
.code nil
is also a symbol, the
.code null
type is a subtype of
.codn sym .
Lastly, the symbol
.code struct
serves as the supertype of all structures.
.coNP Function @ typeof
.synb
.mets (typeof << value )
.syne
.desc
The
.code typeof
function returns a symbol representing the type of
.metn value .
The core types are identified by the following symbols:
.coIP cons
Cons cell.
.coIP str
String.
.coIP lit
Literal string embedded in the \*(TX executable image.
.coIP chr
Character.
.coIP fixnum
Fixnum integer: an integer that fits into the value word, not having to
be heap-allocated.
.coIP bignum
A bignum integer: arbitrary precision integer that is heap-allocated.
.coIP float
Floating-point number.
.coIP sym
Symbol.
.coIP pkg
Symbol package.
.coIP fun
Function.
.coIP vec
Vector.
.coIP lcons
Lazy cons.
.coIP range
Range object.
.coIP lstr
Lazy string.
.coIP env
Function/variable binding environment.
.coIP hash
Hash table.
.coIP stream
I/O stream of any kind.
.coIP regex
Regular expression object.
.coIP struct-type
A structure type: the type of any one of the values which represents
a structure type.
.coIP tnode
Binary search tree node.
.coIP tree
Binary search tree.
.coIP args
Function argument list represented as an object.
.PP
There are more kinds of objects, such as user-defined structures.
.coNP Function @ subtypep
.synb
.mets (subtypep < left-type-symbol << right-type-symbol )
.syne
.desc
The
.code subtypep
function tests whether
.meta left-type-symbol
and
.meta right-type-symbol
name a pair of types, such that the left type is a subtype of the right
type.
If either argument doesn't name a type, the behavior is
unspecified.
Each type is a subtype of itself. Most other type relationships can be inferred
from the type hierarchy diagrams given in the introduction to this section.
In addition, there are inheritance relationships among structures. If
.meta left-type-symbol
and
.meta right-type-symbol
both name structure types, then
.code subtypep
yields true if the types are the same struct type, or if the right
type is a direct or indirect supertype of the left.
The type symbol
.code struct
is a supertype of all structure types.
.coNP Function @ typep
.synb
.mets (typep < object << type-symbol )
.syne
.desc
The
.code typep
function tests whether the type of
.meta object
is a subtype of the type named by
.metn type-symbol .
The following equivalence holds:
.verb
(typep a b) --> (subtypep (typeof a) b)
.brev
.coNP Macro @ typecase
.synb
.mets (typecase < test-form >> {( type-sym << clause-form *)}*)
.syne
.desc
The
.code typecase
macro evaluates
.meta test-form
and then successively tests its type against each clause.
Each clause consists of a type symbol
.meta type-sym
and zero or more
.metn clause-form -s.
The first clause whose
.meta type-sym
is a supertype of the type of
.metn test-form 's
value is considered to be the matching clause.
That clause's
.metn clause-form -s
are evaluated, and the value of the last form is returned.
If there is no matching clause, or there are no clauses present,
or the matching clause has no
.metn clause-form -s,
then
.code nil
is returned.
Note: since
.code t
is the supertype of every type, a clause whose
.meta type-sym
is the symbol
.code t
always matches. If such a clause is placed as the last clause of a
.codn typecase ,
it provides a fallback case, whose forms are evaluated if none of the
previous clauses match.
.SS* Object Equivalence
.coNP Functions @, identity @ identity and @ use
.synb
.mets (identity << value )
.mets (identity* << value *)
.mets (use << value )
.syne
.desc
The
.code identity
function returns its argument.
If the
.code identity*
function is given at least one argument, then it returns its
leftmost argument, otherwise it returns nil.
The
.code use
function is a synonym of
.codn identity .
.TP* Notes:
The
.code identity
function is useful as a functional argument, when a transformation
function is required, but no transformation is actually desired.
In this role, the
.code use
synonym leads to readable code. For instance:
.verb
;; construct a function which returns its integer argument
;; if it is odd, otherwise it returns its successor.
;; "If it's odd, use it, otherwise take its successor".
[iff oddp use succ]
;; Applications of the function:
[[iff oddp use succ] 3] -> 3 ;; use applied to 3
[[iff oddp use succ] 2] -> 3 ;; succ applied to 2
.brev
.coNP Functions @, null @ not and @ false
.synb
.mets (null << value )
.mets (not << value )
.mets (false << value )
.syne
.desc
The
.codn null ,
.code not
and
.code false
functions are synonyms. They tests whether
.meta value
is
the object
.codn nil .
They return
.code t
if this is the case,
.code nil
otherwise.
.TP* Examples:
.verb
(null '()) -> t
(null nil) -> t
(null ()) -> t
(false t) -> nil
(if (null x) (format t "x is nil!"))
(let ((list '(b c d)))
(if (not (memq 'a list))
(format t "list ~s does not contain the symbol a\en")))
.brev
.coNP Functions @ true and @ have
.synb
.mets (true << value )
.mets (have << value )
.syne
.desc
The
.code true
function is the complement of the
.codn null ,
.code not
and
.code false
functions. The
.code have
function is a synonym for
.codn true .
It return
.code t
if the
.meta value
is any object other than
.codn nil .
If
.meta value
is
.codn nil ,
it returns
.codn nil .
Note: programs should avoid explicitly testing values with true.
For instance
.code "(if x ...)"
should be favored over
.codn "(if (true x) ...)" .
However, the latter is useful with the
.code ifa
macro because
.mono
.meti (ifa (true << expr ) ...)
.onom
binds the
.code it
variable to the value of
.metn expr ,
no matter what kind of form
.meta expr
is, which is not true in the
.mono
.meti (ifa < expr ...)
.onom
form.
.TP* Example:
.verb
;; Compute indices where the list '(1 nil 2 nil 3)
;; has true values:
[where '(1 nil 2 nil 3) true] -> (1 3)
.brev
.coNP Functions @, eq @ eql and @ equal
.synb
.mets (eq < left-obj << right-obj )
.mets (eql < left-obj << right-obj )
.mets (equal < left-obj << right-obj )
.syne
.desc
The principal equality test functions
.codn eq ,
.code eql
and
.code equal
test whether two objects are equivalent, using different criteria. They return
.code t
if the objects are equivalent, and
.code nil
otherwise.
The
.code eq
function uses the strictest equivalence test, called implementation
equality. The eq function returns
.code t
if, and only if,
.meta left-obj
and
.meta right-obj
are actually the same object. The
.code eq
test is is implemented
by comparing the raw bit pattern of the value, whether or not it is
an immediate value or a pointer to a heaped object.
Two character values are
.code eq
if they are the same character, and two fixnum integers
are
.code eq
if they have the same value. All other object representations are actually
pointers, and are
.code eq
if, and only, if they point to the same object in memory.
So, for instance, two bignum integers might not be
.code eq
even if they have the same numeric
value, two lists might not be
.code eq
even if all their corresponding elements are
.code eq
and two strings might not be eq even if they hold identical text.
The
.code eql
function is slightly less strict than
.codn eq .
The difference between
.code eql
and
.code eq
is that if
.meta left-obj
and
.meta right-obj
are numbers which are of the same kind and have the same numeric value,
.code eql
returns
.metn t ,
even if they are different objects.
Note that an integers and a floating-point number are not
.code eql
even if one has a value which converts to the other: thus,
.code "(eql 0.0 0)"
yields
.codn nil ;
a comparison expression which finds these numbers equal is
.codn "(= 0.0 0)" .
The
.code eql
function also specially treats range objects. Two distinct range objects are
.code eql
if their corresponding
.meta from
and
.meta to
fields are
.codn eql .
For all other object types,
.code eql
behaves like
.codn eq .
The
.code equal
function is less strict still than
.codn eql .
In general, it recurses into some kinds of aggregate objects to perform a
structural equivalence check. For struct types, it also supports customization
via equality substitution. See the Equality Substitution section under
Structures.
Firstly, if
.meta left-obj
and
.meta right-obj
are
.code eql
then they are also
.codn equal ,
though the converse isn't necessarily the case.
If two objects are both cons cells, then they are equal if their
.code car
fields are
.code equal
and their
.code cdr
fields are
.codn equal .
If two objects are vectors, they are
.code equal
if they have the same length, and
their corresponding elements are
.codn equal .
If two objects are strings, they are equal if they are textually identical.
If two objects are functions, they are
.code equal
if they have
.code equal
environments,
and if they have
the same code. Two compiled functions are considered to have
the same code if and only if they are pointers to the same function.
Two interpreted functions are considered to have the same
code if their list
structure is
.codn equal .
Two hashes are
.code equal
if they use the same equality (both are
.codn :equal-based ,
or both are
.code :eql-based
or else both are
.codn :eq-based ),
if their associated user data elements are equal (see the function
.codn hash-userdata ),
if their sets of keys are identical, and if the data items associated with
corresponding keys from each respective hash are
.code equal
objects.
Two ranges are
.code equal
if their corresponding
.meta to
and
.meta from
fields are equal.
For some aggregate objects, there is no special semantics. Two arguments
which are symbols, packages, or streams are
.code equal
if and only if they are the same object.
Certain object types have a custom
.code equal
function.
.coNP Functions @, neq @ neql and @ nequal
.synb
.mets (neq < left-obj << right-obj )
.mets (neql < left-obj << right-obj )
.mets (nequal < left-obj << right-obj )
.syne
.desc
The functions
.codn neq ,
.code neql
and
.code nequal
are logically negated counterparts of, respectively,
.codn eq ,
.code eql
and
.codn equal .
If
.code eq
returns
.code t
for a given pair of arguments
.meta left-obj
and
.metn right-obj ,
then
.code neq
returns
.codn nil .
.IR "Vice versa" ,
if
.code eq
returns
.codn nil ,
.code neq
returns
.codn t .
The same relationship exits between
.code eql
and
.codn neql ,
and between
.code equal
and
.codn nequal .
.coNP Functions @, meq @ meql and @ mequal
.synb
.mets (meq < left-obj << right-obj *)
.mets (meql < left-obj << right-obj *)
.mets (mequal < left-obj << right-obj *)
.syne
.desc
The functions
.codn meq ,
.code meql
and
.code mequal
("member equal" or "multi-equal")
provide a particular kind of a generalization of the binary
equality functions
.codn eq ,
.code eql
and
.code equal
to multiple arguments.
The
.meta left-obj
value is compared to each
.meta right-obj
value using the corresponding binary equality function.
If a match occurs, then
.code t
is returned, otherwise
.codn nil .
The traversal of the
.meta right-obj
argument values proceeds from left to right, and stops
when a match is found.
.coNP Function @ less
.synb
.mets (less < left-obj << right-obj )
.mets (less < obj << obj *)
.syne
.desc
The
.code less
function, when called with two arguments, determines whether
.meta left-obj
compares less than
.meta right-obj
in a generic way which handles arguments of various types.
The argument syntax of
.code less
is generalized. It can accept one argument, in which case it unconditionally
returns
.code t
regardless of that argument's value. If more than two arguments are
given, then
.code less
generalizes in a way which can be described by the following equivalence
pattern, with the understanding that each argument expression
is evaluated exactly once:
.verb
(less a b c) <--> (and (less a b) (less b c))
(less a b c d) <--> (and (less a b) (less b c) (less c d))
.brev
The
.code less
function is used as the default for the
.meta lessfun
argument of the functions
.code sort
and
.codn merge ,
as well as the
.meta testfun
argument of the
.code pos-min
and
.codn find-min .
The
.code less
function is capable of comparing numbers, characters, symbols, strings,
as well as lists and vectors of these. It can also compare buffers.
If both arguments are the same object so that
.mono
.meti (eq < left-obj << right-obj )
.onom
holds true, then the function returns
.code nil
regardless of the type of
.metn left-obj ,
even if the function doesn't handle comparing different instances
of that type. In other words, no object is less than itself, no matter
what it is.
The
.code less
function pairs with the
.code equal
function. If values
.code a
and
.code b
are objects which are of suitable types to the
.code less
function, then exactly one of the following three expressions must be true:
.codn "(equal a b)" ,
.code "(less a b)"
or
.codn "(less b a)" .
The
.code less
relation is: antisymmetric, such that if
.code "(less a b)"
is true, then
then
.code "(less b a)"
is false; irreflexive, such that
.code "(less a a)"
is false; and transitive, such that
.code "(less a b)"
and
.code "(less b c)"
imply
.codn "(less a c)" .
The following are detailed criteria that
.code less
applies to arguments of different types and combinations thereof.
If both arguments are numbers or characters, they are compared as if using the
.code <
function.
If both arguments are strings, they are compared as if using the
.code string-lt
function.
If both arguments are symbols, the following rules apply.
If the symbols have names which are different, then the result is
that of their names being compared by the
.code string-lt
function. If
.code less
is passed symbols which have the same name, and neither of these
symbols has a home package, then the raw bit patterns of their
values are compared as integers: effectively, the object with the
lower machine address is considered lesser than the other.
If only one of the two same-named symbols has no home package, then if
that symbol is the left argument,
.code less
returns
.codn t ,
otherwise
.codn nil .
If both same-named symbols have home packages, then the result of
.code less
is that of
.code string-lt
applied to the names of their respective packages. Thus
.code a:foo
is less than
.codn z:foo .
If both arguments are conses, then they are compared as follows:
.RS
.IP 1.
The
.code less
function is recursively applied to the
.code car
fields of both arguments. If it yields true, then
.meta left-obj
is deemed to be less than
.metn right-obj .
.IP 2.
Otherwise, if the
.code car
fields are unequal under
the
.code equal
function,
.code less
returns
.codn nil .
.IP 3.
If the
.code car
fields are
.code equal
then
.code less
is recursively applied to the
.code cdr
fields of the arguments, and the result of that comparison is returned.
.RE
.IP
This logic performs a lexicographic comparison on ordinary lists such
that for instance
.code "(1 1)"
is less than
.code "(1 1 1)"
but not less than
.code "(1 0)"
or
.codn (1) .
Note that the empty
.code nil
list nil compared to a cons is handled by type-based precedence, described
below.
Two vectors are compared by
.code less
lexicographically, similarly
to strings. Corresponding elements, starting with element 0, of the
vectors are compared until an index position is found where corresponding
elements of the two vectors are not
.metn equal .
If this differing position is beyond the end of one of the two vectors,
then the shorter vector is considered to be lesser. Otherwise, the result
of
.code less
is the outcome of comparing those differing elements themselves
with
.codn less .
Two buffers are also compared by
.code less
lexicographically, as if they were vectors of integer byte values.
Two ranges are compared by
.code less
using lexicographic logic similar to conses and vectors.
The
.code from
fields of the ranges are first compared. If they are not
.codn equal ,
equal then
.code less
is applied to those fields and the result is returned.
If the
.code from
fields are
.codn equal ,
then
.code less
is applied to the
.code to
fields and that result is returned.
If the two arguments are of the above types, but of different types from
each other, then
.code less
resolves the situation based on the following precedence: numbers and
characters are less than ranges, which are less than strings, which are less
than symbols, which are less than conses, which are less than vectors,
which are less than buffers.
Note that since
.code nil
is a symbol, it is ranked lower than a cons. This interpretation ensures
correct behavior when
.code nil
is regarded as an empty list, since the empty list is lexicographically prior to
a nonempty list.
If either argument is a structure for which the
.code equal
method is defined, the method is invoked on that argument, and the
value returned is used in place of that argument for performing
the comparison. Structures with no
.code equal
method cannot participate in a comparison, resulting in an error.
See the Equality Substitution section under Structures.
Finally, if either of the arguments has a type other than the above
types, the situation is an error.
.coNP Function @ greater
.synb
.mets (greater < left-obj << right-obj )
.mets (greater < obj << obj *)
.syne
.desc
The
.code greater
function is equivalent to
.code less
with the arguments reversed. That is to say, the following
equivalences hold:
.verb
(greater a <--> (less a) <--> t
(greater a b) <--> (less b a)
(greater a b c ...) <--> (less ... c b a)
.brev
The
.code greater
function is used as the default for the
.meta testfun
argument of the
.code pos-max
and
.code find-max
functions.
.coNP Functions @ lequal and @ gequal
.synb
.mets (lequal < obj << obj *)
.mets (gequal < obj << obj *)
.syne
.desc
The functions
.code lequal
and
.code gequal
are similar to
.code less
and
.code greater
respectively, but differ in the following respect:
when called with two arguments which compare true under the
.code equal
function, the
.code lequal
and
.code gequal
functions return
.codn t .
When called with only one argument, both functions return
.code t
and both functions generalize to three or more arguments
in the same way as do
.code less
and
.codn greater .
.coNP Function @ copy
.synb
.mets (copy << object )
.syne
.desc
The
.code copy
function duplicates objects of various supported types: sequences, hashes,
structures and random states. If
.meta object
is
.codn nil ,
it
returns
.codn nil .
Otherwise,
.code copy
is equivalent to invoking a more specific copying function according to
the type of the argument, as follows:
.RS
.coIP cons
.meti (copy-list << object )
.coIP str
.meti (copy-str << object )
.coIP vec
.meti (copy-vec << object )
.coIP hash
.meti (copy-hash << object )
.IP "struct type"
.meti (copy-struct << object )
.coIP fun
.meti (copy-fun << object )
.coIP buf
.meti (copy-buf << object )
.coIP carray
.meti (copy-carray << object )
.coIP random-state
.meti (make-random-state << object )
.coIP tnode
.meti (copy-tnode << object )
.coIP tree
.meti (copy-search-tree << object )
.RE
.IP
For all other types of
.metn object ,
the invocation is erroneous.
Except in the case when
.meta sequence
is
.codn nil ,
.code copy
returns a value that
is distinct from (not
.code eq
to)
.metn sequence .
This is different from
the behavior of
.mono
.meti >> [ sequence 0..t]
.onom
or
.mono
.meti (sub < sequence 0 t)
.onom
which recognize
that they need not make a copy of
.metn sequence ,
and just return it.
Note however, that the elements of the returned sequence may be
eq to elements of the original sequence. In other words, copy is
a deeper copy than just duplicating the
.code sequence
value itself,
but it is not a deep copy.
.SS* List Manipulation
.coNP Function @ cons
.synb
.mets (cons < car-value << cdr-value )
.syne
.desc
The
.code cons
function allocates, initializes and returns a single cons cell.
A cons cell has two fields called
.code car
and
.codn cdr ,
which are accessed by
functions of the same name, or by the functions
.code first
and
.codn rest ,
which are synonyms for these.
Lists are made up of conses. A (proper) list is either the symbol
.code nil
denoting an empty list, or a cons cell which holds the first item of
the list in its
.codn car ,
and the list of the remaining items in
.codn cdr .
The expression
.code "(cons 1 nil)"
allocates and returns a single cons cell which denotes the one-element
list
.codn (1) .
The
.code cdr
is
.codn nil ,
so there are no additional items.
A cons cell whose
.code cdr
is an atom other than
.code nil
is printed with the dotted
pair notation. For example the cell produced by
.code "(cons 1 2)"
is denoted
.codn "(1 . 2)" .
The notation
.code "(1 . nil)"
is perfectly valid as input, but the cell which it denotes
will print back as
.codn (1) .
The notations are equivalent.
The dotted pair notation can be used regardless of what type
of object is the cons cell's
.codn cdr .
so that for instance
.code "(a . (b c))"
denotes the cons cell whose
.code car
is the symbol a
.code a
and whose
.code cdr
is the list
.codn "(b c)" .
This is exactly the same thing as
.codn "(a b c)" .
In other words
.code "(a b ... l m . (n o ... w . (x y z)))"
is exactly the same as
.codn "(a b ... l m n o ... w x y z)" .
Every list, and more generally cons cell tree structure, can be written
in a "fully dotted" notation, such that there are as many dots as there
are cells. For instance the cons structure of the nested list
.code "(1 (2) (3 4 (5)))"
can be made more explicit using
.codn "(1 . ((2 . nil) . ((3 . (4 . ((5 . nil) . nil))) . nil))))" .
The structure contains eight conses, and so there are eight dots
in the fully dotted notation.
The number of conses in a linear list like
.code "(1 2 3)"
is simply the number of items, so that list in particular is
made of three conses. Additional nestings require additional conses,
so for instance
.code "(1 2 (3))"
requires four conses. A visual way to count the conses from the printed
representation is to count the atoms, then add the count of open parentheses,
and finally subtract one.
A list terminated by an atom other than
.code nil
is called an improper
list, and the dot notation is extended to cover improper lists.
For instance
.code "(1 2 . 3)"
is an improper list of two elements,
terminated by
.codn 3 ,
and can be constructed using
.codn "(cons 1 (cons 2 3))" .
The fully dotted notation for this list is
.codn "(1 . (2 . 3))" .
.coNP Function @ atom
.synb
.mets (atom << value )
.syne
.desc
The
.code atom
function tests whether
.meta value
is an atom. It returns
.code t
if this is the
case,
.code nil
otherwise. All values which are not cons cells are atoms.
.code "(atom x)"
is equivalent to
.codn "(not (consp x))" .
.TP* Examples:
.verb
(atom 3) -> t
(atom (cons 1 2)) -> nil
(atom "abc") -> t
(atom '(3)) -> nil
.brev
.coNP Function @ consp
.synb
.mets (consp << value )
.syne
.desc
The
.code consp
function tests whether
.meta value
is a cons. It returns
.code t
if this is the
case,
.code nil
otherwise.
.code "(consp x)"
is equivalent to
.codn "(not (atom x))" .
Non-empty lists test positive under
.code consp
because a list is represented as a reference to the first cons in a chain of
one or more conses.
Note that a lazy cons is a cons and satisfies the
.code consp
test. See the function
.code make-lazy-cons
and the macro
.codn lcons .
.TP* Examples:
.verb
(consp 3) -> nil
(consp (cons 1 2)) -> t
(consp "abc") -> nil
(consp '(3)) -> t
.brev
.coNP Accessors @ car and @ first
.synb
.mets (car << object )
.mets (first << object )
.mets (set (car << object ) << new-value )
.mets (set (first << object ) << new-value )
.syne
.desc
The functions
.code car
and
.code first
are synonyms.
If
.meta object
is a cons cell, these functions retrieve the
.code car
field of that cons cell.
.code "(car (cons 1 2))"
yields
.codn 1 .
For programming convenience,
.meta object
may be of several other kinds in addition to conses.
.code "(car nil)"
is allowed, and returns
.codn nil .
.meta object
may also be a vector or a string. If it is an empty vector or
string, then
.code nil
is returned. Otherwise the first character of the string or
first element of the vector is returned.
.meta object
may be a structure. The
.code car
operation is possible if the object has a
.code car
method. If so,
.code car
invokes that method and returns whatever the method returns.
If the structure has no
.code car
method, but has a
.code lambda
method, then the
.code car
function calls that method with one argument, that being
the integer zero. Whatever the method returns,
.code car
returns. If neither method is defined, an error
exception is thrown.
A
.code car
form denotes a valid place whenever
.meta object
is a valid argument for the
.code rplaca
function. Modifying the place denoted by the form is equivalent to invoking
.code rplaca
with
.meta object
as the left argument, and the replacement value as the right
argument. It takes place in the manner given under the description
.code rplaca
function, and obeys the same restrictions.
A
.code car
form supports deletion. The following equivalence
then applies:
.verb
(del (car place)) <--> (pop place)
.brev
This implies that deletion requires the argument of the
.code car
form to be a place, rather than the whole form itself.
In this situation, the argument place may have a value
which is
.codn nil ,
because
.code pop
is defined on an empty list.
The abstract concept behind deleting a
.code car
is that physically deleting this field from a cons,
thereby breaking it in half, would result in just the
.code cdr
remaining. Though fragmenting a cons in this manner is impossible,
deletion simulates it by replacing the place which previously held the
cons, with that cons'
.code cdr
field. This semantics happens to coincide with deleting the first element
of a list by a
.code pop
operation.
.coNP Accessors @ cdr and @ rest
.synb
.mets (cdr << object )
.mets (rest << object )
.mets (set (cdr << object ) << new-value )
.mets (set (rest << object ) << new-value )
.syne
.desc
The functions
.code cdr
and
.code rest
are synonyms.
If
.meta object
is a cons cell, these functions retrieve the
.code cdr
field of that cons cell.
.code "(cdr (cons 1 2))"
yields
.codn 2 .
For programming convenience,
.meta object
may be of several other kinds in addition to conses.
.code "(cdr nil)"
is allowed, and returns
.codn nil .
.meta object
may also be a vector or a string. If it is a non-empty string or vector
containing at least two items, then the remaining part of the object is
returned, with the first element removed. For example
.mono
(cdr "abc")
.onom
yields
.strn "bc" .
If
.meta object
is is a one-element vector or string, or an empty vector or string,
then
.code nil
is returned. Thus
.mono
(cdr "a")
.onom
and
.mono
(cdr "")
.onom
both result in
.codn nil .
If
.meta object
is a structure, then
.code cdr
requires it to support either the
.code cdr
method or the
.code lambda
method. If both are present,
.code cdr
is used. When the
.code cdr
function uses the
.code cdr
method, it invokes it with no arguments.
Whatever value the method returns becomes the
return value of
.codn cdr .
When
.code cdr
invokes a structure's
.code lambda
method, it passes as the argument the range object
.codn "#R(1 t)" .
Whatever the
.code lambda
method returns becomes the return value of
.codn cdr .
The invocation syntax of a
.code cdr
or
.code rest
form is a syntactic place.
The place is semantically correct if
.meta object
is a valid argument for the
.code rplacd
function. Modifying the place denoted by the form is equivalent to invoking
.code rplacd
with
.meta object
as the left argument, and the replacement value as the right
argument. It takes place in the manner given under the description
.code rplacd
function, and obeys the same restrictions.
A
.code cdr
place supports deletion, according to the following near equivalence:
.verb
(del (cdr place)) <--> (prog1 (cdr place)
(set place (car place)))
.brev
The
.code place
expression is evaluated only once.
Note that this is symmetric with the delete semantics of
.code car
in that the cons stored in
.code place
goes away, as does the
.code cdr
field, leaving just the
.codn car ,
which takes the place of the original cons.
.TP*
Example:
Walk every element of the list
.code "(1 2 3)"
using a
.code for
loop:
.verb
(for ((i '(1 2 3))) (i) ((set i (cdr i)))
(print (car i) *stdout*)
(print #\enewline *stdout*))
.brev
The variable
.code i
marches over the cons cells which make up the "backbone"
of the list. The elements are retrieved using the
.code car
function.
Advancing to the next cell is achieved using
.codn "(cdr i)" .
If
.code i
is the
last cell in a (proper) list,
.code "(cdr i)"
yields
.code nil
and so
.code i
becomes
.codn nil ,
the loop guard expression
.code i
fails and the loop terminates.
.coNP Functions @ rplaca and @ rplacd
.synb
.mets (rplaca < object << new-car-value )
.mets (rplacd < object << new-cdr-value )
.syne
.desc
If
.code object
is a cons cell or lazy cons cell, then
.code rplaca
and
.code rplacd
functions assign new values into the
.code car
and
.code cdr
fields of the
.metn object .
In addition, these functions are meaningful for other kinds of objects also.
Note that, except for the difference in return value,
.code "(rplaca x y)"
is the same as the more generic
.codn "(set (car x) y)" ,
and likewise
.code "(rplacd x y)"
can be written as
.codn "(set (cdr x) y)" .
The
.code rplaca
and
.code rplacd
functions return
.metn cons .
Note: \*(TX versions 89 and earlier, these functions returned the new value.
The behavior was undocumented.
The
.meta cons
argument does not have to be a cons cell. Both functions support meaningful
semantics for vectors and strings. If
.meta cons
is a string, it must be modifiable.
The
.code rplaca
function replaces the first element of a vector or first character
of a string. The vector or string must be at least one element long.
The
.code rplacd
function replaces the suffix of a vector or string after the first element
with a new suffix. The
.meta new-cdr-value
must be a sequence, and if the suffix of a string is being replaced,
it must be a sequence of characters. The suffix here refers to the portion of
the vector or string after the first element.
It is permissible to use
.code rplacd
on an empty string or vector. In this case,
.meta new-cdr-value
specifies the contents of the entire string or vector, as if the operation
were done on a non-empty vector or string, followed by the deletion of the
first element.
The
.meta object
argument may be a structure. In the case of
.codn rplaca ,
the structure must have a defined
.code rplaca
method or else, failing that, a
.code lambda-set
method. The first of these methods which is available, in the given order, is
used to perform the operation. Whatever the respective method returns,
If the
.code lambda-set
method is used, it is called with two arguments (in addition to
.codn object ):
the integer zero, and
.metn new-car-value .
In the case of
.codn rplacd ,
the structure must have a defined
.code rplacd
method or else, failing that, a
.code lambda-set
method. The first of these methods which is available, in the given order, is
used to perform the operation. Whatever the respective method returns,
If the
.code lambda-set
method is used, it is called with two arguments (in addition to
.codn object ):
the range value
.code "#R(1 t)"
and
.metn new-car-value .
.coNP Accessors @, second @, third @, fourth @, fifth @, sixth @, seventh @, eighth @ ninth and @ tenth
.synb
.mets (first << object )
.mets (second << object )
.mets (third << object )
.mets (fourth << object )
.mets (fifth << object )
.mets (sixth << object )
.mets (seventh << object )
.mets (eighth << object )
.mets (ninth << object )
.mets (tenth << object )
.mets (set (first << object ) << new-value )
.mets (set (second << object ) << new-value )
.mets ...
.mets (set (tenth << object ) << new-value )
.syne
.desc
Used as functions, these accessors retrieve the elements of a sequence by
position. If the sequence is shorter than implied by the position, these
functions return
.codn nil .
When used as syntactic places, these accessors denote the storage locations
by position. The location must exist, otherwise an error exception results.
The places support deletion.
.TP* Examples:
.verb
(third '(1 2)) -> nil
(second "ab") -> #\eb
(third '(1 2 . 3)) -> **error, improper list*
(let ((x (copy "abcd")))
(inc (third x))
x) -> "abce"
.brev
.coNP Functions @ append and @ nconc
.synb
.mets (append <> [ sequence *])
.mets (nconc <> [ sequence *])
.syne
.desc
The
.code append
function creates a new object which is a catenation of the
.meta list
arguments. All arguments are optional;
.code (append)
produces the empty list, and if
a single argument is specified, that argument
is returned.
If two or more arguments are present, then the situation
is identified as one or more
.meta sequence
arguments followed by
.metn last-arg .
The
.meta sequence
arguments must be sequences;
.meta last-arg
may be a sequence or atom.
The
.code append
operation over three or more arguments is left-associative, such that
.code "(append x y z)"
is equivalent to both
.code "(append (append x y) z)"
and
.codn "(append x (append z y))" .
This allows the catenation of an arbitrary number of arguments
to be understood in terms of a repeated application of the two-argument
case, whose semantics is given by these rules:
.RS
.IP 1.
.code nil
catenates with
.code nil
to produce
.codn nil :
.verb
(append nil nil) -> nil
.brev
.IP 2.
.code nil
catenates with a proper or improper list, producing that list itself:
.verb
(append nil '(1 2)) -> (1 2)
(append nil '(1 2 . 3)) -> (1 2 . 3)
.brev
.IP 3.
A proper list catenates with
.codn nil ,
producing that list itself:
.verb
(append '(1 2) nil) -> (1 2)
.brev
.IP 4.
A proper list catenates with an atom,
producing an improper list terminated by that atom,
whether or not that atom is a sequence:
.verb
(append '(1 2) #(3)) -> (1 2 . #(3))
(append '(1 2) 3) -> (1 2 . 3)
.brev
.IP 5.
A non-list sequence catenates with another sequence into a sequence,
producing a sequence which contains the elements of both,
of the same kind as the left sequence. The elements must be
compatible; a string can only catenate with a sequence of characters.
.verb
(append #(1 2) #(3 4)) -> #(1 2 3 4)
(append "ab" "cd") -> "abcd"
(append "ab" #(#\ec #\ed)) -> "abcd"
(append "ab" #(3 4)) -> ;; error
.brev
.IP 6.
A non-list sequence catenates with an atom if it is a suitable element
type for that kind of sequence. The resulting sequence is of the same
kind, and includes that atom:
.verb
(append #(1 2) 3) -> #(1 2 3)
(append "ab" #\c) -> "abc"
(append "ab" 3) -> ;; error
.brev
.IP 7.
If an improper list is catenated with any object, the catenation
takes place between the terminating atom of that list and that object. This
requires the terminating atom to be a sequence. If the catenation is possible,
then the result is a new improper list which is a copy of the original, but
with the terminating atom replaced by a catenation of that atom and the object:
.verb
(append '(1 2 . "ab") "c") -> (1 2 . "abc")
(append '(1 2 . "ab") '(2 3)) -> ;; error
.brev
.IP 8.
A non-sequence atom doesn't catenate; the situation is erroneous:
.verb
(append 1 2) -> ;; error
(append '(1 . 2) 3) -> ;; error
.brev
.RE
.IP
If N arguments are specified, where N > 1, then the first N-1 arguments must be
proper lists. Copies of these lists are catenated together. The last argument
N, shown in the above syntax as
.metn last-arg ,
may be any kind of object. It is
installed into the
.code cdr
field of the last cons cell of the resulting list.
Thus, if argument N is also a list, it is catenated onto the resulting list,
but without being copied. Argument N may be an atom other than
.codn nil ;
in that case
.code append
produces an improper list.
The
.code nconc
function works like
.codn append ,
but may destructively manipulate any of the input objects.
.TP* Examples:
.verb
;; An atom is returned.
(append 3) -> 3
;; A list is also just returned: no copying takes place.
;; The eq function can verify that the same object emerges
;; from append that went in.
(let ((list '(1 2 3)))
(eq (append list) list)) -> t
(append '(1 2 3) '(4 5 6) 7) -> '(1 2 3 4 5 6 . 7))
;; the (4 5 6) tail of the resulting list is the original
;; (4 5 6) object, shared with that list.
(append '(1 2 3) '(4 5 6)) -> '(1 2 3 4 5 6)
(append nil) -> nil
;; (1 2 3) is copied: it is not the last argument
(append '(1 2 3) nil) -> (1 2 3)
;; empty lists disappear
(append nil '(1 2 3) nil '(4 5 6)) -> (1 2 3 4 5 6)
(append nil nil nil) -> nil
;; atoms and improper lists other than in the last position
;; are erroneous
(append '(a . b) 3 '(1 2 3)) -> **error**
;; sequences other than lists can be catenated.
(append "abc" "def" "g" #\eh) -> "abcdefgh"
;; lists followed by non-list sequences end with non-list
;; sequences catenated in the terminating atom:
(append '(1 2) '(3 4) "abc" "def") -> (1 2 3 4 . "abcdef")
.brev
.coNP Function @ append*
.synb
.mets (append* <> [ list *])
.syne
.desc
The
.code append*
function lazily catenates lists.
If invoked with no arguments, it returns
.codn nil .
If invoked with a single argument, it returns that argument.
Otherwise, it returns a lazy list consisting of the elements of every
.meta list
argument from left to right.
Arguments other than the last are treated as lists, and traversed using
.code car
and
.code cdr
functions to visit their elements.
The last argument isn't traversed: rather, that object itself becomes the
.code cdr
field of the last cons cell of the lazy list constructed from the
previous arguments.
.coNP Functions @ revappend and @ nreconc
.synb
.mets (revappend < list1 << list2 )
.mets (nreconc < list1 << list2 )
.syne
.desc
The
.code revappend
function returns a list consisting of
.code list2
appended to a reversed copy of
.metn list1 .
The returned object shares structure
with
.metn list2 ,
which is unmodified.
The
.code nreconc
function behaves similarly, except
that the the returned object may share
structure with not only
.meta list2
but also
.metn list1 ,
which is modified.
.coNP Function @ list
.synb
.mets (list << value *)
.syne
.desc
The
.code list
function creates a new list, whose elements are the
argument values.
.TP* Examples:
.verb
(list) -> nil
(list 1) -> (1)
(list 'a 'b) -> (a b)
.brev
.coNP Function @ list*
.synb
.mets (list* << value *)
.syne
.desc
The
.code list*
function is a generalization of cons. If called with exactly
two arguments, it behaves exactly like cons:
.code "(list* x y)"
is identical to
.codn "(cons x y)" .
If three or more arguments are specified,
the leading arguments specify additional atoms to be consed to the
front of the list. So for instance
.code "(list* 1 2 3)"
is the same as
.code "(cons 1 (cons 2 3))"
and produces the improper list
.codn "(1 2 . 3)" .
Generalizing in the other direction,
.code list*
can be called with just
one argument, in which case it returns that argument, and
can also be called with no arguments in which case it returns
.codn nil .
.TP* Examples:
.verb
(list*) -> nil
(list* 1) -> 1
(list* 'a 'b) -> (a . b)
(list* 'a 'b 'c) -> (a b . c)
.brev
.TP* "Dialect Note:"
Note that unlike in some other Lisp dialects, the effect
of
.code "(list* 1 2 x)"
can also be obtained using
.codn "(list 1 2 . x)" .
However,
.code "(list* 1 2 (func 3))"
cannot be rewritten as
.code "(list 1 2 . (func 3))"
because the latter is equivalent to
.codn "(list 1 2 func 3)" .
.coNP Accessor @ sub-list
.synb
.mets (sub-list < list >> [ from <> [ to ]])
.mets (set (sub-list < list >> [ from <> [ to ]]) << new-value )
.syne
.desc
The
.code sub-list
function has the same parameters and semantics as the
.code sub
function, except that it operates on its
.meta list
argument using list operations, and assumes that
.meta list
it is terminated by
.codn nil .
If a
.code sub-list
form is used as a place, then the
.meta list
argument form must also be a place.
The
.code sub-list
place denotes a subrange of
.meta list
as if it were a storage location. The previous value of this location,
if needed, is fetched by a call to
.codn sub-list .
Storing
.meta new-value
to the place is performed by a call to
.codn replace-list .
The return value of
.meta replace-list
is stored into
.metn list .
In an update operation which accesses the prior value and stores a new value,
the arguments
.metn list ,
.metn from ,
.meta to
and
.meta new-value
are evaluated once.
.coNP Function @ replace-list
.synb
.mets (replace-list < list < item-sequence >> [ from <> [ to ]])
.syne
.desc
The
.code replace-list
function is like the
.code replace
function, except that it operates on its
.meta list
argument using list operations. It assumes that
.meta list
it is terminated by
.codn nil ,
and that it is made of cells which can be mutated using
.codn rplaca .
.coNP Functions @ listp and @ proper-list-p
.synb
.mets (listp << value )
.mets (proper-list-p << value )
.syne
.desc
The
.code listp
and
.code proper-list-p
functions test, respectively, whether
.meta value
is a list, or a proper list, and return
.code t
or
.code nil
accordingly.
The
.code listp
test is weaker, and executes without having to traverse
the object.
The value produced by the expression
.code "(listp x)"
is the same as that of
.codn "(or (null x) (consp x))" ,
except that
.code x
is evaluated only once.
The empty list
.code nil
is a list, and a cons cell is a list.
The
.code proper-list-p
function returns
.code t
only for proper lists. A proper list is
either
.codn nil ,
or a cons whose
.code cdr
is a proper list.
.code proper-list-p
traverses the
list, and its execution will not terminate if the list is circular.
These functions return
.code nil
for list-like sequences that are not made of actual
.code cons
cells.
Dialect Note: in \*(TX 137 and older,
.code proper-list-p
is called
.codn proper-listp .
The name was changed for adherence to conventions and compatibility with other
Lisp dialects, like Common Lisp. However, the function continues to be
available under the old name. Code that must run on \*(TX 137 and older
installations should use
.codn proper-listp ,
but its use going forward is deprecated.
.coNP Function @ endp
.synb
.mets (endp << object )
.syne
.desc
The
.code endp
function returns
.code t
if
.meta object
is the object
.codn nil .
If
.meta object
is a cons cell, then
.code endp
returns
.codn t .
Otherwise,
.code endp
function throws an exception.
.coNP Function @ length-list
.synb
.mets (length-list << list )
.syne
.desc
The
.code length-list
function returns the length of
.metn list ,
which may be
a proper or improper list. The length of a list is the number of conses in that
list.
.coNP Function @ copy-list
.synb
.mets (copy-list << list )
.syne
.desc
The
.code copy-list
function which returns a list similar to
.metn list ,
but with
a newly allocated cons cell structure.
If
.meta list
is an atom, it is simply returned.
Otherwise,
.meta list
is a cons cell, and
.code copy-list
returns the same object as the expression
.mono
.meti (cons (car << list ) (copy-list (cdr << list ))).
.onom
Note that the object
.mono
.meti (car << list )
.onom
is not deeply copied, but only
propagated by reference into the new list.
.code copy-list
produces
a new list structure out of the same items that are in
.metn list .
.TP* "Dialect Note:"
Common Lisp does not allow the argument to be an atom, except
for the empty list
.codn nil .
.coNP Function @ copy-cons
.synb
.mets (copy-cons << cons )
.syne
.desc
The
.code copy-cons
function creates and returns a new object that is a replica of
.metn cons .
The
.meta cons
argument must be either a
.code cons
cell, or else a lazy cons: an object of type
.codn lcons .
A new cell of the same type as
.meta cons
is created, and all of its fields are initialized by
copying the corresponding fields from
.metn cons .
If
.meta cons
is lazy, the newly created object is in the same
state as the original. If the original has not yet been updated
and thus has an update function, the copy also has not yet been
updated and has the same update function.
.coNP Function @ copy-tree
.synb
.mets (copy-tree << obj )
.syne
.desc
The
.code copy-tree
function returns a copy of
.meta obj
which represents an arbitrary
.codn cons -cell-based
structure.
The cell structure of
.meta obj
is traversed and a similar structure is constructed, but without regard for
substructure sharing or circularity.
More precisely, if
.meta obj
is an atom, then it is returned.
If it is an ordinary
.code cons
cell, then
.code copy-tree
is recursively applied to the
.code car
and
.code cdr
fields to produce their individual replicas. A new
.code cons
cell is then produced from the replicated
.code car
and
.codn cdr .
If
.meta obj
is a lazy
.codn cons ,
then just like in the ordinary
.code cons
case, the
.code car
and
.code cdr
fields are duplicated with a recursive call to
.codn copy-tree .
Then, a lazy
.code cons
is created from these replicated fields. If
.meta cell
has an update function, then the newly created lazy
.code cons
has the same update function; the function isn't copied.
Like
.codn copy-cons ,
the
.code copy-tree
function doesn't trigger the update of lazy conses.
The copies of lazy conses which have not been updated
are also conses which have not been updated.
.coNP Functions @ reverse and @ nreverse
.synb
.mets (reverse << list )
.mets (nreverse << list )
.syne
.desc
Description:
The functions
.code reverse
and
.code nreverse
produce an object which contains
the same items as proper list
.metn list ,
but in reverse order.
If
.meta list
is
.codn nil ,
then both functions return
.codn nil .
The
.code reverse
function is non-destructive: it creates a new list.
The
.code nreverse
function creates the structure of the reversed list out of the
cons cells of the input list, thereby destructively altering it (if it contains
more than one element). How
.code nreverse
uses the material from the original list
is unspecified. It may rearrange the cons cells into a reverse order, or it may
keep the structure intact, but transfer the
.code car
values among cons cells into
reverse order. Other approaches are possible.
.coNP Accessor @ nthlast
.synb
.mets (nthlast < index << list )
.mets (set (nthlast < index << list ) << new-value )
.syne
.desc
The
.code nthlast
function retrieves the n-th last cons cell of a list,
indexed from one.
The
.meta index
parameter must be a an integer. If
.meta index
is positive and so large that it specifies a nonexistent cons beyond the
beginning of the list,
.code nthlast
returns
.metn list .
Effectively, values of
.meta index
larger than the length of the list are clamped to the length.
If
.meta index
is negative, then
.code nthlast
yields nil. An
.meta index
value of zero retrieves the terminating atom of
.meta list
or else the value
.meta list
itself, if
.meta list
is an atom.
The following equivalences hold:
.verb
(nthlast 1 list) <--> (last list)
.brev
An
.code nthlast
place designates the storage location which holds the n-th cell,
as indicated by the value of
.metn index .
A negative
.meta index
doesn't denote a place.
A positive
.meta index
greater than the length of the list is treated as if it were
equal to the length of the list.
If
.meta list
is itself a syntactic place, then the
.meta index
value
.I n
is permitted for a list of length
.IR n .
This index value denotes the
.meta list
place itself. Storing to this value overwrites
.metn list .
If
.meta list
isn't a syntactic place, then storing to position
.I n
isn't permitted.
If
.meta list
is is of length zero, or an atom (in which case its
length is considered to be zero) then the above
remarks about position
.I n
apply to an
.meta index
value of zero: if
.meta list
is a syntactic place, then the position denotes
.meta list
itself, otherwise the position doesn't exist as a place.
If
.meta list
contains one or more elements, then
.meta index
value of zero denotes the
.code cdr
field of its last cons cell. Storing a value to this
place overwrites the terminating atom.
.coNP Accessor @ butlastn
.synb
.mets (butlastn < num << list )
.mets (set (butlastn < num << list ) new-value )
.syne
.desc
The
.code butlastn
function calculates that initial portion of
.meta list
which excludes the last
.meta num
elements.
Note: the
.code butlastn
function doesn't support non-list sequences as sequences;
it treats them as the terminating atom of a zero-length improper list.
The
.code butlast
sequence function supports non-list sequences. If
.code x
is a list, then the following equivalence holds:
.verb
(butlastn n x) <--> (butlast x n)
.brev
If
.meta num
is zero, or negative, then
.code butlastn
returns
.metn list .
If
.meta num
is positive, and meets or exceeds the length of
.metn list ,
then
.code butlastn
returns
.codn nil .
If a
.code butlastn
form is used as a syntactic place, then
.meta list
must be a place. Assigning to the form causes
.meta list
to be replaced with a new list which is a catenation
of the new value and the last
.meta num
elements of the original list, according to the following equivalence:
.verb
(set (butlastn n x) v)
<-->
(progn (set x (append v (nthlast n x))) v)
.brev
except that
.codn n ,
.code x
and
.code v
are evaluated only once, in left-to-right order.
.coNP Accessor @ nth
.synb
.mets (nth < index << object )
.mets (set (nth < index << object ) << new-value )
.syne
.desc
The
.code nth
function performs random access on a list, retrieving the n-th
element indicated by the zero-based index value given by
.metn index .
The
.meta index
argument must be a non-negative integer.
If
.meta index
indicates an element beyond the end of the list, then
the function returns
.codn nil .
The following equivalences hold:
.verb
(nth 0 list) <--> (car 0) <--> (first list)
(nth 1 list) <--> (cadr list) <--> (second list)
(nth 2 list) <--> (caddr list) <--> (third list)
(nth x y) <--> (car (nthcdr x y))
.brev
.coNP Accessor @ nthcdr
.synb
.mets (nthcdr < index << list )
.mets (set (nthcdr < index << list ) << new-value )
.syne
.desc
The
.code nthcdr
function retrieves the n-th cons cell of a list, indexed from zero.
The
.meta index
parameter must be a non-negative integer. If
.meta index
specifies a nonexistent cons beyond the end of the list,
then
.code nthcdr
yields nil.
The following equivalences hold:
.verb
(nthcdr 0 list) <--> list
(nthcdr 1 list) <--> (cdr list)
(nthcdr 2 list) <--> (cddr list)
(car (nthcdr x y)) <--> (nth x y)
.brev
An
.code nthcdr
place designates the storage location which holds the n-th cell,
as indicated by the value of
.metn index .
Indices beyond the last cell of
.meta list
do not designate a valid place.
If
.meta list
is itself a place, then the zeroth index is permitted and the
resulting place denotes
.metn list .
Storing a value to
.mono
.meti (nthcdr < 0 << list)
.onom
overwrites
.metn list .
Otherwise if
.meta list
isn't a syntactic place, then the zeroth index does not designate a valid
place;
.meta index
must have a positive value. A
.code nthcdr
place does not support deletion.
.TP* "Dialect Note:"
In Common Lisp,
.code nthcdr
is only a function, not an accessor;
.code nthcdr
forms do not denote places.
.coNP Function @ tailp
.synb
.mets (tailp < object << list)
.syne
.desc
The
.code tailp
function tests whether
.meta object
is a tail of
.metn list .
This means that
.meta object
is either
.meta list
itself, or else one of the
.code cons
cells of
.meta list
or else the terminating atom of
.metn list .
More formally, a recursive definition follows.
If
.meta object
and
.meta list
are the same object (thus equal under the
.code eq
function) then
.code tailp
returns
.codn t .
If
.meta list
is an atom, and is not
.metn object ,
then the function returns
.codn nil .
Otherwise,
.meta list
is a
.code cons
that is not
.meta object
and
.code tailp
yields the same value as the
.mono
.meti "(tailp < object (cdr << list ))"
.onom
expression.
.coNP Accessors @, caar @, cadr @, cdar @, cddr @ ... and @ cdddddr
.synb
.mets (caar << object )
.mets (cadr << object )
.mets (cdar << object )
.mets (cddr << object )
.mets ...
.mets (cdddr << object )
.mets (set (caar << object ) << new-value )
.mets (set (cadr << object ) << new-value )
.mets ...
.syne
.desc
The
.I a-d accessors
provide a shorthand notation for accessing two to five
levels deep into a cons-cell-based tree structure. For instance, the
the equivalent of the nested function call expression
.mono
.meti (car (car (cdr << object )))
.onom
can be achieved using the single function call
.mono
.meti (caadr << object ).
.onom
The symbol names of the a-d accessors are a generalization of the words
"car" and "cdr". They encode the pattern of
.code car
and
.code cdr
traversal of the structure using a sequence of the the letters
.code a
and
.code d
placed between
.code c
and
.codn r .
The traversal is encoded in right-to-left order, so that
.code cadr
indicates a traversal of the
.code cdr
link, followed by the
.codn car .
This order corresponds to the nested function call notation, which also
encodes the traversal right-to-left. The following diagram illustrates
the straightforward relationship:
.verb
(cdr (car (cdr x)))
^ ^ ^
| / |
| / /
| / ____/
|| /
(cdadr x)
.brev
\*(TL provides all possible a-d accessors up to five levels deep, from
.code caar
all the way through
.codn cdddddr .
Expressions involving a-d accessors are places. For example,
.code "(caddr x)"
denotes the same place as
.codn "(car (cddr x))" ,
and
.code "(cdadr x)"
denotes the same place as
.codn "(cdr (cadr x))" .
The a-d accessor places support deletion, with semantics derived from
the deletion semantics of the
.code car
and
.code cdr
places. For example,
.code "(del (caddr x))"
means the same as
.codn "(del (car (cddr x)))" .
.coNP Functions @ flatten and @ flatten*
.synb
.mets (flatten << list )
.mets (flatten* << list )
.syne
.desc
The
.code flatten
function produces a list whose elements are all of the
.cod2 non- nil
atoms contained in the structure of
.metn list .
The
.code flatten*
function
works like
.code flatten
except that it produces a lazy list. It can be used to lazily flatten an
infinite lazy structure.
.TP* Examples:
.verb
(flatten '(1 2 () (3 4))) -> (1 2 3 4)
;; equivalent to previous, since
;; nil is the same thing as ()
(flatten '(1 2 nil (3 4))) -> (1 2 3 4)
(flatten nil) -> nil
(flatten '(((()) ()))) -> nil
.brev
.coNP Functions @ flatcar and @ flatcar*
.synb
.mets (flatcar << tree )
.mets (flatcar* << tree )
.syne
.desc
The
.code flatcar
function produces a list of all the atoms contained in the
tree structure
.metn tree ,
in the order in which they appear, when the structure is traversed
left to right.
This list includes those
.code nil
atoms which appear in
.code car
fields.
The list excludes
.code nil
atoms which appear in
.code cdr
fields.
The
.code flatcar*
function
works like
.code flatcar
except that it produces a lazy list. It can be used to lazily flatten an
infinite lazy structure.
.TP* Examples:
.verb
(flatcar '(1 2 () (3 4))) -> (1 2 nil 3 4)
(flatcar '(a (b . c) d (e) (((f)) . g) (nil . z) nil . h))
--> (a b c d e f g nil z nil h)
.brev
.coNP Function @ tree-find
.synb
.mets (tree-find < obj < tree << test-function )
.syne
.desc
The
.code tree-find
function searches
.meta tree
for an occurrence of
.metn obj .
Tree can be
any atom, or a cons. If
.meta tree
it is a cons, it is understood to be a proper
list whose elements are also trees.
The equivalence test is performed by
.meta test-function
which must take two
arguments, and has conventions similar to
.codn eq ,
.code eql
or
.codn equal .
.code tree-find
works as follows. If
.meta tree
is equivalent to
.meta obj
under
.metn test-function ,
then
.code t
is returned to announce a successful finding.
If this test fails, and
.meta tree
is an atom,
.code nil
is returned immediately to
indicate that the find failed. Otherwise,
.meta tree
is taken to be a proper list,
and tree-find is recursively applied to each element of the list in turn, using
the same
.meta obj
and
.meta test-function
arguments, stopping at the first element
which returns a
.cod2 non- nil
value.
.coNP Functions @, memq @ memql and @ memqual
.synb
.mets (memq < object << list )
.mets (memql < object << list )
.mets (memqual < object << list )
.syne
.desc
The
.codn memq ,
.code memql
and
.code memqual
functions search
.meta list
for a member
which is, respectively,
.codn eq ,
.code eql
or
.code equal
to
.metn object .
(See the
.codn eq ,
.code eql
and
.code equal
functions above.)
If no such element found,
.code nil
is returned.
Otherwise, that suffix of
.meta list
is returned whose first element
is the matching object.
.coNP Functions @ member and @ member-if
.synb
.mets (member < key < sequence >> [ testfun <> [ keyfun ]])
.mets (member-if < predfun < sequence <> [ keyfun ])
.syne
.desc
The
.code member
and
.code member-if
functions search through
.meta sequence
for an item which
matches a key, or satisfies a predicate function, respectively.
The
.meta keyfun
argument specifies a function which is applied to the elements
of the sequence to produce the comparison key. If this argument is omitted,
then the untransformed elements of the sequence themselves are examined.
The
.code member
function's
.meta testfun
argument specifies the test function which is
used to compare the comparison keys taken from the sequence to the search key.
If this argument is omitted, then the
.code equal
function is used.
If
.code member
does not find a matching element, it returns
.codn nil .
Otherwise it
returns the suffix of
.meta sequence
which begins with the matching element.
The
.code member-if
function's
.meta predfun
argument specifies a predicate function
which is applied to the successive comparison keys pulled from the sequence
by applying the key function to successive elements. If no match is found,
then
.code nil
is returned, otherwise what is returned is the suffix of
.meta sequence
which begins with the matching element.
.coNP Functions @, rmemq @, rmemql @, rmemqual @ rmember and @ rmember-if
.synb
.mets (rmemq < object << list )
.mets (rmemql < object << list )
.mets (rmemqual < object << list )
.mets (rmember < key < sequence >> [ testfun <> [ keyfun ]])
.mets (rmember-if < predfun < sequence <> [ keyfun ])
.syne
.desc
These functions are counterparts to
.codn memq ,
.codn memql ,
.codn memqual ,
.code member
and
.code member-if
which look for the right-most
element which matches
.metn object ,
rather than for the left-most element.
.coNP Functions @ conses and @ conses*
.synb
.mets (conses << list )
.mets (conses* << list )
.syne
.desc
These functions return a list whose elements are the conses which make
up
.metn list .
The
.code conses*
function does this in a lazy way, avoiding the
computation of the entire list: it returns a lazy list of the conses of
.metn list .
The
.code conses
function computes the entire list before returning.
The input
.meta list
may be proper or improper.
The first cons of
.meta list
is that
.meta list
itself. The second cons is the rest
of the list, or
.mono
.meti (cdr << list ).
.onom
The third cons is
.mono
.meti (cdr (cdr << list ))
.onom
and so on.
.TP* Example:
.verb
(conses '(1 2 3)) -> ((1 2 3) (2 3) (3))
.brev
.TP* "Dialect Note:"
These functions are useful for simulating the
.code maplist
function found in other dialects like Common Lisp.
\*(TL's
.code "(conses x)"
can be expressed in Common Lisp as
.codn "(maplist #'identity x)" .
Conversely, the Common Lisp operation
.code "(maplist function list)"
can be computed in \*(TL as
.codn "(mapcar function (conses list))" .
More generally, the Common Lisp operation
.verb
(maplist function list0 list1 ... listn)
.brev
can be expressed as:
.verb
(mapcar function (conses list0)
(conses list1) ... (conses listn))
.brev
.SS* Association Lists
Association lists are ordinary lists formed according to a special convention.
Firstly, any empty list is a valid association list. A non-empty association
list contains only cons cells as the key elements. These cons cells are
understood to represent key/value associations, hence the name "association
list".
.coNP Function @ assoc
.synb
.mets (assoc < key << alist )
.syne
.desc
The
.code assoc
function searches an association list
.meta alist
for a cons cell whose
.code car
field is equivalent to
.meta key
under the
.code equal
function.
The first such cons is returned. If no such cons is found,
.code nil
is returned.
.coNP Functions @ assq and @ assql
.synb
.mets (assq < key << alist )
.mets (assql < key << alist )
.syne
.desc
The
.code assq
and
.code assql
functions are very similar to
.codn assoc ,
with the only difference being that they determine equality using,
respectively, the
.code eq
and
.code eql
functions rather than
.codn equal .
.coNP Functions @, rassq @ rassql and @ rassoc
.synb
.mets (rassq < value << alist )
.mets (rassql < value << alist )
.mets (rassoc < value << alist )
.syne
.desc
The
.codn rassq ,
.code rassql
and
.code rassoc
functions are reverse lookup counterparts to
.code assql
and
.codn assoc .
When searching, they examine the
.code cdr
field of the pairs of
.meta alist
rather than the
.code car
field.
The
.code rassoc
function searches association list
.meta alist
for a cons whose
.code cdr
field equivalent to
.meta value
according to the
.code equal
function. If such a cons is found, it is returned.
Otherwise
.code nil
is returned.
The
.code rassq
and
.code rassql
functions search in the same way as
.code rassoc
but compares values using, respectively,
.code eq
and
.codn eql .
.coNP Function @ acons
.synb
.mets (acons < car < cdr << alist )
.syne
.desc
The
.code acons
function constructs a new alist by consing a new cons to the
front of
.metn alist .
The following equivalence holds:
.verb
(acons car cdr alist) <--> (cons (cons car cdr) alist)
.brev
.coNP Function @ acons-new
.synb
.mets (acons-new < car < cdr << alist )
.syne
.desc
The
.code acons-new
function searches
.metn alist ,
as if using the assoc function,
for an existing cell which matches the key provided by the car argument.
If such a cell exists, then its cdr field is overwritten with the
.meta cdr
argument, and then the
.meta alist
is returned. If no such cell exists, then
a new list is returned by adding a new cell to the input list consisting
of the
.meta car
and
.meta cdr
values, as if by the
.code acons
function.
.coNP Function @ aconsql-new
.synb
.mets (aconsql-new < car < cdr << alist )
.syne
.desc
The
.code aconsql-new
function has similar same parameters and semantics as
.codn acons-new ,
except that the
.code eql
function is used
for equality testing. Thus, the list is searched for an existing cell
as if using the
.code assql
function rather than
.codn assoc .
.coNP Function @ alist-remove
.synb
.mets (alist-remove < alist << keys )
.syne
.desc
The
.code alist-remove
function takes association list
.meta alist
and produces a
duplicate from which cells matching the specified keys have been removed. The
.meta keys
argument is a list of the keys not to appear in the output list.
.coNP Function @ alist-nremove
.synb
.mets (alist-nremove < alist << keys )
.syne
.desc
The
.code alist-nremove
function is like
.codn alist-remove ,
but potentially destructive.
The input list
.meta alist
may be destroyed and its structural material re-used to
form the output list. The application should not retain references to the input
list.
.coNP Function @ copy-alist
.synb
.mets (copy-alist << alist )
.syne
.desc
The
.code copy-alist
function duplicates
.codn alist .
Unlike
.codn copy-list ,
which only duplicates list structure,
.code copy-alist
also duplicates each cons
cell of the input alist. That is to say, each element of the output list
is produced as if by the
.code copy-cons
function applied to the corresponding
element of the input list.
.SS* Property Lists
A
.IR "property list",
also referred to as a
.IR plist ,
is a flat list of even length consisting of interleaved
pairs of property names (usually symbols) and their values (arbitrary
objects). An example property list is (:a 1 :b "two") which contains
two properties, :a having value 1, and :b having value "two".
An
.I "improper plist"
represents Boolean properties in a condensed way, as property
indicators which are not followed by a value. Such properties
only indicate their presence or absence, which is useful for
encoding a Boolean value. If it is absent, then the property
is false. Correctly using an improper plist requires that the
exact set of Boolean keys is established by convention.
In this document, the unqualified terms
.I "property list"
and
.I "plist"
refer strictly to an ordinary plist, not to an improper plist.
.TP* "Dialect Note:"
Unlike in some other Lisp dialects, including ANSI Common Lisp,
symbols do not have property lists in \*(TL. Improper plists
aren't a concept in ANSI CL.
.coNP Function @ prop
.synb
.mets (prop < plist << key )
.syne
.desc
The
.code prop
function searches property list
.meta plist
for key
.metn key .
If the key is found, then the value next to it is returned. Otherwise
.code nil
is returned.
It is ambiguous whether
.code nil
is returned due to the property not being
found, or due to the property being present with a
.code nil
value.
The indicators in
.meta plist
are compared with
.meta key
using
.code eq
equality, allowing them to be symbols, characters or
.code fixnum
integers.
.coNP Function @ memp
.synb
.mets (memp < key << plist )
.syne
.desc
The
.code memp
function searches property list
.meta plist
for key
.metn key ,
using
.code eq
equality.
If the key is found, then the entire suffix of
.meta plist
beginning with the indicator is returned, such that the first
element of the returned list is
.meta key
and the second element is the property value.
Note the reversed argument convention relative to the
.code prop
function, harmonizing with functions in the
.code member
family.
.coNP Functions @ plist-to-alist and @ improper-plist-to-alist
.synb
.mets (plist-to-alist << plist )
.mets (improper-plist-to-alist < imp-plist << bool-keys )
.syne
.desc
The functions
.code plist-to-alist
and
.code improper-plist-to-alist
convert, respectively, a property list and improper property
list to an association list.
The
.code plist-to-alist
function scans
.meta plist
and returns the indicator-property pairs as a list of cons
cells, such that each
.code car
is the indicator, and each
.code cdr
is the value.
The
.code improper-plist-to-alist
is similar, except that it handles the Boolean properties
which, by convention, aren't followed by a value. The list of
all such indicators is specified by the
.code bool-keys
argument.
.TP* "Examples:"
.verb
(plist-to-alist '(a 1 b 2)) --> ((a . 1) (b . 2))
(improper-plist-to-alist '(:x 1 :blue :y 2) '(:blue))
--> ((:x . 1) (:blue) (:y . 2))
.brev
.SS* List Sorting
Note: these functions operate on lists. The principal sorting function
in \*(TL is
.codn sort ,
described under Sequence Manipulation.
The
.code merge
function described here provides access to an elementary step
of the algorithm used internally by
.code sort
when operating on lists.
The
.code multi-sort
operation sorts multiple lists in parallel. It is implemented using
.codn sort .
.coNP Function @ merge
.synb
.mets (merge < seq1 < seq2 >> [ lessfun <> [ keyfun ]])
.syne
.desc
The
.code merge
function merges two sorted sequences
.meta seq1
and
.meta seq2
into a single
sorted sequence. The semantics and defaulting behavior of the
.meta lessfun
and
.meta keyfun
arguments are the same as those of the sort function.
The sequence which is returned is of the same kind as
.metn seq1 .
This function is destructive of any inputs that are lists. If the output
is a list, it is formed out of the structure of the input lists.
.coNP Function @ multi-sort
.synb
.mets (multi-sort < columns < less-funcs <> [ key-funcs ])
.syne
.desc
The
.code multi-sort
function regards a list of lists to be the columns of a
database. The corresponding elements from each list constitute a record.
These records are to be sorted, producing a new list of lists.
The
.meta columns
argument supplies the list of lists which comprise the columns of
the database. The lists should ideally be of the same length. If the lists are
of different lengths, then the shortest list is taken to be the length of the
database. Excess elements in the longer lists are ignored, and do not appear in
the sorted output.
The
.meta less-funcs
argument supplies a list of comparison functions which are
applied to the columns. Successive functions correspond to successive
columns. If
.meta less-funcs
is an empty list, then the sorted database will
emerge in the original order. If
.meta less-funcs
contains exactly one function,
then the rows of the database is sorted according to the first column. The
remaining columns simply follow their row. If
.meta less-funcs
contains more than
one function, then additional columns are taken into consideration if the items
in the previous columns compare
.codn equal .
For instance if two elements from column
one compare
.codn equal ,
then the corresponding second column elements are compared
using the second column comparison function.
The optional
.meta key-funcs
argument supplies transformation functions through
which column entries are converted to comparison keys, similarly to the single
key function used in the sort function and others. If there are more key
functions than less functions, the excess key functions are ignored.
.SS* Lazy Lists and Lazy Evaluation
.coNP Function @ make-lazy-cons
.synb
.mets (make-lazy-cons < function >> [ car <> [ cdr ]])
.syne
.desc
The function
.code make-lazy-cons
makes a special kind of cons cell called a lazy
cons, whose type is
.codn lcons .
Lazy conses are useful for implementing lazy lists.
Lazy lists are lists which are not allocated all at once. Rather,
the elements of its structure materialize just before they are accessed.
A lazy cons has
.code car
and
.code cdr
fields like a regular cons, and those
fields are initialized to the values of the
.meta car
and
.meta cdr
arguments of
.code make-lazy-cons
when the lazy cons is created. These arguments default to
.meta nil
if omitted. A lazy cons also
has an update function, which is specified by the
.meta function
argument to
.codn make-lazy-cons .
The
.meta function
argument must be a function that may be called with exactly one
parameter.
When either the
.code car
and
.code cdr
fields of a cons are accessed for the first time to retrieve their value,
.meta function
is automatically invoked first, and is given the lazy cons
as a parameter. That function has the opportunity
to store new values into the
.code car
and
.code cdr
fields. Once the function is called, it is removed
from the lazy cons: the lazy cons no longer has an update function.
If the update function itself attempts to retrieve the value of the
lazy cons cell's
.code car
or
.code cdr
field, it will be recursively invoked.
The functions
.code lcons-car
and
.code lcons-cdr
may be used to access the fields of a lazy cons without
triggering the update function.
Storing a value into either the
.code car
or
.code cdr
field does not have the effect of invoking the update function.
If the function terminates by returning normally, the access to the value of
the field then proceeds in the ordinary manner, retrieving whatever value has
most recently been stored.
The return value of the function is ignored.
To perpetuate the growth of a lazy list, the function can make another call to
.code make-lazy-cons
and install the resulting cons as the
.code cdr
of the lazy cons.
.TP* Example:
.verb
;;; lazy list of integers between min and max
(defun integer-range (min max)
(let ((counter min))
;; min is greater than max; just return empty list,
;; otherwise return a lazy list
(if (> min max)
nil
(make-lazy-cons
(lambda (lcons)
;; install next number into car
(rplaca lcons counter)
;; now deal wit cdr field
(cond
;; max reached, terminate list with nil!
((eql counter max)
(rplacd lcons nil))
;; max not reached: increment counter
;; and extend with another lazy cons
(t
(inc counter)
(rplacd lcons
(make-lazy-cons
(lcons-fun lcons))))))))))
.brev
.coNP Function @ lconsp
.synb
.mets (lconsp << value )
.syne
.desc
The
.code lconsp
function returns
.code t
if
.meta value
is a lazy cons cell. Otherwise
it returns
.codn nil ,
even if
.meta value
is an ordinary cons cell.
.coNP Function @ lcons-fun
.synb
.mets (lcons-fun << lazy-cons )
.syne
.desc
The
.code lcons-fun
function retrieves the update function of a lazy cons.
Once a lazy cons has been accessed, it no longer has an update function
and
.code lcons-fun
returns
.codn nil .
While the update function of a lazy cons is
executing, it is still accessible. This allows the update function
to retrieve a reference to itself and propagate itself into
another lazy cons (as in the example under
.codn make-lazy-cons ).
.coNP Functions @ lcons-car and @ lcons-cdr
.synb
.mets (lcons-car << lazy-cons )
.mets (lcons-cdr << lazy-cons )
.syne
.desc
The functions
.code lcons-car
and
.code lcons-cdr
retrieve the
.code car
and
.code cdr
fields of
.metn lazy-cons ,
without triggering the invocation of its associated update function.
The
.meta lazy-cons
argument must be an object of type
.codn lcons .
Unlike the functions
.code car
and
.codn cdr ,
These functions cannot be applied to any other type of object.
Note: these functions may be used by the update function to retrieve
the values which were stored into
.meta lazy-cons
by the
.code make-lazy-cons
constructor, without triggering recursion. The function may then
overwrite either or both of these values. This allows the fields of the lazy
cons to store state information necessary for the propagation of a lazy list.
If that state information consists of no more than two values, then
no additional context object need be allocated.
.coNP Macro @ lcons
.synb
.mets (lcons < car-expression << cdr-expression )
.syne
.desc
The
.code lcons
macro simplifies the construction of structures based on lazy conses.
Syntactically, it resembles the
.code cons
function. However, the arguments are expressions rather than values.
The macro generates code which, when evaluated, immediately produces
a lazy cons. The expressions
.meta car-expression
and
.meta cdr-expression
are not immediately evaluated. Rather, when either the
.code car
or
.code cdr
field of the lazy cons cell is accessed, these expressions are both
evaluated at that time, in the order that they appear in the
.code lcons
expression, and in the original lexical scope in which that
expression was evaluated. The return values of these expressions
are used, respectively, to initialize the corresponding fields
of the lazy cons.
Note: the
.code lcons
macro may be understood in terms of the following reference
implementation, as a syntactic sugar combining the
.code make-lazy-cons
constructor with a lexical closure provided by a
.code lambda
function:
.verb
(defmacro lcons (car-form cdr-form)
(let ((lc (gensym)))
^(make-lazy-cons (lambda (,lc)
(rplaca ,lc ,car-form)
(rplacd ,lc ,cdr-form)))))
.brev
.TP* Example:
.verb
;; Given the following function ...
(defun fib-generator (a b)
(lcons a (fib-generator b (+ a b))))
;; ... the following function call generates the Fibonacci
;; sequence as an infinite lazy list.
(fib-generator 1 1) -> (1 1 2 3 5 8 13 ...)
.brev
.coNP Functions @ lazy-stream-cons and @ get-lines
.synb
.mets (lazy-stream-cons << stream )
.mets (get-lines <> [ stream ])
.syne
.desc
The
.code lazy-stream-cons
and
.code get-lines
functions are synonyms, except that the
.meta stream
argument is optional in
.code get-lines
and defaults to
.codn *stdin* .
Thus, the following
description of
.code lazy-stream-cons
also applies to
.codn get-lines .
The
.code lazy-stream-cons
returns a lazy cons which generates a lazy list based on
reading lines of text from input stream
.metn stream ,
which form the elements of
the list. The
.code get-line
function is called on demand to add elements to the
list.
The
.code lazy-stream-cons
function itself makes the first call to
.code get-line
on the stream. If this returns
.codn nil ,
then the stream is closed and
.code nil
is
returned. Otherwise, a lazy cons is returned whose update function will install
that line into the
.code car
field of the lazy cons, and continue the lazy list
by making another call to
.codn lazy-stream-cons ,
installing the result into the
.code cdr
field.
.code lazy-stream-cons
inspects the real-time property of a stream
as if by the
.code real-time-stream-p
function. This determines which of two
styles of lazy list are returned. For an ordinary (non-real-time) stream,
the lazy list treats the end-of-file condition accurately: an empty
file turns into the empty list
.codn nil ,
a one line file into a one-element
list which contains that line and so on. This accuracy requires one
line of lookahead which is not acceptable in real-time streams, and
so a different type of lazy list is used, which generates an extra
.code nil
item after the last line. Under this type of lazy list, an empty input stream
translates to the list
.codn (nil) ;
a one-line stream translates to
.mono
("line" nil)
.onom
and so forth.
.coNP Macro @ delay
.synb
.mets (delay << expression )
.syne
.desc
The delay operator arranges for the delayed (or "lazy") evaluation of
.metn expression .
This means that the expression is not evaluated immediately.
Rather, the delay expression produces a promise object.
The promise object can later be passed to the
.code force
function (described
later in this document). The force function will trigger the evaluation
of the expression and retrieve the value.
The expression is evaluated in the original scope, no matter where
the
.code force
takes place.
The expression is evaluated at most once, by the first call to
.codn force .
Additional calls to
.code force
only retrieve a cached value.
.TP* Example:
.verb
;; list is popped only once: the value is computed
;; just once when force is called on a given promise
;; for the first time.
(defun get-it (promise)
(format t "*list* is ~s\en" *list*)
(format t "item is ~s\en" (force promise))
(format t "item is ~s\en" (force promise))
(format t "*list* is ~s\en" *list*))
(defvar *list* '(1 2 3))
(get-it (delay (pop *list*)))
Output:
*list* is (1 2 3)
item is 1
item is 1
*list* is (2 3)
.brev
.coNP Accessor @ force
.synb
.mets (force << promise )
.mets (set (force << promise ) << new-value )
.syne
.desc
The
.code force
function accepts a promise object produced by the
.code delay
macro.
The first time
.code force
is invoked, the
.meta expression
which was wrapped inside
.meta promise
by the
.code delay
macro is evaluated (in its original lexical environment, regardless of where in
the program the
.code force
call takes place). The value of
.meta expression
is
cached inside
.meta promise
and returned, becoming the return value of the
.code force
function call. If the
.code force
function is invoked additional times on
the same promise, the cached value is retrieved.
A
.code force
form is a syntactic place, denoting the value cache location within
.metn promise .
Storing a value in a
.code force
place causes future accesses to the
.meta promise
to return that value.
If the promise had not yet been forced, then
storing a value into it prevents that from ever happening. The
delayed
.meta expression
will never be evaluated.
If, while a promise is being forced, the evaluation of
.meta expression
itself causes an assignment to the promise, it is not specified whether
the promise will take on the value of
.meta expression
or the assigned value.
.coNP Function @ promisep
.synb
.mets (promisep << object )
.syne
.desc
The
.code promisep
function returns
.code t
if
.meta object
is a promise object: an object created by the
.code delay
macro. Otherwise it returns
.codn nil .
Note: promise objects are conses. The
.code typeof
function applied to a promise returns
.codn cons .
.coNP Macro @ mlet
.synb
.mets (mlet >> ({ sym | >> ( sym << init-form )}*) << body-form *)
.syne
.desc
The
.code mlet
macro ("magic let" or "mutual let") implements a variable binding construct
similar to
.code let
and
.codn let* .
Under
.codn mlet ,
the scope of the bindings of the
.meta sym
variables extends over the
.metn init-form -s,
as well as the
.metn body-form -s.
Unlike the
.code let*
construct, each
.meta init-form
has each
.meta sym
in scope. That is to say, an
.meta init-form
can refer not only to previous variables, but also to later variables
as well as to its own variable.
The variables are not initialized until their values are accessed for
the first time. Any
.meta sym
whose value is not accessed is not initialized.
Furthermore, the evaluation of each
.meta init-form
does not take place until the time when its value is needed
to initialize the associated
.metn sym .
This evaluation takes place once. If a given
.meta sym
is not accessed during the evaluation of the
.code mlet
construct, then its
.meta init-form
is never evaluated.
The bound variables may be assigned. If, before initialization, a variable is
updated in such a way that its prior value is not needed, it is unspecified
whether initialization takes place, and thus whether its
.meta init-form
is evaluated.
Direct circular references are erroneous and are diagnosed. This takes
place when the macro-expanded form is evaluated, not during the
expansion of
.codn mlet .
.TP* Examples:
.verb
;; Dependent calculations in arbitrary order
(mlet ((x (+ y 3))
(z (+ x 1))
(y 4))
(+ z 4)) --> 12
;; Error: circular reference:
;; x depends on y, y on z, but z on x again.
(mlet ((x (+ y 1))
(y (+ z 1))
(z (+ x 1)))
z)
;; Okay: lazy circular reference because lcons is used
(mlet ((list (lcons 1 list)))
list) --> (1 1 1 1 1 ...) ;; circular list
.brev
In the last example, the
.code list
variable is accessed for the first time in the body of the
.code mlet
form. This causes the evaluation of the
.code lcons
form. This form evaluates its arguments lazily, which means that it
is not a problem that
.code list
is not yet initialized. The form produces a lazy cons, which is then used
to initialize
.code list.
When the
.code car
or
.code cdr
fields of the lazy cons are accessed, the
.code list
expression in the
.code lcons
argument is accessed. By that time, the variable is initialized
and holds the lazy cons itself, which creates the circular reference,
and a circular list.
.coNP Functions @, generate @ giterate and @ ginterate
.synb
.mets (generate < while-fun << gen-fun )
.mets (giterate < while-fun < gen-fun <> [ value ])
.mets (ginterate < while-fun < gen-fun <> [ value ])
.syne
.desc
The
.code generate
function produces a lazy list which dynamically produces items
according to the following logic.
The arguments to
.code generate
are functions which do not take any arguments. The
return value of generate is a lazy list.
When the lazy list is accessed, for instance with the functions car and cdr, it
produces items on demand. Prior to producing each item,
.meta while-fun
is
called. If it returns a true Boolean value (any value other than
.codn nil ),
then
the
.meta gen-fun
function is called, and its return value is incorporated as
the next item of the lazy list. But if
.meta while-fun
yields
.codn nil ,
then the lazy list immediately terminates.
Prior to returning the lazy list, generate invokes the
.meta while-fun
one time.
If
.code while-fun
yields
.codn nil ,
then
.code generate
returns the empty list
.code nil
instead of a lazy list. Otherwise, it instantiates a lazy list, and invokes the
.code gen-fun
to populate it with the first item.
The
.code giterate
function is similar to
.codn generate ,
except that
.meta while-fun
and
.meta gen-fun
are functions of one argument rather than functions of
no arguments. The optional
.meta value
argument defaults to
.code nil
and is threaded through the function calls. That is to say, the lazy
list returned is
.mono
.meti >> ( value >> [ gen-fun << value ] >> [ gen-fun >> [ gen-fun << value ]] ...).
.onom
The lazy list terminates when a value fails to satisfy
.metn while-fun .
That is to say, prior to generating each value, the lazy list tests
the value using
.metn while-fun .
If that function returns
.codn nil ,
then the item is not added, and the sequence terminates.
Note:
.code giterate
could be written in terms of
.code generate
like this:
.verb
(defun giterate (w g v)
(generate (lambda () [w v])
(lambda () (prog1 v (set v [g v])))))
.brev
The
.code ginterate
function is a variant of
.code giterate
which includes the test-failing item in the generated sequence.
That is to say
.code ginterate
generates the next value and adds it to the lazy list.
The value is then tested using
.metn while-fun .
If that function returns
.codn nil ,
then the list is terminated, and no more items are produced.
.TP* Example:
.verb
(giterate (op > 5) (op + 1) 0) -> (0 1 2 3 4)
(ginterate (op > 5) (op + 1) 0) -> (0 1 2 3 4 5)
.brev
.coNP Function @ expand-right
.synb
.mets (expand-right < gen-fun << value )
.syne
.desc
The
.code expand-right
function is a complement to
.codn reduce-right ,
with lazy semantics.
The
.meta gen-fun
parameter is a function, which must accept a single argument,
and return either a cons pair
or
.codn nil .
The
.meta value
parameter is any value.
The first call to
.meta gen-fun
receives
.metn value .
The return value is interpreted as follows. If
.meta gen-fun
returns a cons cell pair
.mono
.meti >> ( elem . << next )
.onom
then
.meta elem
specifies the element to be added to the lazy list,
and
.meta next
specifies the value to be passed to the next call
to
.metn gen-fun .
If
.meta gen-fun
returns
.code nil
then the lazy list ends.
.TP* Examples:
.verb
;; Count down from 5 to 1 using explicit lambda
;; for gen-fun:
(expand-right
(lambda (item)
(if (zerop item) nil
(cons item (pred item))))
5)
--> (5 4 3 2 1)
;; Using functional combinators:
[expand-right [iff zerop nilf [callf cons identity pred]] 5]
--> (5 4 3 2 1)
;; Include zero:
[expand-right
[iff null
nilf
[callf cons identity [iff zerop nilf pred]]] 5]
--> (5 4 3 2 1 0)
.brev
.coNP Functions @ expand-left and @ nexpand-left
.synb
.mets (expand-left < gen-fun << value )
.mets (nexpand-left < gen-fun << value )
.syne
.desc
The
.code expand-left
function is a companion to
.codn expand-right .
Unlike
.codn expand-right ,
it has eager semantics: it calls
.code gen-fun
repeatedly and accumulates an output list, not returning
until
.code gen-fun
returns
.codn nil .
The semantics is as follows.
.code expand-left
initializes an empty accumulation list. Then
.meta gen-fun
is called, with
.meta value
as its argument.
If
.meta gen-fun
it returns a cons cell, then the
.code car
of that cons cell is pushed onto the accumulation list,
and the procedure is repeated:
.meta gen-fun
is called again, with
.code cdr
taking the place of
.metn value .
If
.meta gen-fun
returns
.codn nil ,
then the accumulation list is returned.
If the expression
.code "(expand-right f v)"
produces a terminating list, then the following equivalence holds:
.verb
(expand-left f v) <--> (reverse (expand-right f v))
.brev
The equivalence cannot hold for arguments to
.code expand-left
which produce an infinite list.
The
.code nexpand-left
function is a destructive version of
.codn expand-left .
The list returned by
.code nexpand-left
is composed of the cons cells returned by
.code gen-fun
whereas the list returned by
.code expand-left
is composed of freshly allocated cons cells.
.coNP Function @ repeat
.synb
.mets (repeat < list <> [ count ])
.syne
.desc
If
.meta list
is empty, then repeat returns an empty list.
If
.meta count
is omitted, the
.code repeat
function produces an infinite lazy list
formed by catenating together copies of
.metn list .
If
.meta count
is specified and is zero or negative, then an empty list is
returned.
Otherwise a list is returned consisting of
.meta count
repetitions of
.meta list
catenated together.
.coNP Function @ pad
.synb
.mets (pad < sequence < object <> [ count ])
.syne
.desc
The
.code pad
function produces a lazy list which consists of all of the
elements of
.meta sequence
followed by repetitions of
.metn object .
If
.meta count
is omitted, then the repetition of
.meta object
is infinite. Otherwise the specified number of repetitions
occur.
Note that
.meta sequence
may be a lazy list which is infinite. In that case, the repetitions
of
.meta object
will never occur.
.coNP Function @ weave
.synb
.mets (weave <> { sequence }*)
.syne
.desc
The
.code weave
function interleaves elements from the sequences given as arguments.
If called with no arguments, it returns the empty list.
If called with a single sequence, it returns the elements of that sequence
as a new lazy list.
When called with two or more sequences,
.code weave
returns a lazy list which draws elements from the sequences in a round-robin
fashion, repeatedly scanning the sequences from left to right, and
taking an item from each one, removing it from the sequence.
Whenever a sequence runs out of items, it is deleted; the weaving then
continues with the remaining sequences. The weaved sequence terminates
when all sequences are eliminated. (If at least one of the sequences
is an infinite lazy list, then the weaved sequence is infinite.)
.TP* Examples:
.verb
;; Weave negative integers with positive ones:
(weave (range 1) (range -1 : -1)) -> (1 -1 2 -2 3 -3 ...)
(weave "abcd" (range 1 3) '(x x x x x x x))
--> (#\ea 1 x #\eb 2 x #\ec 3 x #\ed x x x x)
.brev
.coNP Macros @ gen and @ gun
.synb
.mets (gen < while-expression << produce-item-expression )
.mets (gun << produce-item-expression )
.syne
.desc
The
.code gen
macro operator produces a lazy list, in a manner similar to the
.code generate
function. Whereas the
.code generate
function takes functional arguments,
the
.code gen
operator takes two expressions, which is often more convenient.
The return value of
.code gen
is a lazy list. When the lazy list is accessed, for
instance with the functions
.code car
and
.codn cdr ,
it produces items on demand. Prior to
producing each item, the
.meta while-expression
is evaluated, in its original
lexical scope. If the expression yields a
.cod2 non- nil
value, then
.meta produce-item-expression
is evaluated, and its return value is incorporated as
the next item of the lazy list. If the expression yields
.codn nil ,
then the lazy list immediately terminates.
The
.code gen
operator itself immediately evaluates
.meta while-expression
before
producing the lazy list. If the expression yields
.codn nil ,
then the operator
returns the empty list
.codn nil .
Otherwise, it instantiates the lazy list and
invokes the
.meta produce-item-expression
to force the first item.
The
.code gun
macro similarly creates a lazy list according to the following
rules. Each successive item of the lazy list is obtained as a result of
evaluating
.metn produce-item-expression .
However, when
.meta produce-item-expression
yields
.codn nil ,
then the list terminates (without adding that
.code nil
as an item).
Note 1: the form
.code gun
can be implemented as a macro-expanding to
an instance of the
.code gen
operator, like this:
.verb
(defmacro gun (expr)
(let ((var (gensym)))
^(let (,var)
(gen (set ,var ,expr)
,var))))
.brev
This exploits the fact that the
.code set
operator returns the value that is
assigned, so the set expression is tested as a condition by
.codn gen ,
while having the side effect of storing the next item temporarily
in a hidden variable.
In turn,
.code gen
can be implemented as a macro expanding to some
.code lambda
functions which are passed to the
.code generate
function:
.verb
(defmacro gen (while-expr produce-expr)
^(generate (lambda () ,while-expr)
(lambda () ,produce-expr)))
.brev
Note 2:
.code gen
can be considered as an acronym for Generate, testing Expression
before Next item, whereas
.code gun
stands for Generate Until Null.
.TP* Example:
.verb
;; Make a lazy list of integers up to 1000
;; access and print the first three.
(let* ((counter 0)
(list (gen (< counter 1000) (inc counter))))
(format t "~s ~s ~s\en" (pop list) (pop list) (pop list)))
Output:
1 2 3
.brev
.coNP Functions @ range and @ range*
.synb
.mets (range >> [ from >> [ to <> [ step ]]])
.mets (range* >> [ from >> [ to <> [ step ]]])
.syne
.desc
The
.code range
and
.code range*
functions generate a lazy sequence of integers, with a
fixed step between successive values.
The difference between
.code range
and
.code range*
is that
.code range*
excludes the endpoint.
For instance
.code "(range 0 3)"
generates the list
.codn "(0 1 2 3)" ,
whereas
.code "(range* 0 3)"
generates
.codn "(0 1 2)" .
All arguments are optional. If the
.meta step
argument is omitted, then it defaults
to
.codn 1 :
each value in the sequence is greater than the previous one by
.codn 1 .
Positive or negative step sizes are allowed. There is no check for a step size
of zero, or for a step direction which cannot meet the endpoint.
The
.meta to
argument specifies the endpoint value, which, if it occurs in the
sequence, is excluded from it by the
.code range*
function, but included by the range
function. If
.meta to
is missing, or specified as
.codn nil ,
then there is no endpoint,
and the sequence which is generated is infinite, regardless of
.metn step .
If
.meta from
is omitted, then the sequence begins at zero, otherwise
.meta from
must be an integer which specifies the initial value.
The sequence stops if it reaches the endpoint value (which is included in the
case of
.codn range ,
and excluded in the case of
.codn range *).
However, a sequence with a stepsize greater than
.code 1
or less than
.code -1
might step over the endpoint value, and
therefore never attain it. In this situation, the sequence also stops, and the
excess value which surpasses the endpoint is excluded from the sequence.
.coNP Functions @ rlist and @ rlist*
.synb
.mets (rlist << item *)
.mets (rlist* << item *)
.syne
.desc
The
.code rlist
("range list") function is useful for producing a list consisting of a mixture
of discontinuous numeric or character ranges and individual items.
The function returns a lazy list of elements. The items are produced
by converting the function's successive
.meta item
arguments into lists, which are lazily catenated together to form the
output list.
Each
.meta item
is transformed into a list as follows. Any item which is
.B not
a range object is trivially turned into a one-element list as if by the
.mono
.meti (list << item *)
.onom
expression.
Any item which is a range object, whose
.code to
field
.B isn't
a range is turned into a lazy list as if by evaluating the
.mono
.meti (range (from << item) (to << item))
.onom
expression. Thus for instance the argument
.code 1..10
turns into the (lazy) list
.codn "(1 2 3 4 5 6 7 8 9 10)" .
Any item which is a range object such that its
.code to
field is also a range is turned into a lazy list as if by evaluating the
.mono
.meti (range (from << item) (from (to << item)) (to (to << item)))
.onom
expression. Thus for instance the argument expression
.code 1..10..2
produces an
.meta item
which
.code rlist
turns into the lazy list
.code "(1 3 5 7 9)"
as if by the call
.codn "(range 1 10 2)" .
Note that the expression
.code 1..10..2
stands for the expression
.code "(rcons 1 (rcons 10 2))"
which evaluates to
.codn "#R(1 #R(10 2))" .
The
.code "#R(1 #R(10 2))"
range literal syntax can be passed as an argument to
.code rlist
with the same result as
.codn 1..10..2 .
The
.code rlist*
function differs from
.code rlist
in one regard: under
.codn rlist* ,
the ranges denoted by the range notation exclude the endpoint. That is,
the ranges are generated as if by the
.code range*
function rather than
.codn range .
Note: it is permissible for
.meta item
objects to specify infinite ranges.
It is also permissible to apply an infinite argument list to
.codn rlist .
.TP* Examples:
.verb
(rlist 1 "two" :three) -> (1 "two" :three)
(rlist 10 15..16 #\ea..#\ed 2) -> (10 15 16 #\ea #\eb #\ec #\ed 2)
(take 7 (rlist 1 2 5..:)) -> (1 2 5 6 7 8 9)
.brev
.SS* Ranges
Ranges are objects that aggregate two values, not unlike
.code cons
cells. However, they are atoms, and are primarily intended to hold numeric or
character values in their two fields. These fields are called
.code from
and
.code to
which are the names of the functions which access them. These fields
are not mutable; a new value cannot be stored into either field of
a range.
The printed notation for a range object consists of the prefix
.code #R
(hash R) followed by the two values expressed as a two-element
list. Ranges can be constructed using the
.code rcons
function. The notation
.code x..y
corresponds to
.codn "(rcons x y)" .
Ranges behave as a numeric type and support a subset of the numeric
operations. Two ranges can be added or subtracted, which obeys
these equivalences:
.verb
(+ a..b c..d) <--> (+ a c)..(+ b d)
(- a..b c..d) <--> (- a c)..(- b d)
.brev
A range
.code a..b
can be combined with a character or number
.code n
using addition or subtractions, which obeys these equivalences:
.verb
(+ a..b n) <--> (+ n a..b) <--> (+ a n)..(+ b n)
(- a..b n) <--> (- a n)..(- b n)
(- n a..b) <--> (- n a)..(- n b)
.brev
A range can be multiplied by a number:
.verb
(* a..b n) <--> (* n a..b) <--> (* a n)..(* b n)
.brev
A range can be divided by a number using the
.code /
or
.code trunc
functions, but a number cannot be divided by a range:
.verb
(trunc a..b n) <--> (trunc a n)..(trunc b n)
(/ a..b n) <--> (/ a n)..(/ b n)
.brev
Ranges can be compared using the equality and inequality functions
.codn = ,
.codn < ,
.codn > ,
.code <=
and
.codn >= .
Equality obeys this equivalence:
.verb
(= a..b c..d) <--> (and (= a c) (= b d))
.brev
Inequality comparisons treat the
.code from
component with precedence over
.code to
such that only if the
.code from
components of the two ranges are not equal under the
.code =
function, then the inequality is based solely on them.
If they are equal, then the inequality is based on the
.code to
components. This gives rise to the following equivalences:
.verb
(< a..b c..d) <--> (if (= a c) (< b d) (< a c))
(> a..b c..d) <--> (if (= a c) (> b d) (> a c))
(>= a..b c..d) <--> (if (= a c) (>= b d) (> a c))
(<= a..b c..d) <--> (if (= a c) (<= b d) (< a c))
.brev
Ranges can be negated with the one-argument form of the
.code -
function, which is equivalent to subtraction from zero:
the negation distributes over the two range components.
The
.code abs
function also applies to ranges and distributes into
their components.
The
.code succ
and
.code pred
family of functions also operate on ranges.
The length of a range may be obtained with the
.code length
function;
The length of the range
.code a..b
is defined as
.codn "(- b a)" ,
and may be obtained using the
.code length
function. The
.code empty
function accepts ranges and tests them for zero length.
.coNP Function @ rcons
.synb
.mets (rcons < from << to )
.syne
.desc
The
.code rcons
function constructs a range object which holds the values
.meta from
and
.metn to .
Though range objects are effectively binary cells like conses, they are atoms.
They also aren't considered sequences, nor are they structures.
Range objects are used for indicating numeric ranges, such as substrings of
lists, arrays and strings. The dotdot notation serves as a syntactic sugar for
.codn rcons .
The syntax
.code a..b
denotes the expression
.codn "(rcons a b)" .
Note that ranges are immutable, meaning that it is not possible to
replace the values in a range.
.coNP Function @ rangep
.synb
.mets (rangep << value )
.syne
.desc
The
.code rangep
function returns
.code t
if
.meta value
is a range. Otherwise it returns
.codn nil .
.coNP Functions @ from and @ to
.synb
.mets (from << range )
.mets (to << range )
.syne
.desc
The
.code from
and
.code to
functions retrieve, respectively, the from and to fields
of a range.
Note that these functions are not accessors, which is because
ranges are immutable.
.coNP Functions @ in-range and @ in-range*
.synb
.mets (in-range < range << value )
.mets (in-range* < range << value )
.syne
.desc
The
.code in-range
and
.code in-range*
functions test whether the
.meta value
argument lies in the range represented by the
.meta range
argument, indicating the Boolean result using one of the values
.code t
or
.codn nil .
The
.meta range
argument must be a range object.
It is expected that the range object's
.code from
value does not exceed the
.code to
value; a reversed range is considered empty.
The
.code in-range*
function differs from
.code in-range
in that it excludes the
upper endpoint.
The implicit comparison against the range endpoints is performed
using the
.code less
and
.code lequal
functions, as appropriate.
The following equivalences hold:
.verb
(in-range r x) <--> (and (lequal (from r) x)
(lequal x (to r)))
(in-range* r x) <--> (and (lequal (from r) x)
(less x (to r)))
.brev
.SS* Characters and Strings
.coNP Function @ mkstring
.synb
.mets (mkstring < length <> [ char ])
.syne
.desc
The
.code mkstring
function constructs a string object of a length specified
by the
.meta length
parameter. Every position in the string is initialized
with
.metn char ,
which must be a character value.
If the optional argument
.meta char
is not specified, it defaults to the space character.
.coNP Function @ copy-str
.synb
.mets (copy-str << string )
.syne
.desc
The
.code copy-str
function constructs a new string whose contents are identical
to
.metn string .
If
.meta string
is a lazy string, then a lazy string is constructed with the
same attributes as
.metn string .
The new lazy string has its own copy of the prefix portion of
.meta string
which has been forced so far. The unforced list and separator
string are shared between
.meta string
and the newly constructed lazy string.
.coNP Function @ upcase-str
.synb
.mets (upcase-str << string )
.syne
.desc
The
.code upcase-str
function produces a copy of
.meta string
such that all lower-case
characters of the English alphabet are mapped to their upper case counterparts.
.coNP Function @ downcase-str
.synb
.mets (downcase-str << string )
.syne
.desc
The
.code downcase-str
function produces a copy of
.meta string
such that
all upper case characters of the English alphabet are mapped to their
lower case counterparts.
.coNP Function @ string-extend
.synb
.mets (string-extend < string << tail )
.syne
.desc
The
.code string-extend
function destructively increases the length of
.metn string ,
which must be an ordinary dynamic string. It is an error to invoke this
function on a literal string or a lazy string.
The
.meta tail
argument can be a character, string or integer. If it is a string or
character, it specifies material which is to be added to the end of the string:
either a single character or a sequence of characters. If it is an integer, it
specifies the number of characters to be added to the string.
If
.meta tail
is an integer, the newly added characters have indeterminate contents.
The string appears to be the original one because of an internal terminating
null character remains in place, but the characters beyond the terminating zero
are indeterminate.
.coNP Function @ stringp
.synb
.mets (stringp << obj )
.syne
.desc
The
.code stringp
function returns t if
.meta obj
is one of the several
kinds of strings. Otherwise it returns
.codn nil .
.coNP Function @ length-str
.synb
.mets (length-str << string )
.syne
.desc
The
.code length-str
function returns the length
.meta string
in characters. The argument must be a string.
.coNP Function @ coded-length
.synb
.mets (coded-length << string )
.syne
.desc
The
.code coded-length
function returns the number of bytes required to encode
.meta string
in UTF-8.
The argument must be a character string.
If the string contains only characters in the ASCII range U+0001 to U+007F
range, then the value returned shall be the same as that returned by the
.code length-str
function.
.coNP Function @ search-str
.synb
.mets (search-str < haystack < needle >> [ start <> [ from-end ]])
.syne
.desc
The
.code search-str
function finds an occurrence of the string
.meta needle
inside
the
.meta haystack
string and returns its position. If no such occurrence exists,
it returns
.codn nil .
If a
.meta start
argument is not specified, it defaults to zero. If it is
a non-negative integer, it specifies the starting character position for
the search. Negative values of
.meta start
indicate positions from the end of the
string, such that
.code -1
is the last character of the string.
If the
.meta from-end
argument is specified and is not
.codn nil ,
it means
that the search is conducted right-to-left. If multiple matches are possible,
it will find the rightmost one rather than the leftmost one.
.coNP Function @ search-str-tree
.synb
.mets (search-str-tree < haystack < tree >> [ start <> [ from-end ]])
.syne
.desc
The
.code search-str-tree
function is similar to
.codn search-str ,
except that instead of
searching
.meta haystack
for the occurrence of a single needle string, it searches
for the occurrence of numerous strings at the same time. These search strings
are specified, via the
.meta tree
argument, as an arbitrarily structured tree whose
leaves are strings.
The function finds the earliest possible match, in the given search direction,
from among all of the needle strings.
If
.meta tree
is a single string, the semantics is equivalent to
.codn search-str .
.coNP Function @ match-str
.synb
.mets (match-str < bigstring < littlestring <> [ start ])
.syne
.desc
Without the
.meta start
argument, the
.code match-str
function determines whether
.meta littlestring
is a prefix of
.metn bigstring ,
returning a
.code t
or
.code nil
indication.
If the
.meta start
argument is specified, and is a non-negative integer, then the
function tests whether
.meta littlestring
matches a prefix of that portion of
.meta bigstring
which starts at the given position.
If the
.meta start
argument is a negative integer, then
.code match-str
determines
whether
.meta littlestring
is a suffix of
.metn bigstring ,
ending on that position
of bigstring, where
.code -1
denotes the last character of
.metn bigstring ,
.code -2
the second last one and so on.
If
.meta start
is
.codn -1 ,
then this corresponds to testing whether
.meta littlestring
is a suffix of
.metn bigstring .
.coNP Function @ match-str-tree
.synb
.mets (match-str-tree < bigstring < tree <> [ start ])
.syne
.desc
The
.code match-str-tree
function is a generalization of match-str which matches
multiple test strings against
.meta bigstring
at the same time. The value
reported is the longest match from among any of the strings.
The strings are specified as an arbitrarily shaped tree structure which has
strings at the leaves.
If
.meta tree
is a single string atom, then the function behaves
exactly like match-str.
.coNP Accessor @ sub-str
.synb
.mets (sub-str < str >> [ from <> [ to ]])
.mets (set (sub-str < str >> [ from <> [ to ]]) << new-value )
.syne
.desc
The
.code sub-str
function has the same parameters and semantics as the
.code sub
function,
function, except that the first argument is operated upon
using string operations.
If a
.code sub-str
form is used as a place, it denotes a subrange of
.meta list
as if it were a storage location. The previous value of this location,
if needed, is fetched by a call to
.codn sub-str .
Storing
.meta new-value
to the place is performed by a call to
.codn replace-str .
In an update operation which accesses the prior value and stores a new value,
the arguments
.metn str ,
.metn from ,
.meta to
and
.meta new-value
are evaluated once.
The
.meta str
argument is not itself required to be a place; it is not updated
when a value is written to the
.code sub-str
storage location.
.coNP Function @ replace-str
.synb
.mets (replace-str < string < item-sequence >> [ from <> [ to ]])
.syne
.desc
The
.code replace-str
function has the same parameters and semantics as the
.code replace
function, except that the first argument is operated upon
using string operations.
.coNP Function @ cat-str
.synb
.mets (cat-str < string-list <> [ sep ])
.syne
.desc
The
.code cat-str
function catenates a list of strings given by
.meta string-list
into a
single string. The optional
.meta sep
argument specifies a separator
which is interposed between the catenated strings.
It must be either a character or a string.
.coNP Function @ split-str
.synb
.mets (split-str < string < sep <> [ keep-between ])
.syne
.desc
The
.code split-str
function breaks the
.meta string
into pieces, returning a list
thereof. The
.meta sep
argument must be one of three types: a string, a character
or a regular expression. It determines the separator character
sequences within
.metn string .
All non-overlapping matches for
.meta sep
within
.meta string
are identified in left
to right order, and are removed from
.metn string .
The string is broken into pieces
according to the gaps left behind by the removed separators, and a list
of the remaining pieces is returned.
If
.meta sep
is the empty string, then the separator pieces removed from the
string are considered to be the empty strings between its
characters. In this case, if
.meta string
is of length one or zero, then it is considered to have no such pieces, and a
list of one element is returned containing the original string.
These remarks also apply to the situation when
.meta sep
is a regular expression which matches only an empty
substring of
.metn string .
If a match for
.meta sep
is not found in the string at all (not even an empty match), then the string is
not split at all: a list of one element is returned containing the original
string.
If
.meta sep
matches the entire string, then a list of two empty strings is
returned, except in the case that the original string is empty, in which case a
list of one element is returned, containing the empty string.
Whenever two adjacent matches for
.meta sep
occur, they are considered separate
cuts with an empty piece between them.
This operation is nondestructive:
.meta string
is not modified in any way.
If the optional
.meta keep-between
argument is specified and is not
.codn nil ,
If an argument is given and is true, then
.meta split-str
incorporates the matching separating pieces of
.meta string
into the resulting list, such that if the resulting
list is catenated, a string equivalent to the original
string will be produced.
Note: to split a string into pieces of length one such that an empty string
produces
.code nil
rather than
.codn ("") ,
use the
.mono
.meti (tok-str < string #/./)
.onom
pattern.
Note: the function call
.code "(split-str s r t)"
produces a resulting list identical to
.codn "(tok-str s r t)" ,
for all values of
.code r
and
.codn s ,
provided that
.code r
does not match empty strings. If
.code r
matches empty strings, then the
.code tok-str
call returns extra elements compared to
.codn split-str ,
because
.code tok-str
allows empty matches to take place and extract empty tokens
before the first character of the string, and after the
last character, whereas
.code split-str
does not recognize empty separators at these outer limits
of the string.
.coNP Function @ spl
.synb
.mets (spl < sep <> [ keep-between ] << string )
.syne
.desc
The
.code spl
function performs the same computation as
.codn split-str .
The same-named parameters of
.code spl
and
.code split-str
have the same semantics. The difference is the argument order.
The
.code spl
function takes the
.meta sep
argument first.
The last argument is always
.meta string
whether or not there are two arguments or three. If there are
three arguments, then
.meta keep-between
is the middle one.
Note: the argument conventions of
.code spl
facilitate less verbose partial application, such as with macros in the
.code op
family, in the common situation when
.meta string
is the unbound argument.
.coNP Functions @ split-str-set and @ sspl
.synb
.mets (split-str-set < string << set )
.mets (sspl < set << string )
.syne
.desc
The
.code split-str-set
function breaks the
.meta string
into pieces, returning a list
thereof. The
.meta set
argument must be a string. It specifies a set of
characters. All occurrences of any of these characters within
.meta string
are
identified, and are removed from
.metn string .
The string is broken into pieces
according to the gaps left behind by the removed separators.
Adjacent occurrences of characters from
.meta set
within
.meta string
are considered to
be separate gaps which come between empty strings.
This operation is nondestructive:
.meta string
is not modified in any way.
The
.code sspl
function performs the same operation; the only difference between
.code sspl
and
.code split-str-set
is argument order.
.coNP Functions @ tok-str and @ tok-where
.synb
.mets (tok-str < string < regex <> [ keep-between ])
.mets (tok-where < string << regex )
.syne
.desc
The
.code tok-str
function searches
.meta string
for tokens, which are defined as
substrings of
.meta string
which match the regular expression
.meta regex
in the
longest possible way, and do not overlap. These tokens are extracted from the
string and returned as a list.
Whenever
.meta regex
matches an empty string, then an empty token is returned, and
the search for another token within
.meta string
resumes after advancing by one
character position. However, if an empty match occurs immediately
after a non-empty token, that empty match is not turned into
a token.
So for instance,
.mono
(tok-str "abc" #/a?/)
.onom
returns
.mono
("a" "" "").
.onom
After the token
.str "a"
is extracted from a non-empty match
for the regex, an empty match for the regex occurs just
before the character
.codn b .
This match is discarded because it is an empty match which
immediately follows the non-empty match. The character
.code b
is skipped. The next match is an empty match between the
.code b
and
.code c
characters. This match causes an empty token to be
extracted. The character
.code c
is skipped, and one more empty match occurs after that
character and is extracted.
If the
.meta keep-between
argument is specified, and is not
.codn nil ,
then the behavior
of
.code tok-str
changes in the following way. The pieces of
.meta string
which are
skipped by the search for tokens are included in the output. If no token is
found in
.metn string ,
then a list of one element is returned, containing
.metn string .
Generally, if N tokens are found, then the returned list consists of 2N + 1
elements. The first element of the list is the (possibly empty) substring which
had to be skipped to find the first token. Then the token follows. The next
element is the next skipped substring and so on. The last element is the
substring of
.meta string
between the last token and the end.
The
.code tok-where
function works similarly to
.codn tok-str ,
but instead of returning
the extracted tokens themselves, it returns a list of the character position
ranges within
.meta string
where matches for
.meta regex
occur. The ranges
are pairs of numbers, represented as cons cells, where the first number
of the pair gives the starting character position, and the second number
is one position past the end of the match. If a match is empty, then the
two numbers are equal.
The tok-where function does not support the
.meta keep-between
parameter.
.coNP Function @ tok
.synb
.mets (tok < regex <> [ keep-between ] << string )
.syne
.desc
The
.code tok
function performs the same computation as
.codn tok-str .
The same-named parameters of
.code tok
and
.code tok-str
have the same semantics. The difference is the argument order.
The
.code tok
function takes the
.meta regex
argument first.
The last argument is always
.meta string
whether or not there are two arguments or three. If there are
three arguments, then
.meta keep-between
is the middle one.
Note: the argument conventions of
.code tok
facilitate less verbose partial application, such as with macros in the
.code op
family, in the common situation when
.meta string
is the unbound argument.
.coNP Function @ list-str
.synb
.mets (list-str << string )
.syne
.desc
The
.code list-str
function converts a string into a list of characters.
.coNP Function @ trim-str
.synb
.mets (trim-str << string )
.syne
.desc
The
.code trim-str
function produces a copy of
.meta string
from which leading and
trailing tabs, spaces and newlines are removed.
.coNP Function @ chrp
.synb
.mets (chrp << obj )
.syne
.desc
Returns
.code t
if
.meta obj
is a character, otherwise nil.
.coNP Function @ chr-isalnum
.synb
.mets (chr-isalnum << char )
.syne
.desc
Returns
.code t
if
.meta char
is an alphanumeric character, otherwise nil. Alphanumeric
means one of the upper or lower case letters of the English alphabet found in
ASCII, or an ASCII digit. This function is not affected by locale.
.coNP Function @ chr-isalpha
.synb
.mets (chr-isalpha << char )
.syne
.desc
Returns
.code t
if
.meta char
is an alphabetic character, otherwise
.codn nil .
Alphabetic
means one of the upper or lower case letters of the English alphabet found in
ASCII. This function is not affected by locale.
.coNP Function @ chr-isascii
.synb
.mets (chr-isascii << char )
.syne
.desc
The
.code chr-isascii
function returns
.code t
if the code of character
.meta char
is in the range 0 to 127 inclusive. For characters outside of this range, it
returns
.codn nil .
.coNP Function @ chr-iscntrl
.synb
.mets (chr-iscntrl << char )
.syne
.desc
The
.code chr-iscntrl
function returns
.code t
if the character
.meta char
is a character whose code
ranges from 0 to 31, or is 127. In other words, any non-printable ASCII
character. For other characters, it returns
.codn nil .
.coNP Functions @ chr-isdigit and @ chr-digit
.synb
.mets (chr-isdigit << char )
.mets (chr-digit << char )
.syne
.desc
If
.meta char
is is an ASCII decimal digit character,
.code chr-isdigit
returns the value
.code t
and
.code chr-digit
returns the integer value corresponding to that digit character,
a value in the range 0 to 9. Otherwise, both functions return
.codn nil .
.coNP Function @ chr-isgraph
.synb
.mets (chr-isgraph << char )
.syne
.desc
The
.code chr-isgraph
function returns
.code t
if
.meta char
is a non-space printable ASCII character.
It returns nil if it is a space or control character.
It also returns nil for non-ASCII characters: Unicode characters with a code
above 127.
.coNP Function @ chr-islower
.synb
.mets (chr-islower << char )
.syne
.desc
The
.code chr-islower
function returns
.code t
if
.meta char
is an ASCII lower case letter. Otherwise it returns
.codn nil .
.coNP Function @ chr-isprint
.synb
.mets (chr-isprint << char )
.syne
.desc
The
.code chr-isprint
function returns
.code t
if
.meta char
is an ASCII character which is not a
control character. It also returns
.code nil
for all non-ASCII characters: Unicode
characters with a code above 127.
.coNP Function @ chr-ispunct
.synb
.mets (chr-ispunct << char )
.syne
.desc
The
.code chr-ispunct
function returns
.code t
if
.meta char
is an ASCII character which is not a
control character. It also returns nil for all non-ASCII characters: Unicode
characters with a code above 127.
.coNP Function @ chr-isspace
.synb
.mets (chr-isspace << char )
.syne
.desc
The
.code chr-isspace
function returns
.code t
if
.meta char
is an ASCII whitespace character: any of the
characters in the set
.codn #\espace ,
.codn #\etab ,
.codn #\elinefeed ,
.codn #\enewline ,
.codn #\ereturn ,
.code #\evtab
and
.codn #\epage .
For all other characters, it returns
.codn nil .
.coNP Function @ chr-isblank
.synb
.mets (chr-isblank << char )
.syne
.desc
The
.code chr-isblank
function returns
.code t
if
.meta char
is a space or tab: the character
.code #\espace
or
.codn #\etab .
For all other characters, it returns
.codn nil .
.coNP Function @ chr-isunisp
.synb
.mets (chr-isunisp << char )
.syne
.desc
The
.code chr-isunisp
function returns
.code t
if
.meta char
is a Unicode whitespace character. This the case for
all the characters for which
.code chr-isspace
returns
.codn t .
It also returns
.code t
for these additional characters:
.codn #\exa0 ,
.codn #\ex1680 ,
.codn #\ex180e ,
.codn #\ex2000 ,
.codn #\ex2001 ,
.codn #\ex2002 ,
.codn #\ex2003 ,
.codn #\ex2004 ,
.codn #\ex2005 ,
.codn #\ex2006 ,
.codn #\ex2007 ,
.codn #\ex2008 ,
.codn #\ex2009 ,
.codn #\ex200a ,
.codn #\ex2028 ,
.codn #\ex2029 ,
.codn #\ex205f ,
and
.codn #\ex3000 .
For all other characters, it returns
.codn nil .
.coNP Function @ chr-isupper
.synb
.mets (chr-isupper < char )
.syne
.desc
The
.code chr-isupper
function returns
.code t
if
.meta char
is an ASCII upper case letter. Otherwise it returns
.codn nil .
.coNP Functions @ chr-isxdigit and @ chr-xdigit
.synb
.mets (chr-isxdigit << char )
.mets (chr-xdigit << char )
.syne
.desc
If
.meta char
is a hexadecimal digit character,
.code chr-isxdigit
returns the value
.code t
and
.code chr-xdigit
returns the integer value corresponding to that digit character,
a value in the range 0 to 15. Otherwise, both functions returns
.codn nil .
A hexadecimal digit is one of the ASCII
digit characters
.code 0
through
.codn 9 ,
or else one of the letters
.code A
through
.code F
or their lower-case equivalents
.code a
through
.code f
denoting the values 10 to 15.
.coNP Function @ chr-toupper
.synb
.mets (chr-toupper << char )
.syne
.desc
If character
.meta char
is a lower case ASCII letter character, this function
returns the upper case equivalent character. If it is some other
character, then it just returns
.metn char .
.coNP Function @ chr-tolower
.synb
.mets (chr-tolower << char )
.syne
.desc
If character
.meta char
is an upper case ASCII letter character, this function
returns the lower case equivalent character. If it is some other
character, then it just returns
.metn char .
.coNP Functions @ int-chr and @ chr-int
.synb
.mets (int-chr << char )
.mets (chr-int << num )
.syne
.desc
The argument
.meta char
must be a character. The
.code num-chr
function returns that
character's Unicode code point value as an integer.
The argument
.meta num
must be a fixnum integer in the range
.code 0
to
.codn #\ex10FFFF .
The argument is taken to be a Unicode code point value and the
corresponding character object is returned.
Note: these functions are also known by the obsolescent names
.code num-chr
and
.codn chr-num .
.coNP Accessor @ chr-str
.synb
.mets (chr-str < str << idx )
.mets (set (chr-str < str << idx ) << new-value )
.syne
.desc
The
.code chr-str
function performs random access on string
.meta str
to retrieve
the character whose position is given by integer
.metn idx ,
which must
be within range of the string.
The index value 0 corresponds to the first (leftmost) character of the string
and so non-negative values up to one less than the length are possible.
Negative index values are also allowed, such that -1 corresponds to the
last (rightmost) character of the string, and so negative values down to
the additive inverse of the string length are possible.
An empty string cannot be indexed. A string of length one supports index 0 and
index -1. A string of length two is indexed left to right by the values 0 and
1, and from right to left by -1 and -2.
If the element
.meta idx
of string
.meta str
exists, and the string is modifiable, then the
.code chr-str
form denotes a place.
A
.code chr-str
place
supports deletion. When a deletion takes place,
then the character at
.meta idx
is removed from the string. Any characters
after that position move by one position
to close the gap, and the length of the string
decreases by one.
.TP* Notes:
Direct use of
.code chr-str
is equivalent to the DWIM bracket notation except
that
.code str
must be a string. The following relation holds:
.verb
(chr-str s i) --> [s i]
.brev
since
.codn "[s i] <--> (ref s i)" ,
this also holds:
.verb
(chr-str s i) --> (ref s i)
.brev
However, note the following difference. When the expression
.code "[s i]"
is used as a place, then the subexpression
.code s
must be a place. When
.code "(chr-str s i)"
is used as a place,
.code s
need not be a place.
.coNP Function @ chr-str-set
.synb
.mets (chr-str-set < str < idx << char )
.syne
.desc
The
.code chr-str
function performs random access on string
.meta str
to overwrite
the character whose position is given by integer
.metn idx ,
which must
be within range of the string. The character at
.meta idx
is overwritten
with character
.metn char .
The
.meta idx
argument works exactly as in
.codn chr-str .
The
.meta str
argument must be a modifiable string.
.TP* Notes:
Direct use of
.code chr-str
is equivalent to the DWIM bracket notation provided that
.meta str
is a string and
.meta idx
an integer. The following relation holds:
.verb
(chr-str-set s i c) --> (set [s i] c)
.brev
Since
.code "(set [s i] c) <--> (refset s i c)"
for an integer index
.codn i ,
this also holds:
.verb
(chr-str s i) --> (refset s i c)
.brev
.coNP Function @ span-str
.synb
.mets (span-str < str << set )
.syne
.desc
The
.code span-str
function determines the longest prefix of string
.meta str
which
consists only of the characters in string
.metn set ,
in any combination.
.coNP Function @ compl-span-str
.synb
.mets (compl-span-str < str << set )
.syne
.desc
The
.code compl-span-str
function determines the longest prefix of string
.meta str
which
consists only of the characters which do not appear in
.metn set ,
in any combination.
.coNP Function @ break-str
.synb
.mets (break-str < str << set )
.syne
.desc
The
.code break-str
function returns an integer which represents the position of the
first character in string
.meta str
which appears in string
.metn set .
If there is no such character, then
.code nil
is returned.
.SS* Lazy Strings
Lazy strings are objects that were developed for the \*(TX pattern matching
language, and are exposed via \*(TL. Lazy strings behave much like strings,
and can be substituted for strings. However, unlike regular strings, which
exist in their entirety, first to last character, from the moment they are
created, lazy strings do not exist all at once, but are created on demand. If
character at index N of a lazy string is accessed, then characters 0 through N
of that string are forced into existence. However, characters at indices
beyond N need not necessarily exist.
A lazy string dynamically grows by acquiring new text from a list of strings
which is attached to that lazy string object. When the lazy string is accessed
beyond the end of its hitherto materialized prefix, it takes enough strings
from the list in order to materialize the index. If the list doesn't have
enough material, then the access fails, just like an access beyond the end of a
regular string. A lazy string always takes whole strings from the attached
list.
Lazy string growth is achieved via the
.code lazy-str-force-upto
function which
forces a string to exist up to a given character position. This function is
used internally to handle various situations.
The
.code lazy-str-force
function forces the entire string to materialize. If the
string is connected to an infinite lazy list, this will exhaust all memory.
Lazy strings are specially recognized in many of the regular string functions,
which do the right thing with lazy strings. For instance when
.code sub-str
is invoked on a lazy string, a special version of the
.code sub-str
logic is
used which handles various lazy string cases, and can potentially return
another lazy string. Taking a
.code sub-str
of a lazy string from a given character position
to the end does not force the entire lazy string to exist,
and in fact the operation will work on a lazy string that is infinite.
Furthermore, special lazy string functions are provided which allow programs to
be written carefully to take better advantage of lazy strings. What carefully
means is code that avoids unnecessarily forcing the lazy string. For instance,
in many situations it is necessary to obtain the length of a string, only to
test it for equality or inequality with some number. But it is not necessary to
compute the length of a string in order to know that it is greater than some
value.
.coNP Function @ lazy-str
.synb
.mets (lazy-str < string-list >> [ terminator <> [ limit-count ]])
.syne
.desc
The
.code lazy-str
function constructs a lazy string which draws material from
.meta string-list
which is a list of strings.
If the optional
.meta terminator
argument is given, then it specifies a string
which is appended to every string from
.metn string-list ,
before that string is
incorporated into the lazy string. If
.meta terminator
is not given,
then it defaults to the string
.strn "\en" ,
and so the strings from
.meta string-list
are effectively treated as lines which get terminated by newlines
as they accumulate into the growing prefix of the lazy string.
To avoid the use of a terminator string, a null string
.meta terminator
argument
must be explicitly passed. In that case, the lazy string grows simply
by catenating elements from
.metn string-list .
If the
.meta limit-count
argument is specified, it must be a positive integer. It
expresses a maximum limit on how many elements will be consumed from
.meta string-list
in order to feed the lazy string. Once that many elements are
drawn, the string ends, even if the list has not been exhausted.
.coNP Function @ lazy-stringp
.synb
.mets (lazy-stringp << obj )
.syne
.desc
The
.code lazy-stringp
function returns
.code t
if
.meta obj
is a lazy
string. Otherwise it returns
.codn nil .
.coNP Function @ lazy-str-force-upto
.synb
.mets (lazy-str-force-upto < lazy-str << index )
.syne
.desc
The
.code lazy-str-force-upto
function tries to instantiate the lazy string such that
the position given by
.meta index
materializes. The
.meta index
is a character
position, exactly as used in the
.code chr-str
function.
Some positions beyond
.meta index
may also materialize, as a side effect.
If the string is already materialized through to at least
.metn index ,
or if it is
possible to materialize the string that far, then the value
.code t
is returned to indicate success.
If there is insufficient material to force the lazy string through to the
.meta index
position, then nil is returned.
It is an error if the
.meta lazy-str
argument isn't a lazy string.
.coNP Function @ lazy-str-force
.synb
.mets (lazy-str-force << lazy-str )
.syne
.desc
The
.meta lazy-str
argument must be a lazy string. The lazy string is forced
to fully materialize.
The return value is an ordinary, non-lazy string equivalent to the fully
materialized lazy string.
.coNP Function @ lazy-str-get-trailing-list
.synb
.mets (lazy-str-get-trailing-list < string << index )
.syne
.desc
The
.code lazy-str-get-trailing-list
function can be considered, in some way, an inverse operation to
the production of the lazy string from its associated list.
First,
.meta string
is forced up through the position
.metn index .
That is the only extent to which
.meta string
is modified by this function.
Next, the suffix of the materialized part of the lazy string starting at
position
.metn index ,
is split into pieces on occurrences of the
terminator character (which had been given as the
.meta terminator
argument in the
.code lazy-str
constructor, and defaults to newline). If the
.meta index
position is beyond the part of the string which can be materialized
(in adherence with the lazy string's
.meta limit-count
constructor parameter), then the list of pieces is considered
to be empty.
Finally, a list is returned consisting of the pieces produced by the split,
to which is appended the remaining list of the string which has not yet been
forced to materialize.
.coNP Functions @, length-str-> @, length-str->= @ length-str-< and @ length-str-<=
.synb
.mets (length-str-> < string << len )
.mets (length-str->= < string << len )
.mets (length-str-< < string << len )
.mets (length-str-<= < string << len )
.syne
.desc
These functions compare the lengths of two strings. The following
equivalences hold, as far as the resulting value is concerned:
.verb
(length-str-> s l) <--> (> (length-str s) l)
(length-str->= s l) <--> (>= (length-str s) l)
(length-str-< s l) <--> (< (length-str s) l)
(length-str-<= s l) <--> (<= (length-str s) l)
.brev
The difference between the functions and the equivalent forms is that if the
string is lazy, the
.code length-str
function will fully force it in order to
calculate and return its length.
These functions only force a string up to position
.metn len ,
so they are not
only more efficient, but on infinitely long lazy strings they are usable.
.code length-str
cannot compute the length of a lazy string with an unbounded
length; it will exhaust all memory trying to force the string.
These functions can be used to test such as string whether it is longer
or shorter than a given length, without forcing the string beyond
that length.
.coNP Function @ cmp-str
.synb
.mets (cmp-str < left-string << right-string )
.syne
.desc
The
.code cmp-str
function returns -1 if
.meta left-string
is lexicographically prior to
.metn right-string .
If the reverse relationship holds, it returns 1.
Otherwise the strings are equal
and zero is returned.
If either or both of the strings are lazy, then they are only forced to the
minimum extent necessary for the function to reach a conclusion and return the
appropriate value, since there is no need to look beyond the first character
position in which they differ.
The lexicographic ordering is naive, based on the character code point
values in Unicode taken as integers, without regard for locale-specific
collation orders.
Note: in \*(TX 232 and earlier versions,
.code cmp-str
conforms to a weaker requirements: any negative integer value
may be returned rather than -1, and any positive integer value
can be returned instead of 1.
.coNP Functions @, str= @, str< @, str> @ str>= and @ str<=
.synb
.mets (str= < left-string << right-string )
.mets (str< < left-string << right-string )
.mets (str> < left-string << right-string )
.mets (str<= < left-string << right-string )
.mets (str>= < left-string << right-string )
.syne
.desc
These functions compare
.meta left-string
and
.meta right-string
lexicographically,
as if by the
.code cmp-str
function.
The
.code str=
function returns
.code t
if the two strings are exactly the same, character
for character, otherwise it returns
.codn nil .
The
.code str<
function returns
.code t
if
.meta left-string
is lexicographically before
.metn right-string ,
otherwise nil.
The
.code str>
function returns
.code t
if
.meta left-string
is lexicographically after
.metn right-string ,
otherwise
.codn nil .
The
.code str<
function returns
.code t
if
.meta left-string
is lexicographically before
.metn right-string ,
or if they are exactly the same, otherwise
.codn nil .
The
.code str<
function returns
.code t
if
.meta left-string
is lexicographically after
.metn right-string ,
or if they are exactly the same, otherwise
.codn nil .
.coNP Function @ string-lt
.synb
.mets (string-lt < left-str << right-str )
.syne
.desc
The
.code string-lt
is a deprecated alias for
.codn str< .
.SS* Vectors
.coNP Function @ vector
.synb
.mets (vector < length <> [ initval ])
.syne
.desc
The
.code vector
function creates and returns a vector object of the specified
length. The elements of the vector are initialized to
.metn initval ,
or to nil if
.meta initval
is omitted.
.coNP Function @ vec
.synb
.mets (vec << arg *)
.syne
.desc
The
.code vec
function creates a vector out of its arguments.
.coNP Function @ vectorp
.synb
.mets (vectorp << obj )
.syne
.desc
The
.code vectorp
function returns t if
.meta obj
is a vector, otherwise it returns
.codn nil .
.coNP Function @ vec-set-length
.synb
.mets (vec-set-length < vec << len )
.syne
.desc
The
.code vec-set-length
modifies the length of
.metn vec ,
making it longer or
shorter. If the vector is made longer, then the newly added elements
are initialized to nil. The
.meta len
argument must be nonnegative.
The return value is
.metn vec .
.coNP Accessor @ vecref
.synb
.mets (vecref < vec << idx )
.mets (set (vecref < vec << idx ) << new-value )
.syne
.desc
The
.code vecref
function performs indexing into a vector. It retrieves
an element of
.meta vec
at position
.metn idx ,
counted from zero.
The
.meta idx
value must range from 0 to one less than the
length of the vector. The specified element is returned.
If the element
.meta idx
of vector
.meta vec
exists, then the
.code vecref
form denotes a place.
A
.code vecref
place
supports deletion. When a deletion takes place,
then if
.meta idx
denotes the last element in the vector, the
vector's length is decreased by one, so that
the vector no longer has that element.
Otherwise, if
.meta idx
isn't the last element, then each elements
values at a higher index than
.meta idx
shifts by one one element position to the
adjacent lower index. Then, the length of the
vector is decreased by one, so that the last
element position disappears.
.coNP Function @ vec-push
.synb
.mets (vec-push < vec << elem )
.syne
.desc
The
.code vec-push
function extends the length of a vector
.meta vec
by one element, and
sets the new element to the value
.metn elem .
The previous length of the vector (which is also the position of
.metn elem )
is returned.
.coNP Function @ length-vec
.synb
.mets (length-vec << vec )
.syne
.desc
The
.code length-vec
function returns the length of vector
.metn vec .
It performs
similarly to the generic
.code length
function, except that the argument must
be a vector.
.coNP Function @ size-vec
.synb
.mets (size-vec << vec )
.syne
.desc
The
.code size-vec
function returns the number of elements for which storage
is reserved in the vector
.metn vec .
.TP* Notes:
The
.code length
of the vector can be extended up to this size without any memory
allocation operations having to be performed.
.coNP Function @ vec-list
.synb
.mets (vec-list << list )
.syne
.desc
The
.code vec-list
function returns a vector which contains all of the same elements
and in the same order as list
.metn list .
Note: this function is also known by the obsolescent name
.codn vector-list .
.coNP Function @ list-vec
.synb
.mets (list-vec << vec )
.syne
.desc
The
.code list-vec
function returns a list of the elements of vector
.metn vec .
Note: this function is also known by the obsolescent name
.codn list-vector .
.coNP Function @ copy-vec
.synb
.mets (copy-vec << vec )
.syne
.desc
The
.code copy-vec
function returns a new vector object of the same length
as
.meta vec
and containing the same elements in the same order.
.coNP Accessor @ sub-vec
.synb
.mets (sub-vec < vec >> [ from <> [ to ]])
.mets (set (sub-vec < vec >> [ from <> [ to ]]) << new-value )
.syne
.desc
The
.code sub-vec
function has the same parameters and semantics as the
function
.codn sub ,
except that the
.meta vec
argument must be a vector.
If a
.code sub-vec
form is used as a place, it denotes a subrange of
.meta list
as if it were a storage location. The previous value of this location,
if needed, is fetched by a call to
.codn sub-vec .
Storing
.meta new-value
to the place is performed by a call to
.codn replace-vec .
In an update operation which accesses the prior value and stores a new value,
the arguments
.metn vec ,
.metn from ,
.meta to
and
.meta new-value
are evaluated once.
The
.meta vec
argument is not itself required to be a place; it is not updated
when a value is written to the
.code sub-vec
storage location.
.coNP Function @ replace-vec
.synb
.mets (replace-vec < vec < item-sequence >> [ from <> [ to ]])
.syne
.desc
The
.code replace-vec
is like the
.code replace
function except that the
.meta vec
argument must be a vector.
.coNP Function @ cat-vec
.synb
.mets (cat-vec << vec-list )
.syne
.desc
The
.meta vec-list
argument is a list of vectors. The
.code cat-vec
function
produces a catenation of the vectors listed in
.metn vec-list .
It returns
a single large vector formed by catenating those vectors together in
order.
.SS* Buffers
.coNP The @ buf type
Object of the type
.code buf
are
.IR buffers :
vector-like objects specialized for holding binary data represented as
a sequence of 8 bit bytes. Buffers support operations specialized toward the
encoding of Lisp values into machine-oriented data types, and decoding such
data types into Lisp values.
Buffers are particularly useful in conjunction with the Foreign Function
Interface (FFI), since they can be used to prepare arbitrary data which
can be passed into and out of a function by pointer. They are also useful for
binary I/O.
.coNP Conventions Used by the @ buf-put- Functions
Buffers support a number of similar functions for converting Lisp numeric
values into common data types, which are placed into the buffer. These
functions are named starting with the
.code buf-put-
prefix, followed by an abbreviated type name.
Each of these functions takes three arguments:
.meta buf
specifies the buffer,
.meta pos
specifies the byte offset position into the buffer which receives
the low-order byte of the data transfer, and
.meta val
indicates the value.
If
.meta pos
has a value such that any portion of the data transfer would
like outside of the buffer, the buffer is automatically extended
in length to contain the data transfer. If this extension causes
any padding bytes to appear between the previous length of the
buffer and
.metn pos ,
those bytes are initialized to zero.
The argument
.meta val
giving the value to be stored must be an integer or character,
except in the case of the types
.meta float
and
.metn double (the
functions
.code buf-put-float
and
.codn buf-put-double )
for which it is required to be of type
.codn float ,
and in case of the function
.code buf-put-cptr
which expects the
.meta val
argument to be a
.code cptr
object.
The
.meta val
argument must be in range for the data type, or an exception
results.
Unless otherwise indicated, the stored datum is in the local format
used by the machine with regard to byte order and other representational
details.
.coNP Conventions Used by the @ buf-get- Functions
Buffers support a number of similar functions for extracting
common data types, and converting them into Lisp values.
These functions are named starting with the
.code buf-get-
prefix, followed by an abbreviated type name.
Each of these functions takes two arguments:
.meta buf
specifies the buffer and
.meta pos
specifies the byte offset position into the buffer which holds
the low-order byte of the datum to be extracted.
If any portion of requested datum lies outside of the boundaries
of the buffer, an error exception is thrown.
The extracted value is converted to a Lisp datum. For the
majority of these functions, the returned value is of type
integer. The
.code buf-get-float
and
.code buf-get-double
return a floating-point value.
The
.code buf-get-cptr
function returns a value of type
.codn cptr .
.coNP Function @ make-buf
.synb
.mets (make-buf < len >> [ init-val <> [ alloc-size ]])
.syne
.desc
The
.code make-buf
function creates a new buffer object which holds
.meta len
bytes. This argument may be zero.
If
.meta init-val
is present, it specifies the value with which the first
.meta len
byte of the buffer are initialized. If omitted, it
defaults to zero.
bytes. The value of
.meta init-val
must lie in the range 0 to 255.
The
.meta alloc-size
parameter indicates how much memory to actually allocate for
the buffer.
If an argument is not given, the parameter takes on
the same value as
.metn len .
If an argument is given, its value must not be less than
.metn len .
.coNP Function @ bufp
.synb
.mets (bufp << object )
.syne
.desc
The
.code bufp
function returns
.code t
if
.meta object
is a
.codn buf ,
otherwise it returns
.codn nil .
.coNP Function @ length-buf
.synb
.mets (length-buf << buf )
.syne
.desc
The
.code length-buf
function retrieves the buffer length: how many bytes are stored
in the buffer.
Note: the generic
.code length
function is also applicable to buffers.
.coNP Function @ buf-alloc-size
.synb
.mets (buf-alloc-size << buf )
.syne
.desc
The
.code buf-alloc-size
function retrieves the allocation size of the buffer.
.coNP Function @ buf-trim
.synb
.mets (buf-trim << buf )
.syne
.desc
The
.code buf-trim
function reduces the amount of memory allocated to the buffer
to the minimum required to hold it contents, effectively
setting the allocation size to the current length.
The previous allocation size is returned.
.coNP Function @ buf-set-length
.synb
.mets (buf-set-length < buf < len <> [ init-val ])
.syne
.desc
The
.code buf-set-length
function changes the length of the buffer. If the buffer
is made longer, the newly added bytes appear at the end,
and are initialized to the value given by
.metn init-val .
If
.meta init-val
is specified, its value must be in the range 0 to 255.
It defaults to zero.
.coNP Function @ copy-buf
.synb
.mets (copy-buf << buf )
.syne
.desc
The
.code copy-buf
function returns a duplicate of
.metn buf :
an object distinct from
.meta buf
which has the same length and contents, and compares
.code equal
to
.metn buf .
.coNP Accessor @ sub-buf
.synb
.mets (sub-buf < buf >> [ from <> [ to ]])
.mets (set (sub-buf < buf >> [ from <> [ to ]]) << new-val )
.syne
.desc
The
.code sub-buf
function has the same semantics as the
.code sub
function, except that the first argument must be a buffer.
The extracted sub-range of a buffer is itself a buffer object.
If
.code sub-buf
is used as a syntactic place, the argument expressions
.metn buf ,
.metn from ,
.meta to
and
.meta new-val
are evaluated just once. The prior value, if required, is accessed by calling
.code buf-sub
and
.meta new-val
is then stored via
.codn replace-buf .
.coNP Function @ replace-buf
.synb
.mets (replace-buf < buf < item-sequence >> [ from <> [ to ]])
.syne
.desc
The
.code replace-buf
function has the same semantics as the
.code replace
function, except that the first argument must be a buffer.
The elements of
.code item-sequence
are stored into
.meta buf
as if using the
.code buf-put-u8
function and therefore must be suitable
.meta val
arguments for that function.
The of the arguments, semantics and return value given for
.code replace
apply to
.codn replace-buf .
.coNP Function @ buf-list
.synb
.mets (buf-list << list )
.syne
.desc
The
.code buf-list
function creates and returns a new buffer, whose contents are derived from the
elements of
.metn list ,
which may be any kind of sequence.
The elements of
.meta list
must be integers whose values lie in the range 0 to 255, or else
characters whose code point values lie in that range.
These values are placed into the newly created buffer, which
therefore has the same length as
.metn list .
.coNP Function @ buf-put-buf
.synb
.mets (buf-put-buf < dst-buf < pos << src-buf )
.syne
.desc
The
.code buf-put-buf
function stores a copy of buffer
.meta src-buf
into
.meta dst-buf
at the offset indicated by
.metn pos .
The source and destination memory regions may overlap.
The return value is
.metn src-buf .
Note: the effect of a
.code buf-put-buf
operation may also be performed by a suitable call to
.codn replace-buf ;
however,
.code buf-put-buf
is less general: it doesn't insert or delete by replacing
destination ranges with data of differing length,
and requires a source operand of buffer type.
.coNP Function @ buf-put-i8
.synb
.mets (buf-put-i8 < buf < pos << val )
.syne
.desc
The
.code buf-put-i8
converts
.meta val
into an eight bit signed integer, and stores it into the buffer at
the offset indicated by
.metn pos .
The return value is
.metn val .
.coNP Function @ buf-put-u8
.synb
.mets (buf-put-u8 < buf < pos << val )
.syne
.desc
The
.code buf-put-u8
converts
.meta val
into an eight bit unsigned integer, and stores it into the buffer at
the offset indicated by
.metn pos .
The return value is
.metn val .
.coNP Function @ buf-put-i16
.synb
.mets (buf-put-i16 < buf < pos << val )
.syne
.desc
The
.code buf-put-i16
converts
.meta val
into a sixteen bit signed integer, and stores it into the buffer at
the offset indicated by
.metn pos .
The return value is
.metn val .
.coNP Function @ buf-put-u16
.synb
.mets (buf-put-u16 < buf < pos << val )
.syne
.desc
The
.code buf-put-u16
converts
.meta val
into a sixteen bit unsigned integer, and stores it into the buffer at
the offset indicated by
.metn pos .
The return value is
.metn val .
.coNP Function @ buf-put-i32
.synb
.mets (buf-put-i32 < buf < pos << val )
.syne
.desc
The
.code buf-put-i32
converts
.meta val
into a 32 bit signed integer, and stores it into the buffer at
the offset indicated by
.metn pos .
The return value is
.metn val .
.coNP Function @ buf-put-u32
.synb
.mets (buf-put-u32 < buf < pos << val )
.syne
.desc
The
.code buf-put-u32
converts
.meta val
into a 32 bit unsigned integer, and stores it into the buffer at
the offset indicated by
.metn pos .
The return value is
.metn val .
.coNP Function @ buf-put-i64
.synb
.mets (buf-put-i64 < buf < pos << val )
.syne
.desc
The
.code buf-put-i64
converts
.meta val
into a 64 bit signed integer, and stores it into the buffer at
the offset indicated by
.metn pos .
The return value is
.metn val .
.coNP Function @ buf-put-u64
.synb
.mets (buf-put-u64 < buf < pos << val )
.syne
.desc
The
.code buf-put-u64
converts the value
.meta val
into a 64 bit unsigned integer, and stores it into the buffer at
the offset indicated by
.metn pos .
The return value is
.metn val .
.coNP Function @ buf-put-char
.synb
.mets (buf-put-char < buf < pos << val )
.syne
.desc
The
.code buf-put-char
converts
.meta val
into a value of the C type
.code char
and stores it into the buffer at
the offset indicated by
.metn pos .
The return value is
.metn val .
Note that the
.code char
type may be signed or unsigned.
.coNP Function @ buf-put-uchar
.synb
.mets (buf-put-uchar < buf < pos << val )
.syne
.desc
The
.code buf-put-uchar
converts
.meta val
into a value of the C type
.code "unsigned char"
and stores it into the buffer at
the offset indicated by
.metn pos .
.coNP Function @ buf-put-short
.synb
.mets (buf-put-short < buf < pos << val )
.syne
.desc
The
.code buf-put-short
converts
.meta val
into a value of the C type
.code short
and stores it into the buffer at
the offset indicated by
.metn pos .
.coNP Function @ buf-put-ushort
.synb
.mets (buf-put-ushort < buf < pos << val )
.syne
.desc
The
.code buf-put-ushort
converts
.meta val
into a value of the C type
.code "unsigned short"
and stores it into the buffer at
the offset indicated by
.metn pos .
.coNP Function @ buf-put-int
.synb
.mets (buf-put-int < buf < pos << val )
.syne
.desc
The
.code buf-put-int
converts
.meta val
into a value of the C type
.code int
and stores it into the buffer at
the offset indicated by
.metn pos .
.coNP Function @ buf-put-uint
.synb
.mets (buf-put-uint < buf < pos << val )
.syne
.desc
The
.code buf-put-uint
converts
.meta val
into a value of the C type
.code "unsigned int"
and stores it into the buffer at
the offset indicated by
.metn pos .
.coNP Function @ buf-put-long
.synb
.mets (buf-put-long < buf < pos << val )
.syne
.desc
The
.code buf-put-long
converts
.meta val
into a value of the C type
.code long
and stores it into the buffer at
the offset indicated by
.metn pos .
.coNP Function @ buf-put-ulong
.synb
.mets (buf-put-ulong < buf < pos << val )
.syne
.desc
The
.code buf-put-ulong
converts
.meta val
into a value of the C type
.code "unsigned long"
and stores it into the buffer at
the offset indicated by
.metn pos .
.coNP Function @ buf-put-float
.synb
.mets (buf-put-float < buf < pos << val )
.syne
.desc
The
.code buf-put-float
converts
.meta val
into a value of the C type
.code float
and stores it into the buffer at
the offset indicated by
.metn pos .
Note: the conversion of a \*(TL floating-point value
to the C type float may be inexact, reducing the
numeric precision.
.coNP Function @ buf-put-double
.synb
.mets (buf-put-double < buf < pos << val )
.syne
.desc
The
.code buf-put-double
converts
.meta val
into a value of the C type
.code double
and stores it into the buffer at
the offset indicated by
.metn pos .
.coNP Function @ buf-put-cptr
.synb
.mets (buf-put-cptr < buf < pos << val )
.syne
.desc
The
.code buf-put-cptr
expects
.meta val
to be of type
.codn cptr .
It stores the object's pointer value into the buffer at
the offset indicated by
.metn pos .
.coNP Function @ buf-get-i8
.synb
.mets (buf-get-i8 < buf << pos )
.syne
.desc
The
.code buf-get-i8
function extracts and returns signed eight bit integer from
.meta buf
at the offset given by
.metn pos .
.coNP Function @ buf-get-u8
.synb
.mets (buf-get-u8 < buf << pos )
.syne
.desc
The
.code buf-get-u8
function extracts and returns an unsigned eight bit integer from
.meta buf
at the offset given by
.metn pos .
.coNP Function @ buf-get-i16
.synb
.mets (buf-get-i16 < buf << pos )
.syne
.desc
The
.code buf-get-i16
function extracts and returns a signed 16 bit integer from
.meta buf
at the offset given by
.metn pos .
.coNP Function @ buf-get-u16
.synb
.mets (buf-get-u16 < buf << pos )
.syne
.desc
The
.code buf-get-u16
function extracts and returns an unsigned 16 bit integer from
.meta buf
at the offset given by
.metn pos .
.coNP Function @ buf-get-i32
.synb
.mets (buf-get-i32 < buf << pos )
.syne
.desc
The
.code buf-get-i32
function extracts and returns a signed 32 bit integer from
.meta buf
at the offset given by
.metn pos .
.coNP Function @ buf-get-u32
.synb
.mets (buf-get-u32 < buf << pos )
.syne
.desc
The
.code buf-get-u32
function extracts and returns an unsigned 32 bit integer from
.meta buf
at the offset given by
.metn pos .
.coNP Function @ buf-get-i64
.synb
.mets (buf-get-i64 < buf << pos )
.syne
.desc
The
.code buf-get-i64
function extracts and returns a signed 64 bit integer from
.meta buf
at the offset given by
.metn pos .
.coNP Function @ buf-get-u64
.synb
.mets (buf-get-u64 < buf << pos )
.syne
.desc
The
.code buf-get-u64
function extracts and returns an unsigned 64 bit integer from
.meta buf
at the offset given by
.metn pos .
.coNP Function @ buf-get-char
.synb
.mets (buf-get-char < buf << pos )
.syne
.desc
The
.code buf-get-char
function extracts and returns a value of the C type
.code char
from
.meta buf
at the offset given by
.metn pos .
Note that
.code char
may be signed or unsigned.
.coNP Function @ buf-get-uchar
.synb
.mets (buf-get-uchar < buf << pos )
.syne
.desc
The
.code buf-get-uchar
function extracts and returns a value of the C type
.code "unsigned char"
from
.meta buf
at the offset given by
.metn pos .
.coNP Function @ buf-get-short
.synb
.mets (buf-get-short < buf << pos )
.syne
.desc
The
.code buf-get-short
function extracts and returns a value of the C type
.code short
from
.meta buf
at the offset given by
.metn pos .
.coNP Function @ buf-get-ushort
.synb
.mets (buf-get-ushort < buf << pos )
.syne
.desc
The
.code buf-get-ushort
function extracts and returns a value of the C type
.code "unsigned short"
from
.meta buf
at the offset given by
.metn pos .
.coNP Function @ buf-get-int
.synb
.mets (buf-get-int < buf << pos )
.syne
.desc
The
.code buf-get-int
function extracts and returns a value of the C type
.code int
from
.meta buf
at the offset given by
.metn pos .
.coNP Function @ buf-get-uint
.synb
.mets (buf-get-uint < buf << pos )
.syne
.desc
The
.code buf-get-uint
function extracts and returns a value of the C type
.code "unsigned int"
from
.meta buf
at the offset given by
.metn pos .
.coNP Function @ buf-get-long
.synb
.mets (buf-get-long < buf << pos )
.syne
.desc
The
.code buf-get-long
function extracts and returns a value of the C type
.code long
from
.meta buf
at the offset given by
.metn pos .
.coNP Function @ buf-get-ulong
.synb
.mets (buf-get-ulong < buf << pos )
.syne
.desc
The
.code buf-get-ulong
function extracts and returns a value of the C type
.code "unsigned long"
from
.meta buf
at the offset given by
.metn pos .
.coNP Function @ buf-get-float
.synb
.mets (buf-get-float < buf << pos )
.syne
.desc
The
.code buf-get-float
function extracts and returns a value of the C type
.code float
from
.meta buf
at the offset given by
.metn pos ,
returning that value as a Lisp floating-point number.
.coNP Function @ buf-get-double
.synb
.mets (buf-get-double < buf << pos )
.syne
.desc
The
.code buf-get-double
function extracts and returns a value of the C type
.code double
from
.meta buf
at the offset given by
.metn pos ,
returning that value as a Lisp floating-point number.
.coNP Function @ buf-get-cptr
.synb
.mets (buf-get-cptr < buf << pos )
.syne
.desc
The
.code buf-get-cptr
function extracts a C pointer from
.meta buf
at the offset given by
.metn pos ,
returning that value as a Lisp object of type
.codn cnum .
.coNP Function @ put-buf
.synb
.mets (put-buf < buf >> [ pos <> [ stream ]])
.syne
.desc
The
.code put-buf
function writes the contents of buffer
.metn buf ,
starting at position
.meta pos
to a stream, through to the last byte, if possible.
Successive bytes from the buffer are written to the stream as if by a
.code put-byte
operation.
If
.meta stream
is omitted, it defaults to
.codn *stdout* .
If
.meta pos
is omitted, it defaults to zero.
It indicates the starting position within the buffer.
The stream must support the
.code put-byte
operation. Streams which support
.code put-byte
can be expected to support
.code put-buf
and, conversely, streams which do not support
.code put-byte
do not support
.codn put-buf .
The
.code put-buf
function returns the position of the last byte that was successfully written.
If the buffer was written through to the end, then this value corresponds to
the length of the buffer.
If an error occurs before any bytes are written, the function
throws an error.
.coNP Functions @ fill-buf and @ fill-buf-adjust
.synb
.mets (fill-buf < buf >> [ pos <> [ stream ]])
.mets (fill-buf-adjust < buf >> [ pos <> [ stream ]])
.syne
.desc
The
.code fill-buf
reads bytes from
.meta stream
and writes them into consecutive locations in buffer
.meta buf
starting at position
.metn pos .
The bytes are read as if using the
.code get-byte
function.
If the
.meta stream
argument is omitted, it defaults to
.codn *stdin* .
If
.meta pos
is omitted, it defaults to zero.
It indicates the starting position within the buffer.
The stream must support the
.code get-byte
operation. Buffers which support
.code get-byte
can be expected to support
.code fill-buf
and, conversely, streams which do not support
.code get-byte
do not support
.codn fill-buf .
The
.code fill-buf
function returns the position that is one byte past the last byte that
was successfully read.
If an end-of-file or other error condition occurs before the buffer is filled
through to the end, then the value returned is smaller than the buffer length.
In this case, the area of the buffer beyond the read size retains its previous
content.
If an error situation occurs other than a premature end-of-file before
any bytes are read, then an exception is thrown.
If an end-of-file condition occurs before any bytes are read, then zero
is returned.
The
.code fill-buf-adjust
differs usefully from
.code fill-buf
as follows. Whereas
.code fill-buf
doesn't manipulate the length of the buffer at any stage of the operation, the
.code fill-buf-adjust
begins by adjusting the length of the buffer to the underlying allocated size.
Then it performs the fill operation in
exactly the same manner as
.codn fill-buf .
Finally, if the operation succeeds, then
.code fill-buf-adjust
adjusts the length of the buffer to match the position that is returned.
.coNP Function @ get-line-as-buf
.synb
.mets (get-line-as-buf <> [ stream ])
.syne
.desc
The
.code get-line-as-buf
reads bytes from
.meta stream
as if using the
.code get-byte
function, until either a the newline character is encountered, or else the end
of input is encountered. The bytes which are read, exclusive of the newline
character, are returned in a new buffer object. The newline character, if it
occurs, is consumed.
If
.meta stream
is omitted, it defaults to
.codn *stdin* .
The stream is required to support byte input.
.coNP Functions @ file-get-buf and @ command-get-buf
.synb
.mets (file-get-buf < name >> [ max-bytes <> [ skip-bytes ]])
.mets (command-get-buf < cmd >> [ max-bytes <> [ skip-bytes ]])
.syne
.desc
The
.code file-get-buf
function opens a binary stream over the file indicated by the string argument
.meta name
for reading. By default, the entire file is read and its contents are returned as a
buffer object. The buffer's length corresponds to the number of bytes
read from the file.
The
.code command-get
function opens a binary stream over an input command pipe created for
the command string
.metn cmd ,
as if by the
.code open-command
function. It read bytes from the pipe until the indication that no more
input is available. The bytes are returned aggregated into a buffer object.
If the
.meta max-bytes
parameter is given an argument, it must be a non-negative integer.
That value specifies a limit on the number of bytes to read. A buffer
no longer than
.meta max-bytes
shall be returned.
If the
.meta skip-bytes
parameter is given an argument, it must be a non-negative integer.
That value specifies how many initial bytes of the input should be
discarded before accumulation of the buffer begins.
If possible, the semantics of this parameter is achieved by performing a
.code seek-stream
operation, falling back on reading and discarding bytes if the
stream doesn't support seeking.
.coNP Functions @, file-put-buf @ file-append-buf and @ command-put-buf
.synb
.mets (file-put-buf < name < buf << skip-bytes )
.mets (file-place-buf < name < buf << skip-bytes )
.mets (file-append-buf < name << buf )
.mets (command-put-buf < cmd << buf )
.syne
.desc
The
.code file-put-buf
function opens a text stream over the file indicated by the string argument
.metn name ,
writes the contents of the buffer object
.meta buf
into the file, and then closes the file. If the file doesn't exist, it is
created. If it exists, it is truncated to zero length and overwritten.
The default value of the optional
.meta skip-bytes
parameter is zero. If an argument is given, it must be a non-negative integer.
If it is nonzero, then after opening the file, before writing the buffer,
the function will seek to an offset of that many bytes from the start of the
file. The contents of
.meta buf
will be written at that offset.
The
.code file-place-buf
function does not truncate an existing file to zero length.
In all other regards, it is equivalent to
.codn file-put-buf .
The
.code file-append-buf
function is similar to
.code file-put-buf
except that if the file exists, it isn't overwritten. Rather, the buffer
is appended to the file.
The
.code command-put-buf
function opens an output text stream over an output command pipe created
for the command specified in the string argument
.metn cmd ,
as if by the
.code open-command
function.
It then writes the contents of buffer
.meta buf
into the stream and closes the stream.
The return value of all three functions is that of the
.code put-buf
operation which is implicitly performed.
.coNP Functions @ buf-str and @ str-buf
.synb
.mets (buf-str < buf <> [ null-term-p ])
.mets (str-buf < str <> [ null-term-p ])
.syne
.desc
The
.code buf-str
and
.code str-buf
functions perform UTF-8 conversion between the buffer and character string
data types.
The
.code buf-str
function takes the contents of buffer
.meta buf
to be UTF-8 data, which is converted to a character string and returned.
Null bytes in the buffer are mapped to the pseudo-null character
.codn #\exDC00 .
If a true argument is given to the
.meta null-term-p
parameter, then if the contents of
.meta buf
end in a null byte, that byte is not included in the conversion.
The
.code str-buf
function UTF-8-encodes
.meta str
and returns a buffer containing the converted representation.
If a true argument is given to the
.meta null-term-p
parameter, then a null terminating byte is added to the buffer.
This byte is added even if the previous byte is already a null byte
from the conversion of a pseudo-null character occurring in
.metn str .
.coNP Functions @ buf-int and @ buf-uint
.synb
.mets (buf-int < integer )
.mets (buf-uint < integer )
.syne
.desc
The
.code buf-int
and
.code buf-uint
functions convert a signed and unsigned integer, respectively, or else a
character, into a binary representation, which is returned as a buffer object.
Under both functions, the representation uses big endian byte order: most
significant byte first.
The
.code buf-uint
function requires a non-negative
.meta integer
argument, which may be a character. The representation stored in the
buffer is a pure binary representation of the value using the smallest
number of bytes required for the given
.meta integer
value.
The
.code buf-int
function requires an integer or character argument. The representation
stored in the buffer is a two's complement representation of
.meta integer
using the smallest number of bytes which can represent that value.
If
.meta integer
is non-negative, then the first byte of the buffer lies in the range
0 to 127.
If
.meta integer
is negative, then the first byte of the buffer lies in the range 128 to 255.
The integer 255 therefore doesn't convert to the buffer
.code #b'ff'
but rather
.codn #b'00ff' .
The buffer
.code #b'ff'
represents -1.
If the
.meta integer
argument is a character object, it is taken to be its Unicode code
point value, as returned by the
.code int-chr
function.
.coNP Functions @ int-buf and @ uint-buf
.synb
.mets (int-buf < buf )
.mets (uint-buf < buf )
.syne
.desc
The
.code int-buf
and
.code uint-buf
functions recover an integer value from its binary form which appears
inside
.metn buf ,
which must be a buffer object. These functions expect
.meta buf
to contain the representation produced by, respectively, the functions
.code buf-int
and
.codn buf-uint .
If
.meta buf
holds the representation of an integer value
.metn n ,
as produced by
.mono
.meti (buf-int << n )
.onom
then
.mono
.meti (int-buf << buf )
.onom
returns
.metn n .
The same relationship holds between
.code buf-uint
and
.codn uint-buf .
Thus, these equalities hold:
.verb
.mets (= (int-buf (buf-int << n )) << n )
.mets (= (uint-buf (buf-uint << n )) << n )
.brev
provided that
.meta n
is of integer type and, in the case of
.codn buf-uint ,
nonnegative.
.SS* Structures
\*(TX supports application-defined types in the form of structures. Structures
are objects which hold multiple storage locations called slots, which are named
by symbols. Structures can be related to each other by inheritance. Multiple
inheritance is permitted.
The type of a structure is itself an object, of type
.codn struct-type .
When the program defines a new structure type, it does so by creating a new
.code struct-type
instance, with properties which describe the new structure type: its
name, its list of slots, its initialization and "boa constructor" functions,
and the structures type it inherits from (the
.IR supertypes ).
The
.code struct-type
object is then used to generate instances.
Structures instances are not only containers which hold named slots, but they
also indicate their struct type. Two structures which have the same number of
slots having the same names are not necessarily of the same type.
Structure types and structures may be created and manipulated using
a programming interface based on functions.
For more convenient and clutter-free expression of structure-based
program code, macros are also provided.
Furthermore, concise and expressive slot access syntax is provided courtesy of
the referencing dot and unbound referencing dot syntax, a syntactic sugar
for the
.code qref
and
.code uref
macros.
Structure types have a name, which is a symbol. The
.code typeof
function, when applied to any struct type, returns the symbol
.codn struct-type .
When
.code typeof
is applied to a struct instance, it returns the name of
the struct type. Effectively, struct names are types.
The consequences are unspecified if an existing struct name is re-used for a
different struct type, or an existing type name is used for a struct type.
.NP* Static Slots
Structure slots can be of two kinds: they can be the ordinary instance slots or
they can be static slots. The instances of a given structure type have their
own instance of a given instance slot. However, they all share a single
instance of a static slot.
Static slots are allocated in a global area associated with a structure type
and are initialized when the structure type is created. They are useful for
efficiently representing properties which have the same value for all instances
of a struct. These properties don't have to occupy space in each instance, and
time doesn't have to be wasted initializing them each time a new instance is
created. Static slots are also useful for struct-specific global variables.
Lastly, static slots are also useful for holding methods and functions.
Although structures can have methods and functions in their instances, usually,
all structures of the same type share the same functions. The
.code defstruct
macro supports a special syntax for defining methods and struct-specific
functions at the same time when a new structure type is defined.
The
.code defmeth
macro can be used for adding new methods and functions to an existing
structure and its descendants.
Static slots may be assigned just like instance slots. Changing a static
slot changes that slot in every structure of the same type.
Static slots are not listed in the
.code #S(...)
notation when a structure is printed. When the structure notation is
read from a stream, if static slots are present, they will be processed
and their values stored in the static locations they represent, thus
changing their values for all instances.
Static slots are inherited just like instance slots. The following
simplified discussion is restricted to single inheritance. A detailed
description of multiple inheritance is given in the Multiple Inheritance
section below. If a given structure
.meta B
has some static slot
.metn s ,
and a new structure
.meta D
is derived from
.metn B ,
using
.codn defstruct ,
and does not define a slot
.metn s ,
then
.meta D
inherits
.metn s .
This means that
.meta D
shares the static slot with
.metn B :
both types share a single instance of that slot.
On the other hand if
.code D
defines a static slot
.meta s
then that slot will have its own instance in the
.meta D
structure type;
.meta D
will not inherit the
.meta B
instance of slot
.metn s .
Moreover, if the the definition of
.code D
omits the
.meta init-form
for slot
.metn s ,
then that slot will be initialized with a copy of the current value of slot
.meta s
of the
.meta B
base type, which allows derived types to obtain the value of base type's
static slot, yet have that in their own instance.
The slot type can be overridden. A structure type deriving from another
type can introduce slots which have the same names as the supertype,
but are of a different kind: an instance slot in the supertype
can be replaced by a static slot in the derived type or
.IR "vice versa" .
Note that, in light of the above type overriding possibility, the static slot
value propagation happens only from the immediate supertype.
If
.code D
is is derived from
.code G
which has a static slot
.codn s ,
whereas
.code D
specifies
.code s
as an instance slot, but then
.code B
again specifies a static slot
.codn s ,
then
.codn B 's
slot
.code s
will not inherit the value from
.codn G 's
.code s
slot.
Simply,
.codn B 's
supertype is
.code D
and that supertype is not considered to have a static slot
.codn s .
A structure type is associated with a static initialization function
which may be used to store initial values into static slots. This function
is invoked once in a type's life time, when the type is created.
The function is also inherited by derived struct types and invoked when
they are created.
.NP* Multiple Inheritance
When a structure type is defined, two or more supertypes may be specified. The
new structure type then potentially inherits instance and static slots from all
of the specified supertypes, and is considered to be a subtype of all of them.
This situation with two or more supertypes is called
.IR "multiple inheritance" .
The contrasting term is
.IR "single inheritance" ,
denoting the situation when a structure has exactly one supertype.
\*(TL's struct types initially permitted only single inheritance.
Multiple inheritance support was introduced in version 229, as a
straightforward extension of single inheritance semantics.
In the
.code make-struct-type
function and
.code defstruct
macro, a list of supertypes can be given instead of just one.
The type then inherits slots from all of the specified types.
If any conflicts arise among the supertypes due to slots having the same name,
the leftmost supertype dominates: that type's slot will be inherited.
If the leftmost slot is static, then that static slot will be inherited.
Otherwise, the instance slot will be inherited.
Of course, any slot which is specified in the newly defined type itself
dominates over any same-named slots among the supertypes.
The new structure type inherits all of the slot initializing expressions, as
well as
.code :init
and
.code :postinit
methods of all of its supertypes.
Each time the structure is instantiated, the
.code :init
initializing expressions inherited from the supertypes, together with the slot
initializing expressions, are all evaluated, in right-to-left order:
the initializations contributed by each supertype are performed before
considering the next supertype to the left.
The
.code :postinit
methods are similarly invoked in right-to-left order, before the
.code :postinit
methods of the new type itself.
Thus the order is: supertype inits, own inits, supertype post-inits,
own post-inits.
.NP* Duplicate Supertypes
Multiple inheritance makes it possible for a type to inherit the
same supertype more than once, either directly (by naming it more than
once as a direct supertype) or indirectly (by inheriting two or
more different types, which have a common ancestor).
The latter situation is sometimes referred to as the
.IR "diamond problem" .
Until \*(TX 242, the situation of duplicate supertypes was
ignored for the purposes of object initialization. It was documented that if a
supertype is referenced by inheritance, directly or indirectly, two or more
times, then its initializing expressions are evaluated that many times.
Starting in \*(TX 243, duplicate supertypes no longer give rise to duplicate
initialization. When an object is instantiated, only one initialization of a
duplicated supertype occurs. The subsequent initializations that would take
place in the absence of duplicate detection are suppressed.
Note also that the
.code :fini
mechanism is tied to initialization. Initialization of an object
registers the finalizers, and so in \*(TX 242,
.code :fini
finalizers are also executed multiple times, if
.code :init
initializers are.
.TP* Examples:
Consider following program:
.verb
(defstruct base ()
(:init (me) (put-line "base init"))
(:fini (me) (put-line "base fini")))
(defstruct d1 (base)
(:init (me) (put-line "d1 init"))
(:fini (me) (put-line "d1 fini")))
(defstruct d2 (base)
(:init (me) (put-line "d2 init"))
(:fini (me) (put-line "d2 fini")))
(defstruct s (d1 d2))
(call-finalizers (new s))
.brev
Under \*(TX 242, and earlier versions that support multiple inheritance, it
produces the output:
.verb
base init
d2 init
base init
d1 init
d1 fini
base fini
d2 fini
base fini
.brev
The supertypes are initialized in a right-to-left traversal of the
type lattice, without regard for
.code base
being duplicated.
Starting with \*(TX 243, the output is:
.verb
base init
d2 init
d1 init
d1 fini
d2 fini
base fini
.brev
The rightmost duplicate of the base is initialized, so that the initialization
is complete prior to the initializations of any dependent types.
Likewise, the same rightmost duplicate of the base is finalized, so that
finalization takes place after that of any dependent struct types.
Note, however, that the
.code derived
function function mechanism is not required to detect duplicated direct
supertypes.
If a supertype implements the
.code derived
function to detect situations when it is the target of inheritance,
and some subtype inherits that type more than once, that function
may be called more than once. The behavior is unspecified.
.NP* Dirty Flags
All structure instances contain a Boolean flag called the
.IR "dirty flag" .
This flag is not a slot, but rather a meta-data property that is exposed
to program access. When the flag is set, an object is said to be dirty;
otherwise it is clean.
Newly constructed objects come into existence dirty. The dirty flag
state can be tested with the function
.codn test-dirty .
An object can be marked as clean by clearing its dirty flag with
.codn clear-dirty .
A combined operation
.code test-clear-dirty
is provided which clears the dirty flag, and
returns its previous value.
The dirty flag is set whenever a new value is stored into the instance
slot of an object.
Note: the dirty flag can be used to support support the caching of values
derived from an object's slots. The derived values don't have to be
re-computed while an object remains clean.
.NP* Equality Substitution
In object-based or object-oriented programming, sometimes it is necessary for a
new data type to provide its own notion of equality: its own requirements for
when two distinct instances of the type are considered equal. Furthermore,
types sometimes have to implement their own notion, also, of inequality: the
requirements for the manner in which one instance is considered lesser or
greater than another.
\*(TL structures implement a concept called
.IR "equality substitution"
which provides a simple, unified way for the implementor of an object to
encode the requirements for both equality and inequality.
Equality substitution allows for objects to be used as keys in a hash
table according to the custom equality, without the programmer being
burdened with the responsibility of developing a custom hashing function.
An object participates in equality substitution by implementing the
.code equal
method. The
.code equal
method takes no arguments other than the object itself. It returns
a representative value which is used in place of that object
for the purposes of
.code equal
comparison.
Whenever an object which supports equality substitution is used as an argument
of any of the functions
.codn equal ,
.codn nequal ,
.codn greater ,
.codn less ,
.codn gequal ,
.code lequal
or
.codn hash-equal ,
the
.code equal
method of that object is invoked, and the return value of that method
is taken in place of that object.
The same is true if an object which supports equality substitution is used as a
key in an
.code :equal-based
hash table.
The substitution is applied repeatedly: if the return value of the object's
.code equal
method is an object which itself supports equality substitution,
than that returned object's method is invoked on that object
to fetch its equality substitute. This repeats as many times as necessary
until an object is determined which isn't a structure that supports
equality substitution.
Once the equality substitute is determined, then the given function proceeds
with the replacement object. Thus for example
.code equal
compares the replacement object in place of the original, and an
.code :equal-based
hash table uses the replacement object as the key for the purposes of
hashing and comparison.
.coNP Macro @ defstruct
.synb
.mets (defstruct >> { name | >> ( name << arg *)} < super
.mets \ \ << slot-specifier *)
.syne
.desc
The
.code defstruct
macro defines a new structure type and registers it under
.metn name ,
which must be a bindable symbol, according to the
.code bindable
function. Likewise, the name of every
.meta slot
must also be a bindable symbol.
The
.meta super
argument must either be
.codn nil ,
or a symbol which names an existing struct type,
or else a list of such symbols.
The newly defined struct type will inherit all slots,
as well as initialization behaviors from the specified
struct types.
The
.code defstruct
macro is implemented using the
.code make-struct-type
function, which is more general. The macro analyzes the
.code defstruct
argument syntax, and synthesizes arguments which are then
used to call the function. Some remarks in the description of
.code defstruct
only apply to structure types defined using that macro.
Slots are specified using zero or more
.IR "slot specifiers" .
Slot specifiers come in the following variety:
.RS
.meIP < name
The simplest slot specifier is just a name, which must be a bindable
symbol, as defined by the
.code bindable
function. This form is a short form for the
.mono
.meti (:instance << name )
.onom
syntax.
.meIP >> ( name << init-form )
This syntax is a short form for the
.mono
.meti (:instance < name << init-form )
.onom
syntax.
.meIP (:instance < name <> [ init-form ])
This syntax specifies an instance slot called
.meta name
whose initial value is obtained by evaluating
.meta init-form
whenever a new instance of the structure is created.
This evaluation takes place in the original lexical environment in which the
.code defstruct
form occurs. If
.meta init-form
is omitted, the slot is initialized to
.codn nil .
.meIP (:static < name <> [ init-form ])
This syntax specifies a static slot called
.meta name
whose initial value is obtained by evaluating
.meta init-form
once, during the evaluation of the
.code defstruct
form in which it occurs, if the
.meta init-form
is present. If
.meta init-form
is absent, and a static slot with the same name
exists in the
.meta super
base type, then this slot is initialized
with the value of that slot.
Otherwise it is initialized to
.codn nil .
The definition of a static slot in a
.code defstruct
causes the new type to have its own instance
that slot, even if a same-named static
slot occurs in the
.meta super
base type, or its bases.
.meIP (:method < name <> ( param +) << body-form *)
This syntax creates a static slot called
.meta name
which is initialized with an anonymous function.
The anonymous function is created during the
evaluation of the
.code defstruct
form. The function takes the arguments specified
by the
.meta param
symbols, and its body consists of the
.metn body-form -s.
There must be at least one
.metn param .
When the function is invoked as a method, as intended,
the leftmost
.meta param
receives the structure instance.
The
.metn body-form -s
are evaluated in a context in which a block named
.meta name
is visible. Consequently,
.code return-from
may be used to terminate the execution of a method
and return a value.
Methods are invoked
using the
.code "instance.(name arg ...)"
syntax, which implicitly inserts the instance into the argument list.
Due to the semantics of static slots, methods are naturally
inherited from a base structure to a derived one,
and defining a method in a derived class which also exists
in a base class performs OOP-style overriding.
.meIP (:function < name <> ( param *) << body-form *)
This syntax creates a static slot called
.meta name
which is initialized with an anonymous function.
The anonymous function is created during the
evaluation of the
.code defstruct
form. The function takes the arguments specified
by the
.meta param
symbols, and its body consists of the
.metn body-form -s.
This specifier differs from
.code :method
only in one respect: there may be zero
parameters. A structure function defined this way is
intended to be used as a utility function which doesn't
receive the structure instance as an argument.
The
.metn body-form -s
are evaluated in a context in which a block named
.meta name
is visible. Consequently,
.code return-from
may be used to terminate the execution of the function
and return a value.
Such functions are called using the
.code "instance.[name arg ...]"
syntax which doesn't insert the instance into
the argument list.
The remarks about inheritance and overriding
in the description of
.code :method
also apply to
.codn :function .
.meIP (:init <> ( param ) << body-form *)
The
.code :init
specifier doesn't describe a slot. Rather, it specifies code
which is executed when a structure is instantiated, before
the slot initializations specific to the structure type
are performed. The code consists of
.metn body-form -s
which are evaluated in order in a lexical scope in
which the variable
.meta param
is bound to the structure object.
The
.code :init
specifier may not appear more than once in a given
.code defstruct
form.
When an object with one or more levels of inheritance
is instantiated, the
.code :init
code of a base structure type, if any, is executed
before any initializations specific to a derived
structure type. Under multiple inheritance, the
.code :init
code of the rightmost base type is executed first,
then that of the remaining bases in right-to-left
order.
The
.code :init
initializations are executed before any other
slot initializations. The argument values passed to the
.code new
or
.code lnew
operator or the
.code make-struct
function are not yet stored in the object's slots,
and are not accessible. Initialization code which needs
these values to be stable can be defined with
.codn :postinit .
Initializers in base structures must be careful about assumptions about slot
kinds, because derived structures can alter static slots to instance slots or
.IR "vice versa" .
To avoid an unwanted initialization being applied to the
wrong kind of slot, initialization code can be made conditional on the
outcome of
.code static-slot-p
applied to the slot.
(Code generated by
.code defstruct
for initializing instance slots performs this kind of check).
The
.metn body-form -s
of an
.code :init
specifier are not surrounded by an implicit
.codn block .
.meIP (:postinit <> ( param ) << body-form *)
The
.code :postinit
specifier is similar to
.codn :init .
Both specify forms which are evaluated during object instantiation.
The difference is that the
.codn body-form -s
of a
.code :postinit
are evaluated after other initializations have taken
place, including the
.code :init
initializations, as a second pass. By the time
.code :postinit
initialization runs, the argument material from the
.codn make-struct ,
.code new
or
.code lnew
invocation has already been processed and stored
into slots.
Like
.code :init
actions,
.code :postinit
actions registered at different levels of the type's
inheritance hierarchy are invoked in the base-to-derived
order, and in right-to-left order among multiple bases
at the same level.
.meIP (:fini <> ( param ) << body-form *)
The
.code :fini
specifier doesn't describe a slot. Rather, it specifies
a finalization function which is associated with the
structure instance, as if by use of the
.code finalize
function. This finalization registration takes place
as the first step when an instance of the structure
is created, before the slots are initialized and
the
.code :init
code, if any, has been executed. The registration
takes place as if by the evaluation of the form
.mono
.meti (finalize < obj (lambda <> ( param ) << body-form ...) t)
.onom
where
.meta obj
denotes the structure instance. Note the
.code t
argument which requests reverse order of registration, ensuring that if an
object has multiple finalizers registered at different levels of inheritance
hierarchy, the finalizers specified for a derived structure type are called
before inherited finalizers.
The
.metn body-form -s
of a
.code :fini
specifier are not surrounded by an implicit
.codn block .
Note that an object's finalizers can be called explicitly with
.codn call-finalizers .
.RE
.IP
The
.code with-objects
macro arranges for finalizers to be called on objects when the execution
of a scope terminates by any means.
The slot names given in a
.code defstruct
must all be unique among themselves, but they
may match the names of existing slots in the
.meta super
base type.
A given structure type can have only one slot under a given
symbolic name. If a newly specified slot matches the name of an existing slot
in the
.meta super
type or that type's chain of ancestors, it is called a
.IR "repeated slot" .
The kind of the repeated slot (static or instance) is not inherited; it
is established by the
.code defstruct
and may be different from the type of the same-named slot in the
supertype or its ancestors.
If a repeated slot is introduced as a static slot, and
has no
.meta init-form
then it receives the current of the a static of the same name from
the nearest supertype which has such a slot.
If a repeated slot is an instance slot, no such inheritance of value
takes place; only the local
.meta init-form
applies to it; if it is absent, the slot it initialized to
.code nil
in each newly created instance of the new type.
However,
.code :init
and
.code :postinit
initializations are inherited from a base type and they apply to
the repeated slots, regardless of their kind. These initializations
take place on the instantiated object, and the slot references
resolve accordingly.
The initialization for slots which are specified using the
.code :method
or
.code :function
specifiers is re-ordered with regard to
.code :static
slots. Regardless of their placement in the
.code defstruct
form,
.code :method
and
.code :function
slots are initialized before
.code :static
slots. This ordering is useful, because it means that when the initialization
expression for a given static slot constructs an instance of the struct type,
any instance initialization code executing for that instance can use
all functions and methods of the struct type.
However, note the static slots which follow that slot in the
.code defstruct
syntax are not yet initialized. If it is necessary for a structure's
initialization code to have access to all static slots, even when the
structure is instantiated during the initialization of a static slot,
a possible solution may be to use lazy instantiation using the
.code lnew
operator, rather than ordinary eager instantiation via
.codn new .
It is also necessary to ensure that that the instance isn't accessed until all
static initializations are complete, since access to the instance slots of a
lazily instantiated structure triggers its initialization.
The structure name is specified using two forms, plain
.meta name
or the syntax
.mono
.meti >> ( name << arg *)
.onom
If the second form is used, then the structure type will support
"boa construction", where "boa" stands for "by order of arguments".
The
.metn arg -s
specify the list of slot names which are to be initialized in the
by-order-of-arguments style. For instance, if three slot names
are given, then those slots can be optionally initialized by giving three
arguments in the
.code new
macro or the
.code make-struct
function.
Slots are first initialized according to their
.metn init-form -s,
regardless of whether they are involved in boa construction
A slot initialized in this style still has a
.meta init-form
which is processed independently of the existence of, and prior to,
boa construction.
The boa constructor syntax can specify optional parameters, delimited
by a colon, similarly to the
.code lambda
syntax. However, the optional parameters may not be arbitrary symbols;
they must be symbols which name
slots. Moreover, the
.mono
.meti >> ( name < init-form <> [ present-p ])
.onom
optional parameter syntax isn't supported.
When boa construction is invoked with optional arguments missing,
the default values for those arguments come from the
.metn init-form -s
in the remaining
.code defstruct
syntax.
.TP* Examples:
.verb
(defvar *counter* 0)
;; New struct type foo with no super type:
;; Slots a and b initialize to nil.
;; Slot c is initialized by value of (inc *counter*).
(defstruct foo nil (a b (c (inc *counter*))))
(new foo) -> #S(foo a nil b nil c 1)
(new foo) -> #S(foo a nil b nil c 2)
;; New struct bar inheriting from foo.
(defstruct bar foo (c 0) (d 100))
(new bar) -> #S(bar a nil b nil c 0 d 100)
(new bar) -> #S(bar a nil b nil c 0 d 100)
;; counter was still incremented during
;; construction of d:
*counter* -> 4
;; override slots with new arguments
(new foo a "str" c 17) -> #S(foo a "str" b nil c 17)
*counter* -> 5
;; boa initialization
(defstruct (point x : y) nil (x 0) (y 0))
(new point) -> #S(point x 0 y 0)
(new (point 1 1)) -> #S(point x 1 y 1)
;; property list style initialization
;; can always be used:
(new point x 4 y 5) -> #S(point x 4 y 5)
;; boa applies last:
(new (point 1 1) x 4 y 5) -> #S(point x 1 y 1)
;; boa with optional argument omitted:
(new (point 1)) -> #S(point x 1 y 0)
;; boa with optional argument omitted and
;; with property list style initialization:
(new (point 1) x 5 y 5) -> #S(point x 1 y 5)
.brev
.coNP Macro @ defmeth
.synb
.mets (defmeth < type-name < name < param-list << body-form *)
.syne
.desc
Unless
.meta name
is one of the two symbols
.code :init
or
.codn :postinit ,
the
.code defmeth
macro installs a function into the static slot named by the symbol
.meta name
in the struct type indicated by
.metn type-name .
If the structure type doesn't already have such a static slot, it is
first added, as if by the
.code static-slot-ensure
function, subject to the same checks.
If the function has at least one argument, it can be used as a method. In that
situation, the leftmost argument passes the structure instance on which the
method is being invoked.
The function takes the arguments specified
by the
.meta param-list
symbols, and its body consists of the
.metn body-form -s.
The
.metn body-form -s
are placed into a
.code block
named
.codn name .
A method named
.code lambda
allows a structure to be used as if it were a function. When arguments
are applied to the structure as if it were a function, the
.code lambda
method is invoked with those arguments, with the object itself inserted
into the leftmost argument position.
If
.code defmeth
is used to redefine an existing method, the semantics can be inferred
from that of
.codn static-slot-ensure .
In particular, the method will be imposed into all subtypes which inherit
(do not override) the method.
If
.meta name
is the keyword symbol
.codn :init ,
then instead of operating on a static slot, the macro redefines the
.meta initfun
of the given structure type, as if by a call to the function
.codn struct-set-initfun .
Similarly, if
.meta name
is the keyword symbol
.codn :postinit ,
then the macro redefines the
.meta postinitfun
of the given structure type, as if by a call to the function
.codn struct-set-postinitfun .
When redefining
.code :initfun
the admonishments given in the description of
.code struct-set-initfun
apply: if the type has an
.meta initfun
generated by the
.code defstruct
macro, then that
.meta initfun
is what implements all of the slot initializations given in the
slot specifier syntax. These initializations are lost if the
.meta initfun
is overwritten.
The
.code defmeth
macro returns a method name: a unit of syntax of the form
.mono
.meti (meth < type-name << name)
.onom
which can be used as an argument to the accessor
.code symbol-function
and other situations.
.coNP Macros @ new and @ lnew
.synb
.mets (new >> { name | >> ( name << arg *)} >> { slot << init-form }*)
.mets (lnew >> { name | >> ( name << arg *)} >> { slot << init-form }*)
.syne
.desc
The
.code new
macro creates a new instance of the structure type named by
.metn name .
If the structure supports "boa construction", then, optionally, the
arguments may be given using the syntax
.mono
.meti >> ( name << arg *)
.onom
instead of
.metn name .
Slot values may also be specified by the
.meta slot
and
.meta init-form
arguments.
Note: the evaluation order in
.code new
is surprising: namely,
.metn init-form -s
are evaluated before
.metn arg -s
if both are present.
When the object is constructed, all default initializations take place
first. If the object's structure type has a supertype, then the supertype
initializations take place. Then the type's initializations take
place, followed by the
.meta slot
.meta init-form
overrides from the
.code new
macro, and lastly the "boa constructor" overrides.
If any of the initializations abandon the evaluation of
.code new
by a non-local exit such as an exception throw, the object's
finalizers, if any, are invoked.
The macro
.code lnew
differs from new in that it specifies the construction of a
lazy struct, as if by the
.code make-lazy-struct
function.
When
.code lnew
is used to construct an instance, a lazy struct is returned
immediately, without evaluating any of the the
.meta arg
and
.meta init-form
expressions.
The expressions are evaluated when any of the object's
instance slots is accessed for the first time. At that time,
these expressions are evaluated (in the same order as under
.codn new )
and initialization proceeds in the same way.
If any of the initializations abandon the delayed initializations steps
arranged by
.code lnew
by a non-local exit such as an exception throw, the object's
finalizers, if any, are invoked.
Lazy initialization does not detect cycles. Immediately prior to the lazy
initialization of a struct, the struct is marked as no longer requiring
initialization. Thus, during initialization, its instance slots may be
freely accessed. Slots not yet initialized evaluate as
.codn nil .
.coNP Macros @ new* and @ lnew*
.synb
.mets (new* >> { expr | >> ( expr << arg *)} >> { slot << init-form }*)
.mets (lnew* >> { expr | >> ( expr << arg *)} >> { slot << init-form }*)
.syne
.desc
The
.code new*
and
.code lnew*
macros are variants, respectively, of
.code new
and
.codn lnew .
The only difference in behavior in these macros relative to
.code new
and
.code lnew
is that the
.meta name
argument is replaced with an expression
.meta expr
which is evaluated. The value of
.meta expr
must be a struct type, or a symbol which is the name of a struct type.
.coNP Macro @ with-slots
.synb
.mets (with-slots >> ({ slot | >> ( sym << slot )}*) < struct-expr
.mets \ \ << body-form *)
.syne
.desc
The
.code with-slots
binds lexical macros to serve as aliases for the slots of a structure.
The
.meta struct-expr
argument is expected to be an expression which evaluates to a struct
object. It is evaluated once, and its value is retained. The aliases are then
established to the slots of the resulting struct value.
The aliases are specified as zero or more expressions which consist of either
a single symbol
.meta slot
or a
.mono
.meti >> ( sym << slot )
.onom
pair. The simple form binds a macro named
.meta slot
to a slot also named
.metn slot .
The pair form binds a macro named
.meta sym
to a slot named
.metn slot .
The lexical aliases are syntactic places: assigning to an alias causes
the value to be stored into the slot which it denotes.
After evaluating
.meta struct-expr
the
.code with-slots
macro arranges for the evaluation of
.metn body-form -s
in the lexical scope in which the aliases are visible.
.TP* "Dialect Notes:"
The intent of the
.code with-slots
macro is to help reduce the verbosity of code which makes multiple
references to the same slot. Use of
.code with-slots
is less necessary in \*(TL than other Lisp dialects
thanks to the dot operator for accessing struct slots.
Lexical aliases to struct places can also be
arranged with considerable convenience using the
.code placelet
operator. However,
.code placelet
will not bind multiple aliases to multiple slots of the same object
such that the expression which produces the object is evaluated only
once.
.TP* Example:
.verb
(defstruct point nil x y)
;; Here, with-slots introduces verbosity because
;; each slot is accessed only once. The function
;; is equivalent to:
;;
;; (defun point-delta (p0 p1)
;; (new point x (- p1.x p0.x) y (- p1.y p0.y)))
;;
;; Also contrast with the use of placelet:
;;
;; (defun point-delta (p0 p1)
;; (placelet ((x0 p0.x) (y0 p0.y)
;; (x1 p1.x) (y1 p1.y))
;; (new point x (- x1 x0) y (- y1 y0)))))
(defun point-delta (p0 p1)
(with-slots ((x0 x) (y0 y)) p0
(with-slots ((x1 x) (y1 y)) p1
(new point x (- x1 x0) y (- y1 y0)))))
.brev
.coNP Macro @ qref
.synb
.mets (qref < object-form
.mets \ \ >> { slot | >> ( slot << arg *) | >> [ slot << arg *]}+)
.syne
.desc
The
.code qref
macro ("quoted reference") performs structure slot access. Structure slot
access is more conveniently expressed using the referencing dot notation, which
works by translating to qref
.code qref
syntax, according to the following equivalence:
.verb
a.b.c.d <--> (qref a b c d) ;; a b c d must not be numbers
.brev
(See the Referencing Dot section under Additional Syntax.)
The leftmost argument of
.code qref
is an expression which is evaluated. This argument is followed by one or more
reference designators.
If there are two or more designators, the following equivalence applies:
.verb
(qref obj d1 d2 ...) <---> (qref (qref obj d1) d2 ...)
.brev
That is to say,
.code qref
is applied to the object and a single designator. This must yield
an object, which to which the next designator is applied as if by
another
.code qref
operation, and so forth.
If the null-safe syntax
.code "(t ...)"
is present, the equivalence becomes more complicated:
.verb
(qref (t obj) d1 d2 ...) <---> (qref (qref (t obj) d1) d2 ...)
(qref obj (t d1) d2 ...) <---> (qref (t (qref obj d1)) d2 ...)
.brev
Thus,
.code qref
can be understood in terms of the semantics of the
binary form
.mono
.meti (qref < object-form << designator )
.onom
Designators come in three basic forms: a lone symbol, an ordinary compound expression
consisting of a symbol followed by arguments, or a DWIM expression
consisting of a symbol followed by arguments.
A lone symbol designator indicates the slot of that name. That is to say, the
following equivalence applies:
.verb
(qref o n) <--> (slot o 'n)
.brev
where
.code slot
is the structure slot accessor function. Because
.code slot
is an accessor, this form denotes the slot as a syntactic place;
slots can be modified via assignment to the
.code qref
form and the referencing dot syntax.
The slot name being implicitly quoted is the basis of the term
"quoted reference", giving rise to the
.code qref
name.
A compound designator indicates that the named slot is a function,
and arguments are to be applied to it. The following equivalence applies
in this case, except that
.code o
is evaluated only once:
.verb
(qref o (n arg ...)) <--> (call (slot o 'n) o arg ...)
.brev
A DWIM designator indicates that the named slot is a function or an
indexable or callable object. The following equivalence applies:
.verb
(qref obj [name arg ...]) <--> [(slot obj 'name) arg ...]
.brev
If the
.meta object-form
has the syntax
.mono
.meti (t << expression )
.onom
this indicates null-safe access: if
.meta expression
evaluates to
.code nil
then the entire expression
.mono
.meti (qref (t << expression ) << designator )
.onom
form yields
.codn nil .
This syntax is produced by the
.code .?
notation.
The null-safe access notation prevents not only slot access, but also
method or function calls on
.codn nil .
When a method or function call is suppressed due to the object being
.codn nil ,
no aspect of the method or function call is evaluated; not only
is the slot not accessed, but the argument expressions are not evaluated.
.TP* Example:
.verb
(defstruct foo nil
(array (vec 1 2 3))
(increment (lambda (self index delta)
(inc [self.array index] delta))))
(defvarl s (new foo))
;; access third element of s.array:
s.[array 2] --> 3
;; increment first element of array by 42
s.(increment 0 42) --> 43
;; access array member
s.array --> #(43 2 3)
.brev
Note how
.code increment
behaves much like a single-argument-dispatch object-oriented method.
Firstly, the syntax
.mono
s.(increment 0 42)
.onom
effectively selects the
.code increment
function which is particular to the
.code s
object. Secondly, the object is passed to the selected function as the
leftmost argument, so that the function has access to the object.
.coNP Macro @ uref
.synb
.mets (uref >> { slot | >> ( slot << arg *) | >> [ slot << arg *]}+)
.syne
.desc
The
.code uref
macro ("unbound reference") expands to an expression which evaluates to a
function. The function takes exactly one argument: an object.
When the function is invoked on an object, it references slots
or methods relative to that object.
Note: the
.code uref
syntax may be used directly, but it is also produced by the unbound referencing
dot syntactic sugar:
.verb
.a --> (uref a)
.?a --> (uref t a)
.(f x) --> (uref (f x))
.(f x).b --> (uref (f x) b)
.a.(f x).b --> (uref a (f x) b)
.brev
The macro may be understood in terms of the following translation
scheme:
.verb
(uref a b ...) --> (lambda (o) (qref o a b ...))
(uref t a b ...) --> (lambda (o) (if o (qref o a b ...)))
.brev
where
.code o
is understood to be a unique symbol (for instance, as produced by the
.code gensym
function).
When only one
.code uref
argument is present, these equivalences also hold:
.verb
(uref (f a b c ...)) <--> (umeth f a b c ...)
(uref s) <--> (usl s)
.brev
The terminology "unbound reference" refers to the property that
.code uref
expressions produce a function which isn't bound to a structure
object. The function binds a slot or method; the call to that function then
binds an object to that function, as an argument.
.TP* Examples:
Suppose that the objects in
.code list
have slots
.code a
and
.codn b .
Then, a list of the
.code a
slot values may be obtained using:
.verb
(mapcar .a list)
.brev
because this is equivalent to
.verb
(mapcar (lambda (o) o.a) list)
.brev
Because
.code uref
produces a function, its result can be operated upon by
functional combinators. For instance, we can use the
.code juxt
combinator to produce a list of two-element lists,
which hold the
.code a
and
.code b
slots from each object in
.codn list :
.verb
(mapcar (juxt .a .b) list)
.brev
.coNP Macro @ meth
.synb
.mets (meth < struct < slot << curried-expr *)
.syne
.desc
The
.code meth
macro allows indirection upon a method-like function stored
in a function slot.
The
.code meth
macro binds
.meta struct
as the leftmost argument of the function stored in
.metn slot ,
returning a function which takes the remaining arguments.
That is to say, it returns a function
.meta f
such that
.mono
.meti >> [ f < arg ... ]
.onom
calls
.mono
.meti >> [ struct.slot < struct < arg ... ]
.onom
except that
.meta struct
is evaluated only once.
If one or more
.meta curried-expr
expressions are present, their values are bound inside
.meta f
also, and when
.meta f
is invoked, these are passed to the function stored in the slot.
Thus if
.meta f
is produced by
.code "(meth struct slot c1 c2 c3 ...)"
then
.mono
.meti >> [ f < arg ... ]
.onom
calls
.mono
.meti >> [ struct.slot < struct < c1v < c2v < c3v ... arg ... ]
.onom
except that
.meta struct
is evaluated only once, and
.metn c1v ,
.meta c2v
and
.meta c3v
are the values of expressions
.codn c1 ,
.code c2
and
.codn c3 .
The argument
.meta struct
must be an expression which evaluates to a struct.
The
.meta slot
argument is not evaluated, and must be a symbol denoting a slot.
The syntax can be understood as a translation to a call of the
.code method
function:
.verb
(meth a b) <--> (method a 'b)
.brev
If
.meta curried-arg
expressions are present, the translation may be be understood
as:
.verb
(meth a b c1 c2 ...) <--> [(fun method) a 'b c1 c2 ...]
.brev
In other words the
.meta curried-arg
expressions are evaluated under the
.code dwim
operator evaluation rules.
.TP* Example:
.verb
;; struct for counting atoms eq to key
(defstruct (counter key) nil
key
(count 0)
(:method increment (self key)
(if (eq self.key key)
(inc self.count))))
;; pass all atoms in tree to func
(defun map-tree (tree func)
(if (atom tree)
[func tree]
(progn (map-tree (car tree) func)
(map-tree (cdr tree) func))))
;; count occurrences of symbol a
;; using increment method of counter,
;; passed as func argument to map-tree.
(let ((c (new (counter 'a)))
(tr '(a (b (a a)) c a d)))
(map-tree tr (meth c increment))
c)
--> #S(counter key a count 4
increment #<function: type 0>)
.brev
.coNP Macro @ umeth
.synb
.mets (umeth < slot << curried-expr *)
.syne
.desc
The
.code umeth
macro binds the symbol
.meta slot
to a function and returns that function.
The
.meta curried-expr
arguments, if present, are evaluated as if they were
arguments to the
.code dwim
operator.
When that function is called, it expects at least one argument.
The leftmost argument must be an object of struct type.
The slot named
.meta slot
is retrieved from that object, and is expected to be a function.
That function is called with the object, followed by the values
of the
.metn curried-expr -s,
if any, followed by that function's arguments.
The syntax can be understood as a translation to a call of the
.code umethod
function:
.verb
(umeth s ...) <--> [umethod 's ...]
.brev
The macro merely provides the syntactic sugar of not having to quote the
symbol, and automatically treating the curried argument expressions
using Lisp-1 semantics of the
.code dwim
operator.
.TP* Example:
.verb
;; seal and dog are variables which hold structures of
;; different types. Both have a method called bark.
(let ((bark-fun (umeth bark)))
[bark-fun dog] ;; same effect as dog.(bark)
[bark-fun seal]) ;; same effect as seal.(bark)
.brev
The
.code u
in
.code umeth
stands for "unbound". The function produced by
.code umeth
is not bound to any specific object; it binds to an object whenever it is
invoked by retrieving the actual method from the object's slot at call time.
.coNP Macro @ usl
.synb
.mets (usl << slot )
.syne
.desc
The
.code usl
macro binds the symbol
.meta slot
to a function and returns that function.
When that function is called, it expects exactly one argument.
That argument must be an object of struct type.
The slot named
.meta slot
is retrieved from that object and returned.
The name
.code usl
stands for "unbound slot". The term "unbound" refers to the returned
function not being bound to a particular object. The binding of the
slot to an object takes place whenever the function is called.
.coNP Function @ make-struct-type
.synb
.mets (make-struct-type < name < super < static-slots < slots
.mets \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ < static-initfun < initfun << boactor
.mets \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ < boactor << postinitfun )
.syne
.desc
The
.code make-struct-type
function creates a new struct type.
The
.meta name
argument must be a bindable symbol, according to the
.code bindable
function. It specifies the name property of the struct
type as well as the name under which the struct type
is globally registered.
The
.meta super
argument indicates the supertype for the struct type.
It must be either a value of type
.codn struct-type ,
a symbol which names a struct type, or else
.codn nil ,
indicating that the newly created struct type has no supertype.
The
.meta static-slots
argument is a list of symbol which specify static slots.
The symbols must be bindable and the list must not contain duplicates.
The
.meta slots
argument is a list of symbols which specifies the instance slots.
The symbols must be bindable and there must not be any duplicates
within the list, or against entries in the
.meta static-slots
list.
The new struct type's effective list of slots is formed by appending
together
.meta static-slots
and
.metn slots ,
and then appending that to the list of the supertype's slots, and
de-duplicating the resulting list as if by the
.code uniq
function. Thus, any slots which are already present in the supertype are
removed. If the structure has no supertype, then the list of supertype
slots is taken to be empty. When a structure is instantiated, it shall have all
the slots specified in the effective list of slots. Each instance slot
shall be initialized to the value
.codn nil ,
prior to the invocation of
.meta initfun
and
.metn boactor .
The
.meta static-initfun
argument either specifies an initialization function, or is
.codn nil ,
which is equivalent to specifying a function which does nothing.
Prior to the invocation of
.metn static-initfun ,
each new static slot shall be initialized the value
.codn nil .
Inherited static slots retain their values from the supertype.
If specified,
.meta static-initfun
function must
accept one argument. When the structure type is created (before
the
.code make-struct-type
function returns) the
.meta static-initfun
function is invoked, passed the newly created
structure type as its argument.
The
.meta initfun
argument either specifies an initialization function, or is
.codn nil ,
which is equivalent to specifying a function which does nothing.
If specified, this function must
accept one argument. When a structure is instantiated, every
.meta initfun
in its chain of supertype ancestry is invoked, in order of inheritance,
so that the root supertype's
.meta initfun
is called first and the structure's own specific
.meta initfun
is called last. These calls occur before the slots are initialized
from the
.meta arg
arguments
or the
.meta slot-init-plist
of
.codn make-struct .
Each function is passed the newly created structure
object, and may alter its slots.
If multiple inheritance occurs, the
.meta initfun
functions of multiple supertypes are called in right-to-left order.
The
.meta boactor
argument either specifies a by-order-of-arguments initialization
function ("boa constructor") or is
.codn nil ,
which is equivalent to specifying a constructor which does nothing.
If specified, it must be a function which takes at least one argument.
When a structure is instantiated, and boa arguments are given, the
.meta boactor
is invoked, with the structure as the leftmost argument, and
the boa arguments as additional arguments. This takes place
after the processing of
.meta initfun
functions, and after the processing of the
.meta slot-init-plist
specified in the
.code make-struct
call. Note that the
.meta boactor
functions of the supertypes are not called, only the
.meta boactor
specific to the type being constructed.
The
.meta postinitfun
argument either specifies an initialization function, or is
.codn nil ,
which is equivalent to specifying a function which does nothing.
If specified, this function must accept one argument.
The
.meta postinitfun
function is similar to
.metn initfun .
The difference is that
.meta postinitfun
functions are called after all other initialization processing,
rather than before. They are are also called in order of
inheritance: the
.meta postinitfun
of a structure's supertype is called before its own,
and in right-to-left order among multiple supertypes
under multiple inheritance.
.coNP Function @ find-struct-type
.synb
.mets (find-struct-type << name )
.syne
.desc
The
.code find-struct-type
returns a
.code struct-type
object corresponding to the symbol
.metn name .
If no struct type is registered under
.metn name ,
then it returns
.codn nil .
A
.code struct-type
object exists for each structure type and holds information about it.
These objects are not themselves structures and are all of the
same type,
.codn struct-type .
.coNP Function @ struct-type-p
.synb
.mets (struct-type-p << obj )
.syne
.desc
The
.code struct-type-p
function returns t if
.meta obj
is a structure type, otherwise it returns
.codn nil .
A structure type is an object of type
.codn struct-type ,
returned by
.codn find-struct-type .
.coNP Function @ struct-type-name
.synb
.mets (struct-type-name << type )
.syne
.desc
The
.code struct-type-name
function returns the symbol which serves as the name of
.metn type ,
which must be either a struct type object (such as the return value of
a successful lookup via
.codn find-struct-type ),
or else a struct type name.
.coNP Function @ super
.synb
.mets (super << type )
.syne
.desc
The
.code super
function returns the struct type object which is the
supertype of
.metn type ,
or returns
.code nil
if
.meta type
has no supertype.
The
.meta type
argument must be either a struct type object, a
a symbol which names a struct type (which is resolved to that type),
or else a structure instance (which is resolved to its structure type).
.coNP Function @ make-struct
.synb
.mets (make-struct < type < slot-init-plist << arg *)
.syne
.desc
The
.code make-struct
function returns a new object which is an instance of the
structure type
.metn type .
The
.meta type
argument must either be a
.code struct-type
object, or else a symbol which is the name of a structure.
The
.meta slot-init-plist
argument gives a list of slot initializations in the
style of a property list, as defined by the
.code prop
function. It may be empty, in which case
it has no effect. Otherwise, it specifies slot names
and their values. Each slot name which is given must
be a slot of the structure type. The corresponding value
will be stored into the slot of the newly created object. If a slot is
repeated, it is unspecified which value takes effect.
The optional
.metn arg -s
specify arguments to the structure type's boa constructor.
If the arguments are omitted, the boa constructor is not invoked.
Otherwise the boa constructor is invoked on the structure object
and those arguments. The argument list must match the trailing parameters of
the boa constructor (the remaining parameters which follow the leftmost
argument which passes the structure to the boa constructor).
When a new structure is instantiated by
.codn make-struct ,
its slot values are first initialized by the structure type's registered
functions as described under
.codn make-struct-type .
Then, the
.meta slot-init-plist
is processed, if not empty, and finally, the
.metn arg -s
are processed, if present, and passed to the boa constructor.
If any of the initializations abandon the evaluation of
.code make-struct
by a non-local exit such as an exception throw, the object's
finalizers, if any, are invoked.
.coNP Function @ make-lazy-struct
.synb
.mets (make-lazy-struct < type << argfun )
.syne
.desc
The
.code make-lazy-struct
function returns a new object which is an instance of the
structure type
.metn type .
The
.meta type
argument must either be a
.code struct-type
object, or else a symbol which is the name of a structure.
The
.meta argfun
argument should be a function which can be called with no parameters
and returns a cons cell. More requirements are specified below.
The object returned by
.code make-lazy-struct
is a lazily-initialized struct instance, or
.IR "lazy struct" .
A lazy struct remains uninitialized until just before the first access
to any of its instance slots. Just before an instance slot is
accessed, initialization
takes place as follows. The
.meta argfun
function is invoked with no arguments. Its return value must be a cons
cell. The
.code car
of the cons cell is taken to be a property list, as defined by the
.code prop
function. The
.code cdr
field is taken to be a list of arguments. These values are treated
as if they were, respectively, the
.meta slot-init-plist
and the boa constructor arguments given in a
.code make-struct
invocation. Initialization of the structure proceeds as described
in the description of
.codn make-struct .
.coNP Functions @ struct-from-plist and @ struct-from-args
.synb
.mets (struct-from-plist < type >> { slot << value }*)
.mets (struct-from-arg < type << arg *)
.syne
.desc
The
.code struct-from-plist
and
.code struct-from-arg
are interfaces to the
.code make-struct
function.
The
.code struct-from-plist
function passes its
.meta slot
and
.meta value
arguments as the
.meta slot-init-plist
argument of
.codn make-struct .
It passes no boa constructor arguments.
The
.code struct-from-plist
function calls
.meta make-struct
with an empty
.metn slot-init-plist ,
passing down the list of
.metn arg -s.
The following equivalences hold:
.verb
(struct-from-plist a s0 v0 s1 v1 ...)
<--> (make-struct a (list s0 v0 s1 v1 ...))
(struct-from-args a v0 v1 v2 ...)
<--> (make-struct a nil v0 v1 v2 ...)
.brev
.coNP Function @ allocate-struct
.synb
.mets (allocate-struct << type )
.syne
.desc
The
.code allocate-struct
provides a low-level allocator for structure objects.
The
.meta type
argument must either be a
.code struct-type
object, or else a symbol which is the name of a structure.
The
.code allocate-struct
creates and returns a new instance of
.meta type
all of whose instance slots take on the value
.codn nil .
No initializations are performed. The struct type's
registered initialization functions are not invoked.
.coNP Function @ copy-struct
.synb
.mets (copy-struct << struct-obj )
.syne
.desc
The
.code copy-struct
function creates and returns a new object which is a duplicate of
.metn struct-obj ,
which must be a structure.
The duplicate object is a structure of the same type as
.meta struct-obj
and has the same slot values.
The creation of a duplicate does not involve calling any of the
struct type's initialization functions.
Only instance slots participate in the duplication. Since
the original structure and copy are of the same structure type,
they already share static slots.
This is a low-level, "shallow" copying mechanism. If an object design
calls for a higher level cloning mechanism with deep copying or other
additional semantics, one can be built on top of
.codn copy-struct .
For instance, a structure can have a
.code copy
method similar to the following:
.verb
(:method copy (me)
(let ((my-copy (copy-struct me)))
;; inform the copy that it has been created
;; by invoking its copied method.
my-copy.(copied)
my-copy))
.brev
since this logic is generic, it can be placed in a base
method. The
.code copied
method which it calls is the means by which the new object is notified that it
is a copy. This method takes on whatever special responsibilities are required
when a copy is produced, such as registering the object in various necessary
associations, or performing a deeper copy of some of the objects held
in the slots.
The
.code copied
handler can be implemented at multiple levels of an inheritance hierarchy. The
initial call to
.code copied
from
.code copy
will call the most derived override of that method.
To call the corresponding method in the base class, a given derived method
can use the
.code call-super-fun
function, or else the
.code "(meth ...)"
syntax in the first position of a compound form, in place of a function name.
Examples of both are given in the documentation for
.codn call-super-fun .
Thus derived structs can inherit the copy handling logic from base structs, and
extend it with their own.
.coNP Accessor @ slot
.synb
.mets (slot < struct-obj << slot-name )
.mets (set (slot < struct-obj << slot-name ) << new-value )
.syne
.desc
The
.code slot
function retrieves a structure's slot. The
.meta struct-obj
argument must be a structure, and
.meta slot-name
must be a symbol which names a slot in that structure.
Because
.code slot
is an accessor, a
.code slot
form is a syntactic place which denotes the
slot's storage location.
A syntactic place expressed by
.code slot
does not support deletion.
.coNP Function @ slotset
.synb
.mets (slotset < struct-obj < slot-name << new-value )
.syne
.desc
The
.code slotset
function stores a value in a structure's slot.
The
.meta struct-obj
argument must be a structure, and
.meta slot-name
must be a symbol which names a slot in that structure.
The
.meta new-value
argument specifies the value to be stored in the slot.
If a successful store takes place to an instance slot of
.metn struct-obj ,
then the dirty flag of that object is set, causing the
.code test-dirty
function to report true for that object.
The
.code slotset
function returns
.metn new-value .
.coNP Functions @, test-dirty @ clear-dirty and @ test-clear-dirty
.synb
.mets (test-dirty << struct-obj )
.mets (clear-dirty << struct-obj )
.mets (test-clear-dirty << struct-obj )
.syne
.desc
The
.codn test-dirty ,
.code clear-dirty
and
.code test-clear-dirty
functions comprise the interface for interacting with structure
dirty flags.
Each structure instance has a dirty flag. When this flag is set, the
structure instance is said to be dirty, otherwise it is said to be clean. A
newly created structure is dirty. A structure remains dirty until its dirty
flag is explicitly reset. If a structure is clean, and one of its instance
slots is overwritten with a new value, it becomes dirty.
The
.code test-dirty
function returns the dirty flag of
.metn struct-obj :
.code t
if
.meta struct-obj
is dirty, otherwise
.codn nil .
The
.code clear-dirty
function clears the dirty flag of
.meta struct-obj
and returns
.meta struct-obj
itself.
The
.code test-clear-dirty
flag combines these operations: it makes a note of the dirty flag of
.meta struct-obj
and clears it. Then it returns the noted value,
.code t
or
.codn nil .
.coNP Function @ structp
.synb
.mets (structp << obj )
.syne
.desc
The
.code structp
function returns t if
.meta obj
is a structure, otherwise it returns
.codn nil .
.coNP Function @ struct-type
.synb
.mets (struct-type << struct-obj )
.syne
.desc
The
.code struct-type
function returns the structure type object which
represents the type of the structure object instance
.metn struct-obj .
.coNP Function @ clear-struct
.synb
.mets (clear-struct < struct-obj <> [ value ])
.syne
.desc
The
.code clear-struct
replaces all instance slots of
.meta struct-obj
with
.metn value ,
which defaults to
.code nil
if omitted.
Note that finalizers are not executed prior to replacing
the slot values.
.coNP Function @ reset-struct
.synb
.mets (reset-struct << struct-obj )
.syne
.desc
The
.code reset-struct
function reinitializes the structure object
.meta struct-obj
as if it were being newly created.
First, all the slots are set to
.code nil
as if by the
.code clear-struct
function. Then the slots are initialized by invoking the
initialization functions, in order of the supertype ancestry, just as would be
done for a new structure object created by
.code make-struct
with an empty
.meta slot-init-plist
and no boa arguments.
Note that finalizers registered against
.meta struct-obj
are not invoked prior to the reset operation, and remain registered.
If the structure has state which is cleaned up by
finalizers, it is advisable to invoke them using
.code call-finalizers
prior to using
.codn reset-struct ,
or to take other measures to deal with the
situation.
If the structure specifies
.code :fini
handlers, then the reinitialization will cause
these to registered, just like when a new object
it constructed. Thus if
.code call-finalizers
is not used prior to
.codn reset-struct ,
this will result in the existence of duplicate registrations of the
finalization functions.
Finalizers registered against
.meta struct-obj
.B are
invoked if an exception is thrown
during the reinitialization, just like when a new
structure is being constructed.
.coNP Function @ replace-struct
.synb
.mets (replace-struct < target-obj << source-obj )
.syne
.desc
The
.code replace-struct
function causes
.meta target-obj
to take on the attributes of
.meta source-obj
without changing its identity.
The type of
.code target-obj
is changed to that of
.codn source-obj .
All instance slots of
.code target-obj
are discarded, and it is given new slots,
which are copies of the instance slots of
.codn source-obj .
Because of the type change,
.code target-obj
implicitly loses all of its original static slots,
and acquires those of
.codn "source obj" .
Note that finalizers registered against
.meta target-obj
are not invoked, and remain registered.
If
.meta target-obj
has state which is cleaned up by
finalizers, it is advisable to invoke them using
.code call-finalizers
prior to using
.codn replace-struct ,
or to take other measures to handle the situation.
If the
.meta target-obj
and
.meta source-obj
arguments are the same object,
.code replace-struct
has no effect.
The return value is
.metn target-obj .
.coNP Function @ method
.synb
.mets (method < struct-obj < slot-name << curried-arg *)
.syne
.desc
The
.code method
function retrieves a function
.meta m
from a structure's slot
and returns a new function which binds that function's
left argument. If
.meta curried-arg
arguments are present, then they are also stored in
the returned function. These are the
.IR "curried arguments" .
The
.meta struct-obj
argument must be a structure, and
.meta slot-name
must be a symbol denoting a slot in that structure.
The slot must hold a function of at least one
argument.
The function
.meta f
which
.code method
function returns, when invoked,
calls the function
.meta m
previously retrieved from the object's
slot, passing to that function
.meta struct-obj
as the leftmost argument, followed by the curried
arguments, followed by all of
.metn f 's
own arguments.
Note: the
.code meth
macro is an alternative interface which is suitable if
the slot name isn't a computed value.
.coNP Function @ super-method
.synb
.mets (super-method < struct-obj << slot-name )
.syne
.desc
The
.code super-method
function retrieves a function from a static
slot belonging to one of the direct supertypes of the structure type of
.metn struct-obj .
It then returns a function which binds
that function's left argument to the structure.
The
.meta struct-obj
argument must be a structure which has at least one supertype, and
.meta slot-name
must be a symbol denoting a static slot in one of those supertypes.
The slot must hold a function of at least one
argument. The supertypes are searched from left to right for a static
slot named
.metn slot-name ;
when the first such slot is found, its value is used.
The
.code super-method
function returns a function which, when invoked,
calls the function previously retrieved from
the supertype's static slot, passing to that function
.meta struct-obj
as the leftmost argument, followed by the function's
own arguments.
.coNP Function @ umethod
.synb
.mets (umethod < slot-name << curried-arg *)
.syne
.desc
The
.code umethod
returns a function which represents the set of all methods named by
the slot
.meta slot-name
in all structure types, including ones not yet defined.
The
.meta slot-name
argument must be a symbol.
If one or more
.meta curried-arg
argument are present, these values represent the
.I "curried arguments"
which are stored in the function object which is returned.
This returned function must be called with at least one argument. Its leftmost
argument must be an object of structure type, which has a slot named
.metn slot-name .
The function will retrieve the value of the slot from that object,
expecting it to be a function, and calls it, passing to it the following
arguments: the object itself; all of the curried arguments, if any; and
all of its remaining arguments.
Note: the
.code umethod
name stands for "unbound method". Unlike the
.code method
function,
.code umethod
doesn't return a method whose leftmost argument is already bound to
an object; the binding occurs at call time.
.coNP Function @ uslot
.synb
.mets (uslot << slot-name )
.syne
.desc
The
.code uslot
returns a function which represents all slots named
.meta slot-name
in all structure types, including ones not yet defined.
The
.meta slot-name
argument must be a symbol.
The returned function must be called with exactly one argument.
The argument must be a structure which has a slot named
.metn slot-name .
The function will retrieve the value of the slot from that object
and return it.
Note: the
.code uslot
name stands for "unbound slot". The returned function
isn't bound to a particular object. The binding of
.code slot-name
to a slot in the structure object occurs when the function is called.
.coNP Function @ slots
.synb
.mets (slots << type )
.syne
.desc
The
.code slots
function returns a list of all of the slots of struct type
.metn type .
The
.meta type
argument must be a structure type, or else a symbol
which names a structure type.
.coNP Function @ slotp
.synb
.mets (slotp < type << name )
.syne
.desc
The
.code slotp
function returns
.code t
if name
.meta name
is a symbol which names a slot in the structure type
.metn type .
Otherwise it returns
.codn nil .
The
.meta type
argument must be a structure type, or else a symbol
which names a structure type.
.coNP Function @ static-slot-p
.synb
.mets (static-slot-p < type << name )
.syne
.desc
The
.code static-slot-p
function returns
.code t
if name
.meta name
is a symbol which names a slot in the structure type
.metn type ,
and if that slot is a static slot.
Otherwise it returns
.codn nil .
The
.meta type
argument must be a structure type, or else a symbol
which names a structure type.
.coNP Function @ static-slot
.synb
.mets (static-slot < type << name )
.syne
.desc
The
.code static-slot
function retrieves the value of the static slot
named by symbol
.meta name
of the structure type
.metn type .
The
.meta type
argument must be a structure type or a symbol which names a
structure type, and
.meta name
must be a static slot of this type.
.coNP Function @ static-slot-set
.synb
.mets (static-slot-set < type < name << new-value )
.syne
.desc
The
.code static-slot-set
function stores
.meta new-value
into the static slot named by symbol
.meta name
of the structure type
.metn type .
It returns
.metn new-value .
The
.meta type
argument must be a structure type or the name of a structure type, and
.meta name
must be a static slot of this type.
.coNP Function @ static-slot-ensure
.synb
.mets (static-slot-ensure < type < name < new-value <> [ no-error-p ])
.syne
.desc
The
.code static-slot-ensure
ensures, if possible, that the struct type
.metn type ,
as well as possibly one or more struct types derived from it,
have a static slot called
.metn name ,
that this slot is not shared with a supertype,
and that the value stored in it is
.metn new-value .
Note: this function supports the redefinition of methods,
as the implementation underlying the
.code defmeth
macro; its semantics is designed to harmonize with expected
behaviors in that usage.
The function operates as follows.
If
.meta type
itself already has an instance slot called
.meta name
then an error is thrown, and the function has no effect, unless a
true argument is specified for the
.meta no-error-p
Boolean parameter. In that case, in the same situation, the function
has no effect and simply returns
.metn new-value .
If
.meta type
already has a non-inherited static slot called
.meta name
then this slot is overwritten with
.meta new-value
and the function returns
.metn new-value .
Types derived from
.meta type
may also have this slot, via inheritance; consequently, its value
changes in those types also.
If
.meta type
already has an inherited static slot called
.meta name
then its inheritance is severed; the slot is converted
to a non-inherited static slot of
.meta type
and initialized with
.metn new-value .
Then all struct types derived from
.meta type
are scanned. In each such type, if the original inherited
static slot is found, it is replaced with the same
newly converted static slot that was just introduced into
.metn type ,
so that all these types now inherit this new slot from
.meta type
rather than the original slot from some supertype of
.metn type .
These types all share a single instance of the slot with
.metn type ,
but not with supertypes of
.metn type .
In the remaining case,
.meta type
has no slot called
.metn name .
The slot is added as a static slot to
.metn type .
Then it is added to every struct type derived from
.meta type
which does not already have a slot by that name, as if
by inheritance. That is to say, types to which this slot is introduced share a
single instance of that slot. The value of the new slot is
.metn new-value ,
which is also returned from the function. Any subtypes of
.meta type
which already have a slot called
.meta name
are ignored, as are their subtypes.
.coNP Function @ static-slot-home
.synb
.mets (static-slot-home < type << name )
.syne
.desc
The
.code static-slot-home
method determines which structure type actually defines the
static slot
.meta name
present in struct type
.metn type .
If
.meta type
isn't a struct type, or the name of a struct type,
the function throws an error. Likewise, if
.meta name
isn't a static slot of
.metn type .
If
.meta name
is a static slot of
.meta type
then the function returns a struct type name symbol which is either
then name of
.meta type
itself, if the slot is defined specifically for
.meta type
or else the most distant ancestor of
.meta type
from which the slot is inherited.
.coNP Function @ call-super-method
.synb
.mets (call-super-method < struct-obj < name << argument *)
.syne
.desc
The
.code call-super-method
function is deprecated. Solutions involving
.code call-super-method
should be reworked in terms of
.codn call-super-fun .
The
.code call-super-method
retrieves the function stored in the static slot
.meta name
of one of the direct supertypes of
.meta struct-obj
and invokes it, passing to that function
.meta struct-obj
as the leftmost argument, followed by the given
.metn argument -s,
if any.
The
.meta struct-obj
argument must be of structure type. Moreover,
that structure type must be derived from one or more supertypes,
and
.meta name
must name a static slot available from at least one of those supertypes.
The supertypes are searched left to right in search of this slot.
The object retrieved from that static slot must be
callable as a function, and accept the arguments.
Note that it is not correct for a method that is defined
against a particular type to use
.code call-super-method
to call the same method (or any other method) in the supertype
of that particular type. This is because
.code call-super-method
refers to the type of the object instance
.metn struct-obj ,
not to the type against which the calling method is defined.
.coNP Function @ call-super-fun
.synb
.mets (call-super-fun < type < name << argument *)
.syne
.desc
The
.code call-super-fun
retrieves the function stored in the slot
.meta name
of one of the supertypes of
.meta type
and invokes it, passing to that function the given
.metn argument -s,
if any.
The
.meta type
argument must be a structure type. Moreover,
that structure type must be derived from one or more supertypes,
and
.meta name
must name a static slot available from at least one of those supertypes.
The supertypes are searched left to right in search of this slot.
The object retrieved from that static slot must be
callable as a function, and accept the arguments.
.TP* Example:
Print a message and call supertype method:
.verb
(defstruct base nil)
(defstruct derived base)
(defmeth base fun (obj arg)
(format t "base fun method called with arg ~s\en" arg))
(defmeth derived fun (obj arg)
(format t "derived fun method called with arg ~s\en" arg)
(call-super-fun 'derived 'fun obj arg))
;; Interactive Listener:
1> (new derived).(fun 42)
derived fun method called with arg 42
base fun method called with arg 42
.brev
Note that a static method or function in any structure type
can be invoked by using the
.code "(meth ...)"
name syntax in the first position of a compound form, as
a function name. Thus, the above
.code "derived fun"
can also be written:
.verb
(defmeth derived fun (obj arg)
(format t "derived fun method called with arg ~s\en" arg)
((meth base fun) obj arg))
.brev
.coNP Functions @ struct-get-initfun and @ struct-get-postinitfun
.synb
.mets (struct-get-initfun << type )
.mets (struct-get-postinitfun << type )
.syne
.desc
The
.code struct-get-initfun
and
.code struct-get-postinitfun
functions retrieve, respectively, a structure type's
.meta initfun
and
.meta postinitfun
functions. These are the functions which are initially configured in the call to
.code make-struct-type
via the
.meta initfun
and
.meta postinitfun
arguments.
Either one may be
.codn nil ,
indicating that the type has no
.meta initfun
or
.metn postinitfun .
.coNP Functions @ struct-set-initfun and @ struct-set-postinitfun
.synb
.mets (struct-set-initfun < type << function )
.mets (struct-set-postinitfun < type << function )
.syne
.desc
The
.code struct-set-initfun
and
.code struct-set-postinitfun
functions overwrite, respectively, a structure type's
.meta initfun
and
.meta postinitfun
functions. These are the functions which are initially configured in the call to
.code make-struct-type
via the
.meta initfun
and
.meta postinitfun
arguments.
The
.meta function
argument must either be
.code nil
or else a function which accepts one argument.
Note that
.meta initfun
has the responsibility for all instance slot initializations. The
.code defstruct
syntax compiles the initializing expressions in the slot specifier syntax
into statements which are placed into a function, which becomes the
.meta initfun
of the struct type.
.coNP Macro @ with-objects
.synb
.mets (with-objects >> ({( sym << init-form )}*) << body-form *)
.syne
.desc
The
.code with-objects
macro provides a binding construct similar to
.codn let* .
Each
.meta sym
must be a symbol suitable for use as a variable name.
Each
.meta init-form
is evaluated in sequence, and a binding is established for its
corresponding
.meta sym
which is initialized with the value of that form. The binding
is visible to subsequent
.metn init-form -s.
Additionally, the values of the
.metn init-form -s
are noted as they are produced. When the
.code with-objects
form terminates, by any means, the
.code call-finalizers
function is invoked on each value which was returned by an
.meta init-form
and had been noted. These calls are performed in the
reverse order relative to the original evaluation of the forms.
After the variables are established and initialized, the
.metn body-form -s
are evaluated in the scope of the variables. The value of the
last form is returned, or else
.code nil
if there are no forms. The invocations of
.code call-finalizers
take place just before the value of the last form is returned.
.SS* Special Structure Functions
Special structure functions are user-defined methods or structure functions
which are specially recognized by certain functions in \*(TL. They endow
structure objects with the ability to participate in certain usage scenarios,
or to participate in a customized way.
Special functions are required to bound to static slots, which is the
case if the
.code defmeth
macro is used, or when methods or functions are defined using syntax
inside a
.code defstruct
form. If a special function or method is defined as an instance slot,
then the behavior of library functions which depend on this method is
unspecified.
Special functions introduced below by the word "Method" receive an object
instance as an argument. Their syntax is indicated using the same notation
which may be used to invoke them, such as:
.verb
.mets << object .(function-name < arg << ... )
.brev
However, those introduced as "Function" do not operate on an instance. For
brevity, their syntax is nevertheless exemplified as
.verb
.mets << object .'['function-name < arg << ... ']'
.brev
If such a invocation is actually used, the
.meta object
instance only serves for identifying the struct type whose static slot
.code function-name
provides the function;
.meta object
doesn't participate in the call. An object is not required since
the function can be called using
.verb
.mets [(static-slot < type 'function-name) < arg << ... ]
.brev
which looks up the function in the struct
.meta type
directly.
.coNP Method @ equal
.synb
.mets << object .(equal)
.syne
.desc
Normally, two struct values are not considered the same under the
.code equal
function unless they are the same object.
However, if the
.code equal
method is defined for a structure type, then instances of
that structure type support
.IR "equality substitution" .
The
.code equal
method must not require any arguments other than
.metn object .
Moreover, the method must never return
.codn nil .
When a struct which supports equality substitution is compared using
.codn equal ,
.code less
or
.codn greater ,
its
.code equal
method is invoked, and the return value is used in place of that
structure for the purposes of the comparison.
The same applies when an struct is hashed using the
.code hash-equal
function, or implicitly by an
.code :equal-hash
hash table.
Note: if an
.code equal
method is defined or redefined with different semantics for a struct
type whose instances have already been inserted as keys in an
.code :equal-based
hash table, the behavior of subsequent insertion and lookup operations
on that hash table becomes unspecified.
.coNP Method @ print
.synb
.mets << object .(print < stream << pretty-p )
.syne
.desc
If a method named by the symbol
.code print
is defined for a structure type, then it is used for printing instances
of that type.
The
.meta stream
argument specifies the output stream to which the printed representation
is to be written.
The
.meta pretty-p
argument is a Boolean flag indicating whether pretty-printing
is requested. Its value may simply be passed to recursive calls to
.codn print ,
or used to select between
.code ~s
or
.code ~a
formatting if
.code format
is used.
The value returned by the
.code print
method is significant. If the special keyword symbol
.code :
(colon) is returned, then the system will print the object
in the default way, as if no
.code print
method existed: it is understood that the method declined
the responsibility for printing the object.
If any other value is returned, then it is understood
that the method
.code print
method accepted the responsibility for printing the object,
and the system consequently will generate into
.meta stream
any output output pertaining to
.metn object 's
representation.
.coNP Method @ lambda
.synb
.mets << object .(lambda << arg *)
.syne
.desc
If a structure type provides a method called
.code lambda
then it can be used as a function.
This method can be called by name, using the syntax given
in the above syntactic description.
However, the intended use is that it allows the structure instance itself to be
used as a function. When arguments are applied to a structure object as if it
were a function, this is erroneous, unless that object has a
.code lambda
method. In that case, the arguments are passed to the lambda method.
The leftmost argument of the method is the structure instance
itself.
That is to say, the following equivalences apply, except that
.code s
is evaluated only once:
.verb
(call s args ...) <--> s.(lambda args ...)
[s args ...] <--> [s.lambda s args ...]
(mapcar s list) <--> (mapcar (meth s lambda) list)
.brev
Note: a form such as
.code "[s args ...]"
where
.code s
is a structure can be treated as a place if the method
.code lambda-set
is also implemented.
.coNP Method @ lambda-set
.synb
.mets << object .(lambda-set << arg * << new-value )
.syne
.desc
The
.code lambda-set
method, in conjunction with a
.code lambda
method, allows structures to be used as place accessors. If
structure
.code s
supports a
.meta lambda-set
with four arguments, then the following use of the
.code dwim
operator is possible:
.verb
(set [s a b c d] v)
(set (dwim s a b c d) v) ;; precisely equivalently
.brev
This has an effect which can be described by the following code:
.verb
(progn
s s.(lambda-set a b c d v)
v)
.brev
except that
.code s
and
.code v
are evaluated only once, and
.code a
through
.code d
are evaluated using the Lisp-1 semantics due the
.code dwim
operator.
If a place-mutating operator is used on this form which requires the prior
value, such as the
.code inc
macro, then the structure must support the
.code lambda
function also.
If
.code lambda
takes
.I n
arguments, then
.code lambda-set
should take
.I n+1
arguments. The first
.I n
arguments of these two methods are congruent; the extra rightmost argument
of
.code lambda-set
is the new value to be stored into the place denoted by the prior
arguments.
The return value of
.code lambda-set
is ignored.
Note: the
.code lambda-set
method is also used by the
.code rplaca
function, if no
.code rplaca
method exists.
.TP* Example
The following defines a structure with a single instance
slot
.code hash
which holds a hash table, as well as
.code lambda
and
.code lambda-set
methods:
.verb
(defstruct hash-wrapper nil
(hash (hash))
(:method lambda (self key)
[self.hash key])
(:method lambda-set (self key new-val)
(set [self.hash key] new-val) self))
.brev
An instance of this structure can now be used as follows:
.verb
(let ((s (new hash-wrapper)))
(set [s "apple"] 3
[s "orange] 4)
[s "apple"]) -> 3
.brev
.coNP Method @ length
.synb
.mets << object .(length)
.syne
.desc
If a structure has
.code length
method, then it can be used as an argument to the
.code length
function.
Structures which implement the methods
.codn lambda ,
.code lambda-set
and
.code length
can be treated as abstract vector-like sequences, because such
structures support the
.codn ref ,
.code refset
and
.code length
functions.
For instance, the
.code nreverse
function will operate on such objects.
Note: a structure which supports the
.code car
method also supports the
.code length
function, in a different way. Such a structure is treated by
.code length
as a list-like sequence, and its length is measured by walking the
sequence with
.code cdr
operations. If a structure supports both
.code length
and
.codn car ,
preference is given to
.codn length ,
which is likely to be much more efficient.
.coNP Methods @, car @ cdr and @ nullify
.synb
.mets << object .(car)
.mets << object .(cdr)
.mets << object .(nullify)
.syne
.desc
Structures may be treated as sequences if they define methods named
by the symbols
.codn car ,
.codn cdr ,
and
.codn nullify .
If a structure supports these methods, then these methods are used
by the functions
.codn car ,
.codn cdr ,
.codn nullify ,
.code empty
and various other sequence manipulating functions derived from them, when those
functions are applied to that object.
An object which implements these three methods can be considered to represent a
.I list-like
abstract sequence.
The object's
.code car
method should return the first value in that abstract sequence, or else
.code nil
if that sequence is empty.
The object's
.code cdr
method should return an object denoting the remainder of the sequence,
or else
.code nil
if the sequence is empty or contains only one value. This returned object can
be of any type: it may be of the same structure type as that object, a
different structure type, a list, or whatever else. If a non-sequence object
is returned.
The
.code nullify
method should return
.code nil
if the object is considered to denote an empty sequence. Otherwise it
should either return that object itself, or else return the sequence which
that object represents.
.coNP Methods @ rplaca and @ rplacd
.synb
.mets << object .(rplaca << new-car-value )
.mets << object .(rplacd << new-cdr-value )
.syne
.desc
If a structure type defines the methods
.code rplaca
and
.code rplacd
then, respectively, the
.code rplaca
and
.code rplacd
functions will use these methods if they are applied to instances of that type.
That is to say, when the function call
.mono
.meti (rplaca < o << v )
.onom
is evaluated, and
.meta o
is a structure type, the function inquires whether
.meta o
supports a
.code rplaca
method. If so, then, effectively,
.mono
.meti << o . (rplaca << v)
.onom
is invoked. The return value of this method call is ignored;
.code rplaca
returns
.metn o .
The analogous requirements apply to
.code rplacd
in relation to the
.code rplacd
method.
Note: if the
.code rplaca
method doesn't exist, the
.code rplaca
function falls back on trying to store
.meta new-car-value
by means of the structure type's
.code lambda-set
method, using an index of zero. That is to say, if the type has no
.code rplaca
method, but does have a
.code lambda-set
method, then
.mono
.meti << o . (lambda-set 0 << v)
.onom
is invoked.
.coNP Function @ from-list
.synb
.mets << object .'['from-list << list ']'
.syne
.desc
If a
.code from-list
structure function is defined for a structure type, it is called in certain
situations with an argument which is a list object. The function's purpose
is to construct a new instance of the structure type, derived from that
list.
The purpose of this function is to allow sequence processing operations
such as
.code mapcar
and
.code remove
to operate on a structure object as if it were a sequence, and return a
transformed sequence of the same type. This is analogous to the way such
functions can operate on a vector or string, and return a vector or string.
If a structure object behaves as a sequence thanks to providing
.codn car ,
.code cdr
and
.code nullify
methods, but does not have a
.code from-list
function, then those sequence-processing operations which return a sequence
will always return a plain list of items.
.coNP Function @ derived
.synb
.mets << object .'['derived < supertype << subtype ']'
.syne
.desc
If a structure type supports a function called
.metn derived ,
this function is called whenever a new type is defined which names
that type as its supertype.
The function is called with two arguments which are both struct types.
The
.meta supertype
argument gives the type that is being inherited from.
The
.meta subtype
gives the new type that is inheriting from
.metn supertype .
When a new structure type is defined, its list of immediate
supertypes is considered. For each of those supertypes which defines the
.code derived
function, the function is invoked.
The function is not retroactively invoked. If it is defined for
a structure type from which subtypes have already been derived,
it is not invoked for those existing subtypes.
If
.meta derived
directly inherits
.meta supertype
more than once, it is not specified whether this function is called
once, or multiple times.
Note: the
.meta supertype
parameter exists because the
.code derived
function is itself inherited. If the same version of this function is shared by
multiple structure types due to inheritance, this argument informs the function
which of those types it is being invoked for.
.coNP Methods @ iter-begin and @ iter-reset
.synb
.mets << object .(iter-begin)
.mets << object .(iter-reset << iter )
.syne
.desc
If an object supports the
.code iter-begin
method, it is considered iterable; the
.code iterable
function will return
.code t
if invoked on this object.
The responsibility of the
.code iter-begin
method is to return an iterator object: an object which supports
certain special methods related to iteration, according to one of two
protocols, described below.
The
.code iter-reset
method is optional. It is similar to
.code iter-begin
but takes an additional
.meta iter
argument, an iterator object that was previously returned by the
.code iter-begin
method of the same
.metn object .
If
.code iter-reset
determines that
.meta iter
can be re-used for a new iteration, then it can suitably mutate the
state of
.meta iter
and return it. Otherwise, it behaves like
.code iter-begin
and returns a new iterator.
There are two protocols for iteration: the fast protocol, and the canonical
protocol.
Both protocols require the iterator object returned by the
.code iter-begin
method to provide the methods
.code iter-item
and
.codn iter-step .
If the iterator also provides the
.code iter-more
method, then the protocol which applies is the canonical protocol. If
that method is absent, then the fast protocol is followed.
Under the fast protocol, the
.code iter-more
method does not exist and is not involved. The iterable object's
.code iter-begin
method must return
.code nil
if the abstract sequence is empty. If an iterator is returned, it is assumed
that an object can be retrieved from the iterator by invoking its
.code iter-item
method. The iterator's
.code iter-next
method should return
.code nil
if there are no more objects in the abstract sequence, or else it should
return an iterator that obeys the fast protocol (possibly itself).
Under the canonical protocol, the iterator implements the
.code iter-more
function. The iterable object's
.code iter-begin
always returns an iterator object. The iterator object's
.code iter-more
method is always invoked to determine whether another item is available
from the sequence. The iterator object's
.code iter-step
method is expected to return an iterator object which conforms to the
canonical protocol.
.coNP Method @ iter-item
.synb
.mets << object .(iter-item)
.syne
.desc
The
.code iter-item
method is invoked on an iterator
.meta object
to retrieve the next item in the sequence.
Under the fast protocol, it
is assumed that if
.meta object
was returned by an iterable object's
.code iter-begin
method, or by an iterator's
.code iter-step
method, that an item is available. This method will be unconditionally invoked.
Under the canonical protocol for iteration, the
.code iter-more
method will be invoked on
.meta object
first. If that method yields true, then
.code iter-item
is expected to yield the next available item in the sequence.
Note: calls to the
.code iter-item
function, with
.meta object
as its argument, invoke the
.code iter-item
method. It is possible for an application to call
.code iter-item
through this function or directly as a method call
without first calling
.codn iter-more .
No iteration mechanism in the \*(TL standard library behaves this way.
If the iterator
.meta object
has no more items available and
.code iter-more
is invoked anyway, no requirements apply to its behavior or return value.
.coNP Method @ iter-step
.synb
.mets << object .(iter-step)
.syne
.desc
The
.code iter-step
method is invoked on an iterator object to produce an iterator object for the
remainder of the sequence, excluding the current item.
Under the fast iteration protocol, this method returns
.code nil
if there are no more items in the sequence.
Under the canonical iteration protocol, this method always returns
an iterator object. If no items remain in the sequence, then that
iterator object's
.code iter-more
method returns
.codn nil .
Furthermore, under this protocol,
.code iter-step
is not called if
.code iter-more
returns
.codn nil .
Note: calls to the
.code iter-step
function, with
.meta object
as its argument, invoke the
.code iter-step
method. It is possible for an application to call
.code iter-step
through this function or directly as a method call
without first calling
.codn iter-more .
No iteration mechanism in the \*(TL standard library behaves this way.
If the iterator
.meta object
has no more items available and
.code iter-step
is invoked anyway, no requirements apply to its behavior or return value.
.coNP Method @ iter-more
.synb
.mets << object .(iter-more)
.syne
.desc
If an iterator
.meta object
returned by
.code iter-begin
supports the
.code iter-more
method, then the canonical iteration protocol applies to that iteration
session. All subsequent iterators that are involved in the iteration
are assumed to conform to the protocol and should implement the
.code iter-more
method also. The behavior is unspecified otherwise.
The
.code iter-more
method is used to interrogate an iterator whether more unvisited items
remain in the sequence. This method does not advance the iteration,
and does not change the state of the iterator. It is idempotent: if it is
called multiple times without any intervening call to any other method,
it yields the same value.
If an iterator does not implement the
.code iter-more
method, then if the
.code iter-more
function is applied to that iterator, it unconditionally returns
.codn t .
.SS* Sequence Manipulation
Functions in this category uniformly manipulate abstract sequences. Lists,
strings and vectors are sequences.
Structure objects can behave
like sequences, either list-like or vector-like sequences, if they have
certain methods: see the previous section Special Structure Functions.
Moreover, hash tables behave like sequences of key-value entries represented by
.code cons
pairs. Not all sequence-processing functions accept hash table sequences.
Additionally, some sequence-processing functions work not only with sequences
but with all iterable objects: objects that can be used as arguments to the
.code iter-begin
function. Such arguments are called
.meta iterable
rather than
.metn sequence ,
possibly abbreviated to
.meta iter
with or without a numeric suffix.
Hash tables are always supported if they appear as
.meta iterable
arguments.
.coNP Function @ seqp
.synb
.mets (seqp << object )
.syne
.desc
The function
.code seqp
returns
.code t
if
.meta object
is a sequence, otherwise
.codn nil .
Lists, vectors and strings are sequences. The object
.code nil
denotes
the empty list and so is a sequence.
Objects of type
.code buf
and
.code carray
are sequences, as are hash tables.
Structures which implement the
.code length
or
.code car
methods are considered sequences.
No other objects are sequences. However, future revisions of
the language may specify additional objects that are sequences.
.coNP Function @ iterable
.synb
.mets (iterable << object )
.syne
.desc
The
.code iterable
function returns
.code t
if
.meta object
is iterable, otherwise
.codn nil .
If
.meta object
is a sequence according to the
.code seqp
function, then it is iterable.
If
.meta object
is a structure which supports the
.code iter-begin
method, then it is iterable.
Additional objects that are not sequences are also iterable:
numeric or character ranges, and numbers. Future revisions
of the language may specify additional iterable objects.
.coNP Function @ make-like
.synb
.mets (make-like < list << object )
.syne
.desc
The
.meta list
argument must be a list. If
.meta object
is a sequence type,
then
.meta list
is converted to the same type of sequence and returned.
Otherwise the original
.meta list
is returned.
Conversion is supported to string and vector type.
Conversion to a structure type is possible for structures. If
.meta object
is an object of a structure type which has a static function
.codn from-list ,
then
.code make-like
calls that function, passing to it, and the resulting value is returned.
.meta list
and returns whatever value that function returns.
If
.meta object
is a
.codn carray ,
then
.meta list
is passed to the
.code carray-list
function, and the resulting value is returned. The second argument in the
.code carray-list
call is the element type taken from
.metn object .
The third argument is
.codn nil ,
indicating that the resulting
.code carray
is not to be null terminated.
Note: the
.code make-like
function is a helper which supports the development of
unoptimized versions of a generic function that accepts any type of
sequence as input, and produces a sequence of the same type as output.
The implementation of such a function can internally accumulate a list, and
then convert the resulting list to the same type as an input value
by using
.codn make-like .
.coNP Functions @, list-seq @ vec-seq and @ str-seq
.synb
.mets (list-seq << iterable )
.mets (vec-seq << iterable )
.mets (str-seq << iterable )
.syne
.desc
The
.codn list-seq ,
.code vec-seq
and
.code str-seq
functions convert an iterable object of any type into a list, vector
or string, respectively.
The list returned by
.code list-seq
is lazy.
The
.code list-seq
and
.code vec-seq
iterate the items of
.meta iterable
and accumulate these items into a new list or vector.
The
.code str-seq
similarly iterates the items of
.metn iterable ,
requiring them to be a mixture of characters and strings.
.coNP Functions @ length and @ len
.synb
.mets (length << iterable )
.mets (len << iterable )
.syne
.desc
The
.code length
function returns the number of items contained in
.metn iterable .
The
.code len
function is a synonym of
.codn length .
An attempt to calculate the length of infinite lazy lists will not terminate.
Iterable objects representing infinite ranges, such as integers and characters
are invalid arguments.
.coNP Function @ empty
.synb
.mets (empty << iterable )
.syne
.desc
If
.meta iterable
is a suitable argument for the
.code length
function, then the
.code empty
Returns
.code t
if
.mono
.meti (length << iterable )
.onom
is zero, otherwise
.codn nil .
The
.code empty
function also supports certain objects not suitable as arguments for
.codn length .
An infinite lazy list is not empty, and so
.code empty
returns
.code nil
for such an object.
The function also returns
.code nil
for iterable objects representing non-empty spaces, even if
those spaces are infinite. For instance
.code "(empty 0)"
yields
.code nil
because the set of integers beginning with 0 isn't empty.
.coNP Function @ nullify
.synb
.mets (nullify << iterable )
.syne
.desc
The
.code nullify
function returns
.code nil
if
.meta iterable
denotes an empty sequence.
Otherwise, if
.meta iterable
is not an empty sequence, or isn't a sequence, then
.meta iterable
itself is returned.
If
.meta iterable
is a structure object which supports the
.code nullify
method, then that method is called. If it returns
.code nil
then
.code nil
is returned. If the
.code nullify
method returns a substitute object other than the
.meta iterable
object itself, then
.code nullify
is invoked on that returned substitute object.
Note: the
.code nullify
function is a helper to support unoptimized generic
traversal of sequences. Thanks to the generalized behavior of
.codn cdr ,
non-list sequences can be traversed using
.codn cdr ,
similarly to proper lists, by checking for
.code cdr
returning the terminating value
.codn nil .
However, empty non-list sequences are handled incorrectly because
since they are not the
.code nil
object, they look non-empty under this paradigm of traversal.
The
.code nullify
function provides a correction: if the input sequence is filtered
through
.code nullify
then the subsequent list-like iteration works correctly.
Examples:
.verb
;; Incorrect for empty strings:
(defun print-chars (string)
(while string
(prinl (pop string))))
;; Corrected with nullify:
(defun print-chars (string)
(let ((s (nullify string)))
(while s
(prinl (pop s)))))
.brev
Note: optimized generic iteration is available in the form of iteration
based on
.code iter-begin
rather than
.cod3 car / cdr
and
.codn nullify .
Examples:
.verb
;; Efficient with iterators,
;; at the cost of verbosity:
(defun print-chars (string)
(let ((i (iter-begin string)))
(while (iter-more i)
(prinl (iter-item s))
(set s (iter-step s)))))
;; Using mapping function built on iterators:
(defun print-chars (string)
[mapdo prinl string])
.brev
.coNP Accessor @ sub
.synb
.mets (sub < sequence >> [ from <> [ to ]])
.mets (set (sub < sequence >> [ from <> [ to ]]) << new-val )
.syne
.desc
The
.code sub
function extracts a slice from input sequence
.metn sequence .
The slice is
a sequence of the same type as
.metn sequence .
If the
.meta from
argument is omitted, it defaults to
.codn 0 .
If the
.meta to
parameter is
omitted, it defaults to
.codn t .
Thus
.code "(sub a)"
means
.codn "(sub a 0 t)" .
The following semantic equivalence exists between a call to the
.code sub
function and
the DWIM-bracket syntax, except that
.code sub
is an ordinary function call form, which doesn't apply the
Lisp-1 evaluation semantics to its arguments:
.verb
;; from is not a list
(sub seq from to) <--> [seq from..to]
.brev
The description of the
.code dwim
operator\(emin particular, the section
on Range Indexing\(emexplains the semantics of the range specification.
The output sequence may share structure with the input sequence.
If
.meta sequence
is a
.code carray
object, then the function behaves like
.codn carray-sub .
If
.meta sequence
is a
.code buf
object, then the function behaves like
.codn buf-sub .
If
.meta sequence
is a structure, it must support the
.code lambda
method. The
.code sub
operation is transformed into a call to the
.code lambda
method according to the following equivalence:
.verb
(sub o from to) <--> o.(lambda (rcons from to))
(sub o : to) <--> o.(lambda (rcons : to))
(sub o from) <--> o.(lambda (rcons from :))
(sub o) <--> o.(lambda (rcons : :))
.brev
That is to say, the
.meta from
and
.code to
arguments are converted to range object. If either argument
is missing, the symbol
.code :
is used for the corresponding element of the range.
When a
.code sub
form is used as a syntactic place, that place denotes a slice of
.metn seq .
The
.meta seq
argument must be itself be syntactic place, because
receives a new value, which may be different from its original value in
cases when
.meta seq
is a list.
Overwriting that slice is equivalent to using the
.code replace
function. The following equivalences give the semantics, except that
.codn x ,
.codn a ,
.code b
and
.code v
are evaluated only once, in left-to-right order:
.verb
(set (sub x a b) v) <--> (progn (set x (replace x v a b))
v)
(del (sub x a b)) <--> (prog1 (sub x a b)
(set x (replace x nil a b)))
.brev
Note that the value of
.code x
is overwritten with the value returned by
.codn replace .
If
.code x
is a vector or string, then the return value of
.code replace
is just
.codn x :
the identity of the object doesn't change under mutation.
However, if
.code x
is a list, its identity changes when items are added to or removed from
the front of the list, and in those cases
.code replace
will return a value different from its first argument.
Similarly, if
.code x
is an object with a
.code lambda-set
method, that method's return value becomes the return value of
.code replace
and must be taken into account.
.coNP Function @ replace
.synb
.mets (replace < sequence < replacement-sequence >> [ from <> [ to ]])
.mets (replace < sequence < replacement-sequence << index-list )
.syne
.desc
The
.meta replace
function modifies
.meta sequence
in the ways described below.
The operation is destructive: it may work "in place" by modifying
the original sequence. The caller should retain the return value
and stop relying on the original input sequence.
The return value of
.code replace
is the modified
version of
.metn sequence .
This may be the same object as
.meta sequence
or it may be a newly allocated object.
Note that the form:
.verb
(set seq (replace seq new fr to))
.brev
has the same effect on the variable
.code seq
as the form:
.verb
(set [seq fr..to] new)
.brev
except that the former
.code set
form returns the entire modified sequence, whereas the latter
returns the value of the
.code new
argument.
The
.code replace
function has two invocation styles, distinguished by the
type of the third argument. If the third argument is a sequence, then it
is deemed to be the
.meta index-list
parameter of the second form.
Otherwise, if the third argument is missing, or is not a list, then
it is deemed to be the
.meta from
argument of the first form.
The first form of the replace function replaces a contiguous subsequence of the
.meta sequence
with
.metn replacement-sequence .
The replaced subsequence may be empty,
in which case an insertion is performed. If
.meta replacement-sequence
is empty
(for example, the empty list
.codn nil ),
then a deletion is performed.
If the
.meta from
and
.meta to
arguments are omitted, their values default
to
.code 0
and
.code t
respectively.
The description of the dwim operator\(emin particular, the section
on Range Indexing\(emexplains the semantics of the range specification.
The second form of the replace function replaces a subsequence of
elements from
.meta sequence
given by
.metn index-list ,
with their counterparts
from
.metn replacement-sequence .
This form of the replace function does not insert
or delete; it simply overwrites elements. If
.meta replacement-sequence
and
.meta index-list
are of different lengths, then the shorter of the two determines
the maximum number of elements which are overwritten.
Whenever a negative value occurs in
.meta index-list
the length of
.meta sequence
is added to that value.
Furthermore, similar restrictions apply on
.meta index-list
as under the
select function. Namely, the replacement stops when an index value
in
.meta index-list
is encountered which is out of range for
.metn sequence .
furthermore, if
.meta sequence
is a list, then
.meta index-list
must
be monotonically increasing, after consideration of the
displacement of negative values.
If
.meta replacement-sequence
shares storage with the target range of
.metn sequence ,
or, in the case when that range is resized by the
.code replace
operation, shares storage with any portion of
.meta sequence
above that range, then the effect of
.code replace
on either object is unspecified.
If
.meta sequence
is a
.code carray
object, then
.code replace
behaves like
.codn carray-replace .
If
.meta sequence
is a
.code buf
object, then
.code replace
behaves like
.codn buf-replace .
If
.meta sequence
is a structure, then the structure must support the
.code lambda-set
method. The
.code replace
operation is translated into a call of the
.code lambda-set
method according to the following equivalences:
.verb
(replace o items from to)
<--> o.(lambda-set (rcons from to) items)
(replace o items index-list)
<--> o.(lambda-set index-list items)
.brev
Thus, the
.meta from
and
.meta to
arguments are converted to single range object,
whereas an
.meta index-list
is passed as-is.
It is an error if the
.code from
argument is a sequence, indicating an
.metn index-list ,
and a
.code to
argument is also given; the situation is diagnosed. If either
.code from
or
.code to
are omitted, the range object contains the
.code :
symbol in the corresponding place:
.verb
(replace o items from)
<--> o.(lambda-set (rcons from :) items)
(replace o items : to)
<--> o.(lambda-set (rcons : to) items)
(replace o items)
<--> o.(lambda-set (rcons : :) items)
.brev
It is the responsibility of the object's
.code lambda-set
method to implement semantics consistent with the
description of
.codn replace .
.coNP Function @ take
.synb
.mets (take < count << sequence )
.syne
.desc
The
.code take
function returns
.meta sequence
with all except the first
.meta count
items removed.
If
.meta sequence
is a list, then
.code take
returns a lazy list which produces the first
.meta count
items of sequence.
For other kinds of sequences, including lazy strings,
.code take
works eagerly.
If
.meta count
exceeds the length of
.meta sequence
then a sequence is returned which has all the items.
This object may be
.meta sequence
itself, or a copy.
If
.meta count
is negative, it is treated as zero.
.coNP Functions @ take-while and @ take-until
.synb
.mets (take-while < predfun < sequence <> [ keyfun ])
.mets (take-until < predfun < sequence <> [ keyfun ])
.syne
.desc
The
.code take-while
and
.code take-until
functions return a prefix of
.meta sequence
whose items satisfy certain conditions.
The
.code take-while
function returns the longest prefix of
.meta sequence
whose elements, accessed through
.meta keyfun
satisfy the function
.metn predfun .
The
.meta keyfun
argument defaults to the identity function: the elements
of
.meta sequence
are examined themselves.
The
.code take-until
function returns the longest prefix of
.meta sequence
which consists of elements, accessed through
.metn keyfun ,
that do
.B not
satisfy
.meta predfun
followed by an element which does satisfy
.metn predfun .
If
.meta sequence
has no such prefix, then an empty sequence
is returned of the same kind as
.metn sequence .
If
.meta sequence
is a list, then these functions return a lazy list.
.coNP Function @ drop
.synb
.mets (drop < count << sequence )
.syne
.desc
The
.code drop
function returns
.meta sequence
with the first
.meta count
items removed.
If
.meta count
is negative, it is treated as zero.
If
.meta count
is zero, then
.meta sequence
is returned.
If
.meta count
exceeds the length of
.meta sequence
then an empty sequence is returned
of the same kind as
.metn sequence .
.coNP Functions @ drop-while and @ drop-until
.synb
.mets (drop-while < predfun < sequence <> [ keyfun ])
.mets (drop-until < predfun < sequence <> [ keyfun ])
.syne
.desc
The
.code drop-while
and
.code drop-until
functions return
.meta sequence
with a prefix of that sequence removed,
according to conditions involving
.meta predfun
and
.metn keyfun .
The
.code drop-while
function removes the longest prefix of
.meta sequence
whose elements, accessed through
.meta keyfun
satisfy the function
.metn predfun ,
and returns the remaining sequence.
The
.meta keyfun
argument defaults to the identity function: the elements
of
.meta sequence
are examined themselves.
The
.code drop-until
function removes the longest prefix of
.meta sequence
which consists of elements, accessed through
.metn keyfun ,
that do
.B not
satisfy
.meta predfun
followed by an element which does satisfy
.metn predfun .
A sequence of the remaining elements is
returned.
If
.meta sequence
has no such prefix, then a sequence
same as
.meta sequence
is returned, which may be
.meta sequence
itself or a copy.
.coNP Accessor @ last
.synb
.mets (last < sequence <> [ num ])
.mets (set (last < sequence <> [ num ]) << new-value)
.syne
.desc
The
.meta last
function returns a subsequence of
.meta sequence
consisting of the last
.meta num
of its elements, where
.meta num
defaults to 1.
If
.meta num
is zero or negative, then an empty sequence is returned.
If
.meta num
is positive, and greater than or equal to the length of sequence,
then sequence
.meta sequence
is returned.
If a
.code last
form is used as a place, then
.code sequence
must be a place. The following equivalence gives the semantics
of assignment to a
.codn last :
.verb
(set (last x n) v) <--> (set (sub x (- (max n 0)) t) v)
.brev
A
.code last
place is deletable. The semantics of deletion may be understood
in terms of the following equivalence:
.verb
(del (last x n)) <--> (del (sub x (- (max n 0)) t))
.brev
.coNP Accessor @ butlast
.synb
.mets (butlast < sequence <> [ num ])
.mets (set (butlast < sequence <> [ num ]) << new-value )
.syne
.desc
The
.code butlast
function returns the prefix of
.meta sequence
consisting of a copy of it, with the last
.meta num
items removed.
The parameter
.meta num
defaults to 1
if an argument is omitted.
If
.meta sequence
is empty, an empty sequence is returned.
If
.meta num
is zero or negative, then
.meta sequence
is returned.
If
.meta num
is positive, and meets or exceeds the length of
.metn sequence ,
then an empty sequence is returned.
If a
.code butlast
form is used as a place, then
.meta sequence
must itself be a place. The following equivalence gives the semantics
of assignment to a
.codn last :
.verb
(set (butlast x n) v) <--> (set (sub x 0 (- (max n 0))) v)
.brev
A
.code butlast
place is deletable. The semantics of deletion may be understood
in terms of the following equivalence:
.verb
(del (last x n)) <--> (del (sub x 0 (- (max n 0))))
.brev
Note: the \*(TL
.code take
function also computes the prefix of a list; however, it counts items
from the beginning, and provides lazy semantics which allow it
to work with infinite lists.
See also: the
.code butlastn
accessor, which operates on lists. That function has useful semantics for
improper lists and treats an atom as the terminator of a zero-length improper
list.
Dialect note: a destructive function similar to Common Lisp's
.code nbutlast
isn't provided. Assignment to a
.code butlast
form is destructive; Common Lisp doesn't support
.code butlast
as a place.
.coNP Function @ ldiff
.synb
.mets (ldiff < sequence << tail-sequence )
.syne
.desc
The
.code ldiff
function is a somewhat generalized version of the same-named classic Lisp
function found in traditional Lisp dialects.
The
.code ldiff
function supports the original
.code ldiff
semantics when both inputs are lists. It determines whether the
.meta tail-sequence
list is a structural suffix of
.metn sequence ;
which is to say: is
.meta tail-sequence
one of the
.code cons
cells which comprise
.metn sequence ?
If so, then a list is returned consisting of all the items of
.meta sequence
before
.metn tail-sequence :
a copy of
.meta sequence
with the
.meta tail-sequence
part removed, and replaced by the
.code nil
terminator. If
.meta tail-sequence
is
.code nil
or the lists are unrelated, then
.meta sequence
is returned.
The \*(TL
.code ldiff
function supports the following additional semantics.
.RS
.IP 1.
The basic description of
.code ldiff
is extended to work with list-like sequences, not
merely lists; that is to say, objects which support the
.code car
method.
.IP 2.
If
.meta sequence
is any kind of sequence, and
.meta tail-sequence
is any kind of empty sequence, then
.meta sequence
is returned.
.IP 3.
If either argument is an atom that is not a sequence,
.code ldiff
returns
.metn sequence .
.IP 4.
If
.meta sequence
is a list-like sequence, and
.meta tail-sequence
isn't, then the terminating atom of
.meta sequence
is determined. This atom is compared using
.code equal
to the
.meta tail-sequence
object. If they are equal, then a proper list is
returned containing the items of
.meta sequence
excluding the terminating atom.
.IP 5.
If both arguments are vector-like sequences, then
.code ldiff
determines whether
.meta sequence
has a suffix which is
.code equal
to
.metn tail-sequence .
If this is the case, then a sequence is returned, of the same kind as
.metn sequence ,
consisting of the items of
.meta sequence
before that suffix.
If
.meta tail-sequence
is not
.code equal
to a suffix of
.metn sequence ,
then
.meta sequence
is returned.
.IP 6
In all other cases,
.meta sequence
and
.meta tail-sequence
are compared with
.codn equal .
If the comparison is true,
.code nil
is returned, otherwise
.meta sequence
is returned.
.RE
.TP* Examples:
.verb
;;; unspecified: the compiler could make
;;; '(2 3) a suffix of '(1 2 3),
;;; or they could be separate objects.
(ldiff '(1 2 3) '(2 3)) -> either (1) or (1 2 3)
;; b is the (1 2) suffix of a, so the ldiff is (1)
(let* ((a '(1 2 3)) (b (cdr a)))
(ldiff a b))
-> (1)
;; Rule 5: strings and vector
(ldiff "abc" "bc") -> "a"
(ldiff "abc" nil) -> "abc"
(ldiff #(1 2 3) #(3)) -> #(1 2)
;; Rule 5: mixed vector kinds
(ldiff "abc" #(#\eb #\ec)) -> "abc"
;; Rule 6:
(ldiff #(1 2 3) '(3)) -> #(1 2 3)
;; Rule 4:
(ldiff '(1 2 3) #(3)) -> '(1 2 3)
(ldiff '(1 2 3 . #(3)) #(3)) -> '(1 2 3)
(ldiff '(1 2 3 . 4) #(3)) -> '(1 2 3 . 4)
;; Rule 6
(ldiff 1 2) -> 1
(ldiff 1 1) -> nil
.brev
.coNP Function @ search
.synb
.mets (search < haystack < needle >> [ testfun <> [ keyfun ]])
.syne
.desc
The
.code search
function determines whether the sequence
.meta needle
occurs as substring
within
.metn haystack ,
under the given comparison function
.meta testfun
and
key function
.metn keyfun .
If this is the case, then the zero-based position of
the leftmost occurrence of
.meta key
within
.meta haystack
is returned. Otherwise
.code nil
is returned to indicate that
.meta key
does not occur within
.metn haystack .
If
.meta key
is empty, then zero is always returned.
The arguments
.meta haystack
and
.meta needle
are sequences. They may not be hash tables.
If
.meta needle
is not empty, then it occurs at some position N within
.meta haystack
if
the first element of
.meta needle
matches the element at position N of
.metn haystack ,
the second element of
.meta needle
matches the element at position N+1 of
.meta haystack
and so forth, for all elements of
.metn needle .
A match between elements
is determined by passing each element through
.metn keyfun ,
and then comparing the resulting values using
.metn testfun .
If
.meta testfun
is supplied, it must be a function which can be
called with two arguments. If it is not supplied, it defaults to
.codn eql .
If
.meta keyfun
is supplied, it must be a function which can be called
with one argument. If it is not supplied, it defaults to
.codn identity .
.TP* Examples:
.verb
;; fails because 3.0 doesn't match 3
;; under the default eql function
[search #(1.0 3.0 4.0 7.0) '(3 4)] -> nil
;; occurrence found at position 1:
;; (3.0 4.0) matches (3 4) under =
[search #(1.0 3.0 4.0 7.0) '(3 4) =] -> 1
;; "even odd odd odd even" pattern
;; matches at position 2
[search #(1 1 2 3 5 7 8) '(2 1 1 1 2) : evenp] -> 2
;; Case insensitive string search
[search "abcd" "CD" : chr-toupper] -> 2
;; Case insensitive string search
;; using vector of characters as key
[search "abcd" #(#\eC #\eD) : chr-toupper] -> 2
.brev
.coNP Function @ contains
.synb
.mets (contains < needle < haystack >> [ testfun <> [ keyfun ]])
.syne
.desc
The syntax of the
.code contains
function differs from that of
.codn search :
that the
.meta needle
and
.meta haystack
arguments are reversed. The semantics is identical.
.coNP Function @ rsearch
.synb
.mets (rsearch < haystack < needle >> [ testfun <> [ keyfun ])
.syne
.desc
The
.code rsearch
function is like
.code search
except for two differences.
Firstly, if
.meta needle
matches
.meta haystack
in multiple places,
.code rsearch
returns the right-most matching position rather than
the leftmost.
Secondly, if
.meta needle
is an empty sequence, then
.code rsearch
returns the length of
.codn haystack ,
thereby effectively declaring that the rightmost match for an empty
.meta needle
key occurs at the imaginary position past the element of
.metn haystack .
.coNP Functions @ ref and @ refset
.synb
.mets (ref < sequence << index )
.mets (refset < sequence < index << new-value )
.syne
.desc
The
.code ref
and
.code refset
functions perform array-like indexing into sequences, as well as
objects of type
.code buf
and
.codn carray .
If the
.meta sequence
parameter is a hash, then these functions perform
has retrieval and storage; in that case
.meta index
isn't restricted to an integer value.
If
.meta sequence
is a structure, it supports
.code ref
directly if it has a
.code lambda
method. The
.meta index
argument is passed to that method, and the resulting value is
returned.
If a structure lacks a
.code lambda
method, but has a
.code car
method, then
.code ref
treats it as a list, traversing the structure using
.cod3 car / cdr
operations. In the absence of support for these operations,
the function fails with an error exception.
Similarly, a structure supports
.code refset
directly if it has a
.code lambda-set
method. This gets called with
.meta index
and
.meta new-value
as arguments. Then
.meta new-value
is returned.
If a structure lacks a
.code lambda-set
method, then
.code refset
treats it as a list, traversing the structure using
.cod3 car / cdr
operations, and storing
.meta new-value
using
.codn rplaca .
In the absence of support for these operations,
the function fails with an error exception.
The
.code ref
function retrieves an element of
.metn sequence ,
whereas
.code refset
overwrites an
element of
.meta sequence
with a new value.
If
.meta sequence
is a sequence then
.meta index
argument must be an integer. The first element of the sequence
is indexed by zero. Negative values are permitted,
denoting backward indexing from the end of the sequence, such that
the last element is indexed by -1, the second last by -2 and so on.
See also the Range Indexing section under the
description of the
.code dwim
operator.
If
.meta sequence
is a list, then out-of-range indices, whether positive or negative,
are treated leniently by
.codn ref :
such accesses produce the value
.codn nil ,
rather than an error. For other sequence types, such accesses
are erroneous. For hashes, accesses to nonexistent elements
are treated leniently, and produce
.codn nil .
The
.code refset
function is strict for out-of-range indices over all sequences,
including lists. In the case of hashes, a
.code refset
of a nonexistent key creates the key.
The
.code refset
function returns
.codn new-value .
The following equivalences hold between
.code ref
and
.codn refset ,
and the DWIM bracket syntax, provided that
.meta idx
is a scalar index and
.meta sequence
is a sequence object, rather than a hash.
.verb
(ref seq idx) <--> [seq idx]
(refset seq idx new) <--> (set [seq idx] new)
.brev
The difference is that
.code ref
and
.code refset
are first class functions which
can be used in functional programming as higher order functions, whereas the
bracket notation is syntactic sugar, and
.code set
is an operator, not a function.
Therefore the brackets cannot replace all uses of
.code ref
and
.codn refset .
.coNP Function @ update
.synb
.mets (update < sequence << function )
.syne
.desc
The
.code update
function replaces each elements in
.meta sequence
in a hash table, with the result of
.meta function
being applied to that element value.
The
.meta sequence
is returned.
The
.meta sequence
may be a hash table. In that case,
.meta function
is invoked with each hash value, which is replaced with the function's return
value.
.coNP Functions @, remq @ remql and @ remqual
.synb
.mets (remq < object < sequence <> [ key-function ])
.mets (remql < object < sequence <> [ key-function ])
.mets (remqual < object < sequence <> [ key-function ])
.syne
.desc
The
.codn remq ,
.code remql
and
.code remqual
functions produce a new sequence based on
.metn sequence ,
removing the elements whose associated keys are
.codn eq ,
.code eql
or
.code equal
to
.metn object .
The input
.meta sequence
is unmodified, but the returned sequence may share substructure
with it. If no items are removed, it is possible that the return value
is
.meta sequence
itself.
If
.meta key-function
is omitted, then the element keys compared to
.meta object
are the elements themselves.
Otherwise,
.meta key-function
is applied to each element and the resulting value
is that element's key which is compared to
.metn object .
.coNP Functions @, remq* @ remql* and @ remqual*
.synb
.mets (remq* < object << sequence )
.mets (remql* < object << sequence )
.mets (remqual* < object << sequence )
.syne
.desc
The
.codn remq* ,
.code remql*
and
.code remqual*
functions are lazy analogs of
.codn remq ,
.code remql
and
.codn remqual .
Rather than computing the entire new sequence
prior to returning, these functions return a lazy list.
Caution: these functions can still get into infinite looping behavior.
For instance, in
.codn "(remql* 0 (repeat '(0)))" ,
.code remql
will keep consuming
the
.code 0
values coming out of the infinite list, looking for the first item that
does not have to be deleted, in order to instantiate the first lazy value.
.TP* Examples:
.verb
;; Return a list of all the natural numbers, excluding 13,
;; then take the first 100 of these.
;; If remql is used, it will loop until memory is exhausted,
;; because (range 1) is an infinite list.
[(remql* 13 (range 1)) 0..100]
.brev
.coNP Functions @, keepq @ keepql and @ keepqual
.synb
.mets (keepq < object < sequence <> [ key-function ])
.mets (keepql < object < sequence <> [ key-function ])
.mets (keepqual < object < sequence <> [ key-function ])
.syne
.desc
The
.codn keepq ,
.code keepql
and
.code keepqual
functions produce a new sequence based on
.metn sequence ,
removing the items whose keys are not
.codn eq ,
.code eql
or
.code equal
to
.metn object .
The input
.meta sequence
is unmodified, but the returned sequence may share substructure
with it. If no items are removed, it is possible that the return value
is
.meta sequence
itself.
The optional
.meta key-function
is applied to each element from the
.meta sequence
to convert it to a key which is compared to
.metn object .
If
.meta key-function
is omitted, then each element itself of
.meta sequence
is compared to
.metn object .
.coNP Functions @, remove-if @, keep-if @ remove-if* and @ keep-if*
.synb
.mets (remove-if < predicate-function < sequence <> [ key-function ])
.mets (keep-if < predicate-function < sequence <> [ key-function ])
.mets (remove-if* < predicate-function < sequence <> [ key-function ])
.mets (keep-if* < predicate-function < sequence <> [ key-function ])
.syne
.desc
The
.code remove-if
function produces a sequence whose contents are those of
.meta sequence
but with those elements removed which satisfy
.metn predicate-function .
Those elements which are not removed appear in the same order.
The result sequence may share substructure with the input sequence,
and may even be the same sequence object if no items are removed.
The optional
.meta key-function
specifies how each element from the
.meta sequence
is transformed to an argument to
.metn predicate-function .
If this argument is omitted
then the predicate function is applied to the elements directly, a behavior
which is identical to
.meta key-function
being
.codn "(fun identity)" .
The
.code keep-if
function is exactly like
.codn remove-if ,
except the sense of
the predicate is inverted. The function
.code keep-if
retains those items
which
.code remove-if
will delete, and removes those that
.code remove-if
will preserve.
The
.code remove-if*
and
.code keep-if*
functions are like
.code remove-if
and
.codn keep-if ,
but produce lazy lists.
.TP* Examples:
.verb
;; remove any element numerically equal to 3.
(remove-if (op = 3) '(1 2 3 4 3.0 5)) -> (1 2 4 5)
;; remove those pairs whose first element begins with "abc"
[remove-if (op equal [@1 0..3] "abc")
'(("abcd" 4) ("defg" 5))
car]
-> (("defg" 5))
;; equivalent, without test function
(remove-if (op equal [(car @1) 0..3] "abc")
'(("abcd" 4) ("defg" 5)))
-> (("defg" 5))
.brev
.coNP Functions @, countqual @ countql and @ countq
.synb
.mets (countq < object << iterable )
.mets (countql < object << iterable )
.mets (countqual < object << iterable )
.syne
.desc
The
.codn countq ,
.code countql
and
.code countqual
functions count the number of objects
in
.meta iterable
which are
.codn eq ,
.code eql
or
.code equal
to
.metn object ,
and return the count.
.coNP Function @ count-if
.synb
.mets (count-if < predicate-function < iterable <> [ key-function ])
.syne
.desc
The
.code count-if
function counts the number of elements of
.meta iterable
which satisfy
.meta predicate-function
and returns the count.
The optional
.meta key-function
specifies how each element from
.meta iterable
is transformed to an argument to
.metn predicate-function .
If this argument is omitted
then the predicate function is applied to the elements directly, a behavior
which is identical to
.meta key-function
being
.codn "(fun identity)" .
.coNP Functions @, posq @ posql and @ posqual
.synb
.mets (posq < object << sequence )
.mets (posql < object << sequence )
.mets (posqual < object << sequence )
.syne
.desc
The
.codn posq ,
.code posql
and
.code posqual
functions return the zero-based position of the
first item in
.meta sequence
which is, respectively,
.codn eq ,
.code eql
or
.code equal
to
.metn object .
.coNP Functions @ pos and @ pos-if
.synb
.mets (pos < key < sequence >> [ testfun <> [ keyfun ]])
.mets (pos-if < predfun < sequence <> [ keyfun ])
.syne
.desc
The
.code pos
and
.code pos-if
functions search through
.meta sequence
for an item which matches
.metn key ,
or satisfies the predicate function
.metn predfun ,
respectively.
They return the zero-based position of the matching item.
The
.meta keyfun
argument specifies a function which is applied to the elements
of
.meta sequence
to produce the comparison key. If this argument is omitted,
then the untransformed elements of
.meta sequence
are examined.
The
.code pos
function's
.meta testfun
argument specifies the test function which
is used to compare the comparison keys from
.meta sequence
to
.metn key .
If this argument is omitted, then the
.code equal
function is used.
The position of the first element
.meta sequence
whose comparison key (as
retrieved by
.metn keyfun )
matches the search (under
.metn testfun )
is
returned. If no such element is found,
.code nil
is returned.
The
.code pos-if
function's
.meta predfun
argument specifies a predicate function
which is applied to the successive comparison keys taken from
.meta sequence
by applying
.meta keyfun
to successive elements. The position of
the first element for which
.meta predfun
yields true is returned. If
no such element is found,
.code nil
is returned.
.coNP Functions @, rposq @, rposql @, rposqual @ rpos and @ rpos-if
.synb
.mets (rposq < object << sequence )
.mets (rposql < object << sequence )
.mets (rposqual < object << sequence )
.mets (rpos < key < sequence >> [ testfun <> [ keyfun ]])
.mets (rpos-if < predfun < sequence <> [ keyfun ])
.syne
.desc
These functions are counterparts of
.codn rposq ,
.codn rposql ,
.codn rposqual ,
.code rpos
and
.code rpos-if
which report position of the right-most matching item,
rather than the left-most.
.coNP Functions @ pos-max and @ pos-min
.synb
.mets (pos-max < sequence >> [ testfun <> [ keyfun ]])
.mets (pos-min < sequence >> [ testfun <> [ keyfun ]])
.syne
.desc
The
.code pos-min
and
.code pos-max
functions implement exactly the same algorithm; they
differ only in their defaulting behavior with regard to the
.meta testfun
argument. If
.meta testfun
is not given, then the pos-max function defaults
.meta testfun
to the
.code greater
function, whereas
.code pos-min
defaults it to the
.code less
function.
If
.meta sequence
is empty, both functions return
.codn nil .
Without a
.meta testfun
argument, the
.code pos-max
function finds the zero-based
position index of the numerically maximum value occurring in
.metn sequence ,
whereas
.code pos-min
without a
.meta testfun
argument finds the index of the minimum
value.
If a
.meta testfun
argument is given, the two functions are equivalent.
The
.meta testfun
function must be callable with two arguments.
If
.meta testfun
behaves like a greater-than comparison, then
.code pos-max
and
.code pos-min
return the index of the maximum element. If
.meta testfun
behaves like a
.code less-than
comparison, then the functions return
the index of the minimum element.
The
.meta keyfun
argument defaults to the
.code identity
function. Each element
from
.meta sequence
is passed through this one-argument function, and
the resulting value is used in its place.
If a sequence contains multiple equivalent maxima,
whether the position of the leftmost or rightmost such maximum is reported
depends on whether
.meta testfun
compares for strict inequality, or whether it reports true for
equal arguments also. Under the default
.metn testfun ,
which is
.codn less ,
the
.code pos-max
function will return the position leftmost of a duplicate set of maximum
elements. To find the rightmost of the maxima, the
.code lequal
function can be substituted. Analogous reasoning applies to other
test functions.
.coNP Function @ mismatch
.synb
.mets (mismatch < left-seq < right-seq >> [ testfun <> [ keyfun ]])
.syne
.desc
The
.code mismatch
function compares corresponding elements from the sequences
.meta left-seq
and
.metn right-seq ,
returning the position at which the first mismatch occurs.
If the sequences are of the same length, and their corresponding
elements are the same, then
.code nil
is returned.
If one sequence is shorter than the other, and matches a prefix
of the other, then the mismatching position returned is one position
after the last element of the shorter sequence, the same value
as its length. An empty sequence is a prefix of every sequence.
The
.meta keyfun
argument defaults to the
.code identity
function. Each element
from
.meta sequence
is passed to
.meta keyfun
and the resulting value is used in its place.
After being converted through
.metn keyfun ,
items are then compared using
.metn testfun ,
which must accept two arguments, and defaults to
.codn equal .
.coNP Function @ where
.synb
.mets (where < function << iterable )
.syne
.desc
If
.meta iterable
is a sequence, the
.code where
function returns
a lazy list of the numeric indices of those of its elements which satisfy
.metn function .
The numeric indices appear in increasing order.
If
.meta iterable
is a hash, the following special behavior applies:
.code where
returns a lazy list of
of keys which have values which satisfy
.metn function .
These keys are not subject to an order.
.meta function
must be a function that can be called with one argument.
For each element of
.metn iterable ,
.meta function
is called with that element
as an argument. If a
.cod2 non- nil
value is returned, then the zero-based index of
that element is added to a list. Finally, the list is returned.
.coNP Function @ rmismatch
.synb
.mets (rmismatch < left-seq < right-seq >> [ testfun <> [ keyfun ]])
.syne
.desc
Similarly to
.codn mismatch ,
the
.code rmismatch
function compares corresponding elements from the sequences
.meta left-seq
and
.metn right-seq ,
returning the position at which the first mismatch occurs.
All of the arguments have the same semantics as that of
.codn mismatch .
Unlike
.codn mismatch ,
.code rmismatch
compares the sequences right-to-left, finding the suffix
which they have in common, rather than prefix.
If the sequences match, then
.code nil
is returned. Otherwise, a negative index is returned giving the
mismatching position, regarded from the end. If the sequences
match only in the rightmost element, then -1 is returned. If they
match in two elements then -2 and so forth.
.coNP Functions @ starts-with and @ ends-with
.synb
.mets (starts-with < short-seq < long-seq >> [ testfun <> [ keyfun ]])
.mets (ends-with < short-seq < long-seq >> [ testfun <> [ keyfun ]])
.syne
.desc
The
.code starts-with
and
.code ends-with
functions compare corresponding elements from sequences
.meta short-seq
and
.metn long-seq .
The
.code starts-with
function returns
.code t
if
.meta short-seq
is prefix of
.metn long-seq ;
otherwise, it returns
.codn nil .
The
.code ends-with
function returns
.code t
if
.meta short-seq
is suffix of
.metn long-seq ;
otherwise, it returns
.codn nil .
Element from both sequences are mapped to comparison keys using
.metn keyfun ,
which defaults to
.codn identity .
Comparison keys are compared using
.meta testfun
which defaults to
.codn equal .
.coNP Function @ select
.synb
.mets (select < sequence >> { index-list | << function })
.syne
.desc
The
.code select
function returns a sequence, of the same kind as
.metn sequence ,
which consists of those elements of
.meta sequence
which are identified by
the indices in
.metn index-list ,
which may be a list or a vector.
If
.meta function
is given instead of
.metn index-list ,
then
.meta function
is invoked with
.meta sequence
as its argument. The return value is then taken as
if it were the
.meta index-list
argument .
If
.meta sequence
is a sequence, then
.meta index-list
consists of numeric
indices. The length of the sequence, as reported by the
.code length
function, is added to every
.meta index-list
value which is negative.
The
.code select
function stops collecting values upon encountering an index value which is
greater than or equal to the length of the sequence.
(Rationale: without
this strict behavior,
.code select
would not be able to terminate if
.meta index-list
is infinite.)
If
.meta sequence
is, more specifically, a list-like sequence, then
.meta index-list
must contain monotonically increasing
numeric values, even if no value is out of range, since the
.code select
function
makes a single pass through the list based on the assumption that indices
are ordered. (Rationale: optimization.)
This requirement for monotonicity applies to the values which
result after negative indices are displaced by the sequence length
Also, in this list-like sequence case, values taken from
.meta index-list
which are still negative after being displaced by the sequence length are
ignored.
If
.meta sequence
is a hash, then
.meta index-list
is a list of keys. A new hash is
returned which contains those elements of
.meta sequence
whose keys appear
in
.metn index-list .
All of
.meta index-list
is processed, even if it contains
keys which are not in
.metn sequence .
The nonexistent keys are ignored.
The
.code select
function also supports objects of type
.codn carray ,
in a manner similar to vectors. The indicated elements are extracted
from the input sequence, and a new
.code carray
is returned whose storage is initialized by converting the extracted
values back to the foreign representation.
.coNP Function @ reject
.synb
.mets (reject < sequence >> { index-list | << function })
.syne
.desc
The
.code reject
function returns a sequence, of the same kind as
.metn sequence ,
which consists of all those elements of
.meta sequence
which are not identified by the indices in
.metn index-list ,
which may be a list or a vector.
If
.meta function
is given instead of
.metn index-list ,
then
.meta function
is invoked with
.meta sequence
as its argument. The return value is then taken as
if it were the
.meta index-list
argument .
If
.code sequence
is a hash, then
.meta index-list
represents a list of keys. The
.code reject
function returns a duplicate of the hash, in which
the keys specified in
.meta index-list
do not appear.
Otherwise if
.meta sequence
is a vector-like sequence, then the behavior of
.code reject
may be understood by the following equivalence:
.verb
(reject seq idx) --> (make-like
[apply append (split* seq idx)]
seq)
.brev
where it is to be understood that
.meta seq
is evaluated only once.
If
.meta sequence
is a list, then, similarly, the following equivalence applies:
.verb
(reject seq idx) --> (make-like
[apply append* (split* seq idx)]
seq)
.brev
The input sequence is split into pieces at the indicated indices, such that
the elements at the indices are removed and do not appear in the pieces. The
pieces are then appended together in order, and the resulting list is coerced
into the same type of sequence as the input sequence.
.coNP Function @ relate
.synb
.mets (relate < domain-seq < range-seq <> [ default-val ])
.syne
.desc
The
.code relate
function returns a one-argument function which implements the relation formed
by mapping the elements of
.meta domain-seq
to the positionally corresponding elements of
.metn range-seq .
That is to say, the function searches through the sequence
.meta domain-seq
to determine the position where its argument occurs, using
.code equal
as the comparison function.
Then it returns the element from that position in the
.meta range-seq
sequence. This returned function is called the
.IR "relation function" .
If the relation function's argument is not found in
.metn domain-seq ,
then the behavior depends on the optional parameter
.metn default-val .
If an argument is given for
.metn default-val ,
then the relation function returns that value.
Otherwise, the relation function returns its argument.
Note: the
.code relate
function may be understood in terms of the following equivalences:
.verb
(relate d r) <--> (lambda (arg)
(iflet ((p (posqual arg d)))
[r p]
arg))
(relate d r v) <--> (lambda (arg)
(iflet ((p (posqual arg d)))
[r p]
v))
.brev
Note:
.code relate
may return a hash table instead of a function, if such an object
can satisfy the semantics required by the arguments.
.TP* Examples:
.verb
(mapcar (relate "_" "-") "foo_bar") -> "foo-bar"
(mapcar (relate "0123456789" "ABCDEFGHIJ" "X") "139D-345")
-> "BJDXXDEF"
(mapcar (relate '(nil) '(0)) '(nil 1 2 nil 4)) -> (0 1 2 0 4)
.brev
.coNP Function @ in
.synb
.mets (in < sequence < key >> [ testfun <> [ keyfun ]])
.mets (in < hash << key )
.syne
.desc
The
.code in
function tests whether
.meta key
is found inside
.meta sequence
or
.metn hash .
If the
.meta testfun
argument is specified, it specifies the function
which is used to comparison keys from the sequence
to
.metn key .
Otherwise the
.code equal
function is used.
If the
.meta keyfun
argument is specified, it specifies a function which
is applied to the elements of
.meta sequence
to produce the comparison keys. Without this
argument, the elements themselves are taken
as the comparison keys.
If the object being searched is a hash, then if neither of the arguments
.meta keyfun
nor
.meta testfun
is specified,
.code in
performs a hash lookup for
.codn key ,
returning
.code t
if the key is found,
.code nil
otherwise.
If either of
.meta keyfun
or
.meta testfun
is specified, then
.code in
performs an exhaustive search of the hash table, as if it were
a sequence of
.code cons
cells whose
.code car
fields are keys, and whose
.code cdr
keys are values. Thus to search by key, the
.code car
function must be specified as
.metn keyfun .
The
.code in
function returns
.code t
if it finds
.meta key
in
.meta sequence
or
.metn hash ,
otherwise
.codn nil .
.coNP Function @ partition
.synb
.mets (partition < sequence >> { index-list | index | << function })
.syne
.desc
If
.meta sequence
is empty, then
.code partition
returns an empty list, and the
second argument is ignored; if it is
.metn function ,
it is not called.
Otherwise,
.code partition
returns a lazy list of partitions of
.metn sequence .
Partitions are consecutive, non-overlapping, non-empty sub-strings of
.metn sequence ,
of the same kind as
.metn sequence ,
such that if these sub-strings are catenated together in their order
of appearance, a sequence
.code equal
to the original is produced.
If the second argument is of the form
.metn index-list ,
or if an
.meta index-list
was produced from the
.meta index
or
.meta function
arguments, each value in that list must be an integer. Each integer
value which is non-negative specifies the index position
given by its value. Each integer value which is negative
specifies an index position given by adding the length of
.meta sequence
to its value. The sequence index positions thus denoted by
.meta index-list
shall be strictly non-decreasing. Each successive element
is expected to designate an index position at least as high
as all previous elements, otherwise the behavior is unspecified.
Leading index positions which are (still) negative, or zero, are effectively
ignored.
If
.meta index-list
is empty then a one-element list containing the entire
.meta sequence
is returned.
If
.meta index-list
is an infinite lazy list, the function shall terminate if that
list eventually produces an index position which is greater than or equal to
the length of
.metn sequence .
If the second argument is a function, then this function is applied
to
.metn sequence ,
and the return value of this call is then used in place of the
second argument, which must be a single index value, which is then
taken as if it were the
.meta index
argument, or else a list of indices, which are taken as the
.meta index-list
argument.
If the second argument is an atom other than a function, it is assumed to be
an integer index, and is turned into an
.meta index-list
of one element.
After the
.meta index-list
is obtained as an argument, or determined from the
.meta index
or
.meta function
arguments, the
.code partition
function then divides
.meta sequence
according to the indices given by that list.
The first partition begins with the first element of
.metn sequence .
The second partition begins at the first position in
.metn index-list ,
and so on. Indices beyond the length of the sequence are ignored,
as are indices less than or equal to zero.
.TP* Examples:
.verb
(partition '(1 2 3) 1) -> ((1) (2 3))
;; split the string where there is a "b"
(partition "abcbcbd" (op where (op eql #\eb))) -> ("a" "bc"
"bc" "bd")
.brev
.coNP Functions @ split and @ split*
.synb
.mets (split < sequence >> { index-list | index | << function })
.mets (split* < sequence >> { index-list | index | << function })
.syne
.desc
If
.meta sequence
is empty, then both
.code split
and
.code split*
return an empty list, and the
second argument is ignored; if it is
.metn function ,
it is not called.
Otherwise,
.code split
returns a lazy list of pieces of
.metn sequence :
consecutive, non-overlapping, possibly empty sub-strings of
.metn sequence ,
of the same kind as
.metn sequence .
A catenation of these pieces in the order they appear would produce
a sequence that is
.code equal
to the original sequence.
The
.code split*
function differs from
.code split
in that the elements indicated by the split indices are removed.
The
.metn index ,
.metn index-list ,
and
.meta function
arguments are subject to the same restrictions and treatment
as the corresponding arguments of the
.code partition
function, with the following difference: the index positions indicated by
.code index-list
are required to be strictly increasing, rather than non-decreasing.
If the second argument is of the form
.metn index-list ,
or if an
.meta index-list
was produced from the
.meta index
or
.meta function
arguments, then the
.code split
function divides
.meta sequence
according to the indices indicated in the list. The first piece always begins
with the first element of
.metn sequence .
Each subsequent piece begins with the position indicated by
an element of
.metn index-list .
Negative indices are ignored.
If
.meta index-list
includes index zero,
then an empty first piece is generated.
If
.meta index-list
includes an index greater than or equal to the length of
.meta sequence
(equivalently, an index beyond the last element of the sequence)
then an additional empty last piece is generated.
The length of
.meta sequence
is added to any negative indices. An index which is still negative
after being thus displaced is discarded.
Note: the principal difference between
.code split
and
.code partition
is that
.code partition
does not produce empty pieces.
.TP* Examples:
.verb
(split '(1 2 3) 1) -> ((1) (2 3))
(split "abc" 0) -> ("" "abc")
(split "abc" 3) -> ("abc" "")
(split "abc" 1) -> ("a" "bc")
(split "abc" '(0 1 2 3)) -> ("" "a" "b" "c" "")
(split "abc" '(1 2)) -> ("a" "b" "c")
(split "abc" '(-1 1 2 15)) -> ("a" "b" "c")
;; triple split at makes two additional empty pieces
(split "abc" '(1 1 1)) -> ("a" "" "" "bc")
(split* "abc" 0) -> ("" "bc") ;; "a" is removed
;; all characters removed
(split* "abc" '(0 1 2)) -> ("" "" "" "")
.brev
.coNP Function @ partition*
.synb
.mets (partition* < sequence >> { index-list >> | index <> | function })
.syne
.desc
If
.meta sequence
is empty, then
.code partition*
returns an empty list, and the
second argument is ignored; if it is
.metn function ,
it is not called.
The
.metn index ,
.metn index-list ,
and
.meta function
arguments are subject to the same restrictions and treatment
as the corresponding arguments of the
.code partition
function, with the following difference: the index positions indicated by
.code index-list
are required to be strictly increasing, rather than non-decreasing.
If the second argument is of the form
.metn index-list ,
then
.code partition*
produces a
lazy list of pieces taken from
.metn sequence .
The pieces are formed by deleting from
.meta sequence
the elements at the positions given
in
.metn index-list ,
such that the pieces are the remaining non-empty sub-strings from
between the deleted elements, maintaining their order.
If
.meta index-list
is empty then a one-element list containing the entire
.meta sequence
is returned.
.TP* Examples:
.verb
(partition* '(1 2 3 4 5) '(0 2 4)) -> ((2) (4))
(partition* "abcd" '(0 3)) -> "bc"
(partition* "abcd" '(0 1 2 3)) -> nil
.brev
.coNP Functions @ find and @ find-if
.synb
.mets (find < key < sequence >> [ testfun <> [ keyfun ]])
.mets (find-if < predfun >> { sequence | << hash } <> [ keyfun ])
.syne
.desc
The
.code find
and
.code find-if
functions search through a sequence for an item which
matches a key, or satisfies a predicate function, respectively.
The
.meta keyfun
argument specifies a function which is applied to the elements
of
.meta sequence
to produce the comparison key. If this argument is omitted,
then the untransformed elements of the
.meta sequence
are searched.
The
.code find
function's
.meta testfun
argument specifies the test function which
is used to compare the comparison keys from
.meta sequence
to the search key.
If this argument is omitted, then the
.code equal
function is used.
The first element from the list whose comparison key (as retrieved by
.metn keyfun )
matches the search (under
.metn testfun )
is returned. If no such element is found,
.code nil
is returned.
The
.code find-if
function's
.meta predfun
argument specifies a predicate function
which is applied to the successive comparison keys pulled from the list
by applying
.meta keyfun
to successive elements. The first element
for which
.meta predfun
yields true is returned. If no such
element is found,
.code nil
is returned.
In the case of
.codn find-if ,
a hash table may be specified instead of a sequence.
The
.meta hash
is treated as if it were a sequence of hash key and hash
value pairs represented as cons cells, the
.code car
slots of which are the hash keys, and the
.code cdr
of which are the hash values. If the caller doesn't specify a
.meta keyfun
then these cells are taken as their keys.
.coNP Functions @ rfind and @ rfind-if
.synb
.mets (rfind < key < sequence >> [ testfun <> [ keyfun ]])
.mets (rfind-if < predfun >> { sequence | << hash } <> [ keyfun ])
.syne
.desc
The
.code rfind
and
.code rfind-if
functions are almost exactly like
.code find
and
.code find-if
except that if there are multiple matches for
.meta key
in
.metn sequence ,
they return the right-most element rather than
the leftmost.
In the case of
.code rfind-if
when a
.meta hash
is specified instead of a
.metn sequence ,
the function searches through the hash entries in the same order as
.codn find-if ,
but finds the last match rather than the first.
Note: hashes are inherently not ordered; the relative order of items in
a hash table can change when other items are inserted or deleted.
.coNP Functions @ find-max and @ find-min
.synb
.mets (find-max >> { sequence | << hash } >> [ testfun <> [ keyfun ]])
.mets (find-min >> { sequence | << hash } >> [ testfun <> [ keyfun ]])
.syne
.desc
The
.code find-min
and
.code find-max
function implement exactly the same algorithm; they
differ only in their defaulting behavior with regard to the
.meta testfun
argument. If
.meta testfun
is not given, then the find-max function defaults it to
the
.code greater
function, whereas
.code find-min
defaults it to the
.code less
function.
Without a
.meta testfun
argument, the
.code find-max
function finds the numerically
maximum value occurring in
.metn sequence ,
whereas
.code pos-min
without a
.meta testfun
argument finds the minimum value.
If a
.meta testfun
argument is given, the two functions are equivalent.
The
.meta testfun
function must be callable with two arguments.
If
.meta testfun
behaves like a greater-than comparison, then
.code find-max
and
.code find-min
both return the maximum element. If
.meta testfun
behaves like a less-than comparison, then the functions return
the minimum element.
The
.meta keyfun
argument defaults to the
.code identity
function. Each element
from
.meta sequence
is passed through this one-argument function, and
the resulting value is used in its place for the purposes of the
comparison. However, the original element is returned.
A hash table may be specified instead of a sequence.
The
.meta hash
is treated as if it were a sequence of hash key and hash
value pairs represented as cons cells, the
.code car
slots of which are the hash keys, and the
.code cdr
of which are the hash values. If the caller doesn't specify a
.meta keyfun
then these cells are taken as their keys. To find the hash
table's key-value cell with the maximum key, the
.code car
function can be specified as
.metn keyfun .
To find the entry holding the maximum value, the
.code cdr
function can be specified.
If there are multiple equivalent maxima, then under the default
.metn testfun ,
that being
.codn less ,
the leftmost one is reported. See the notes under
.code pos-max
regarding duplicate maxima.
.coNP Functions @, uni @, isec @ diff and @ symdiff
.synb
.mets (uni < iter1 < iter1 >> [ testfun <> [ keyfun ]])
.mets (isec < iter1 < iter1 >> [ testfun <> [ keyfun ]])
.mets (diff < iter1 < iter1 >> [ testfun <> [ keyfun ]])
.mets (symdiff < iter1 < iter2 >> [ testfun <> [ keyfun ]])
.syne
.desc
The functions
.codn uni ,
.codn isec ,
.code diff
and
.code symdiff
treat the sequences
.meta iter1
and
.meta iter2
as if they were sets.
They, respectively, compute the set union, set intersection,
set difference and symmetric difference of
.meta iter1
and
.metn iter2 ,
returning a new sequence.
The arguments
.meta iter1
and
.meta iter2
need not be of the same kind. They may be hash tables.
The returned sequence is of the same kind as
.metn iter1 .
If
.meta iter1
is a hash table, the returned sequence is a list.
For the purposes of these functions, an input which is a hash table
is considered as if it were a sequence of hash key and hash
value pairs represented as cons cells, the
.code car
slots of which are the hash keys, and the
.code cdr
of which are the hash values. This means that if no
.meta keyfun
is specified, these pairs are taken as keys.
Since the input sequences are defined as representing sets, they are assumed
not to contain duplicate elements. These functions are not required, but may,
de-duplicate the sequences.
The union sequence produced by
.code uni
contains all of the elements which occur in both
.meta iter1
and
.metn iter2 .
If a given element occurs exactly once only in
.meta iter1
or exactly once only in
.metn iter2 ,
or exactly once in both sequences, then it occurs exactly once in the union
sequence. If a given element occurs at least once in either
.metn iter1 ,
.meta iter2
or both, then it occurs at least once in the union sequence.
The intersection sequence produced by
.code isec
contains all of the elements which occur in both
.meta iter1
and
.metn iter2 .
If a given element occurs exactly once in
.meta iter1
and exactly once in
.metn iter2 ,
then in occurs exactly once in the intersection sequence.
If a given element occurs at least once in
.meta iter1
and at least once in
.metn iter2 ,
then in occurs at least once in the intersection sequence.
The difference sequence produced by
.code diff
contains all of the elements which occur in
.meta iter1
but do not occur in
.metn iter2 .
If an element occurs exactly once in
.meta iter1
and does not occur in
.metn iter2 ,
then it occurs exactly once in the difference sequence.
If an element occurs at least once in
.meta iter1
and does not occur in
.metn iter2 ,
then it occurs at least once in the difference sequence.
If an element occurs at least once in
.metn iter2 ,
then it does not occur in the difference sequence.
The symmetric difference sequence produced by
.code symdiff
contains all of the elements of
.meta iter1
which do not occur in
.meta iter2
and
.IR "vice versa" :
it also contains all of the elements of
.meta iter2
which do not occur in
.metn iter1 .
Element equivalence is determined by a combination of
.meta testfun
and
.metn keyfun .
Elements are compared pairwise, and each element of a pair is passed through
.meta keyfun
function to produce a comparison value. The comparison values
are compared using
.metn testfun .
If
.meta keyfun
is omitted, then the
untransformed elements themselves are compared, and if
.meta testfun
is omitted,
then the
.code equal
function is used.
Note: a function similar to
.code diff
named
.code set-diff
exists. This became deprecated starting in \*(TX 184.
For the
.code set-diff
function, the requirement was specified to preserve the original
order of items from
.meta iter1
that survive into the output sequence.
This requirement is not documented for the
.code diff
function, but is
.I "de facto"
honored by the implementation for at as long as the
.code set-diff
synonym continues to be available.
The
.code set-diff
function doesn't support hash tables and is inefficient for vectors and
strings.
Note: these functions are not efficient for the processing of hash tables,
even when both inputs are hashes, the
.meta keyfun
argument is
.codn car ,
and
.meta testfun
matches the equality used by both hash table inputs.
If applicable, the operations
.codn hash-uni ,
.code hash-isec
and
.code hash-diff
should be used instead.
.coNP Functions @, mapcar @, mappend @ mapcar* and @ mappend*
.synb
.mets (mapcar < function << iterable *)
.mets (mappend < function << iterable *)
.mets (mapcar* < function << iterable *)
.mets (mappend* < function << iterable *)
.syne
.desc
When given only one argument, the
.code mapcar
function returns
.codn nil .
.meta function
is never called.
When given two arguments, the
.code mapcar
function applies
.meta function
to each elements of
.meta iterable
and returns a sequence of the resulting values
in the same order as the original values.
The returned sequence is the same kind as
.metn iterable ,
if possible. If the accumulated values cannot be
elements of that type of sequence, then a list is returned.
When additional sequences are given as arguments, this filtering behavior is
generalized in the following way:
.code mapcar
traverses the sequences in parallel,
taking a value from each sequence as an argument to the function. If there
are two lists,
.meta function
is called with two arguments and so forth.
The traversal is limited by the length of the shortest sequence.
The return values of the function are collected into a new sequence which is
returned. The returned sequence is of the same kind as the leftmost
input sequence, unless the accumulated values cannot be elements of that type of
sequence, in which case a list is returned.
The
.code mappend
function works like
.codn mapcar ,
with the following difference.
Rather than accumulating the values returned by the function into a sequence,
mappend expects the items returned by the function to be sequences which
are catenated with
.codn append ,
and the resulting sequence is returned. The returned sequence is of the same
kind as the leftmost input sequence, unless the values cannot be elements
of that type of sequence, in which case a list is returned.
The
.code mapcar*
and
.code mappend*
functions work like
.code mapcar
and
.codn mappend ,
respectively.
However, they return lazy lists rather than generating the entire
output list prior to returning.
.TP* Caveats:
Like
.codn mappend ,
.code mappend*
must "consume" empty lists. For instance,
if the function being mapped puts out a sequence of
.codn nil -s,
then the result must be the empty list
.codn nil ,
because
.code "(append nil nil nil nil ...)"
is
.codn nil .
But suppose that
.code mappend*
is used on inputs which are infinite lazy
lists, such that the function returns
.code nil
values indefinitely.
For instance:
.verb
;; Danger: infinite loop!!!
(mappend* (fun identity) (repeat '(nil)))
.brev
The
.code mappend*
function is caught in a loop trying to consume
and squash an infinite stream of
.codn nil -s,
and so doesn't return.
.TP* Examples:
.verb
;; multiply every element by two
(mapcar (lambda (item) (* 2 item)) '(1 2 3)) -> (4 6 8)
;; "zipper" two lists together
(mapcar (lambda (le ri) (list le ri)) '(1 2 3) '(a b c))
-> '((1 a) (2 b) (3 c)))
;; like append, mappend allows a lone atom or a trailing atom:
(mappend (fun identity) 3) -> (3)
(mappend (fun identity) '((1) 2)) -> (1 . 2)
;; take just the even numbers
(mappend (lambda (item) (if (evenp x) (list x))) '(1 2 3 4 5))
-> (2 4)
.brev
.coNP Functions @, maprod @ maprend and @ maprodo
.synb
.mets (maprod < function << iterable *)
.mets (maprend < function << iterable *)
.mets (maprodo < function << iterable *)
.syne
.desc
The
.codn maprod ,
.code maprend
and
.code maprodo
functions resemble
.codn mapcar ,
.code mappend
and
.codn mapdo ,
respectively. When given no
.meta iterable
arguments or exactly one
.meta iterable
argument, they behave exactly like those three functions.
When two or more
.meta iterable
arguments are present,
.code maprod
differs from
.code mapcar
in the following way, as do the remaining functions
from their aforementioned counterparts.
Whereas
.code mapcar
iterates over the
.meta iterable
values in parallel, taking successive tuples of element
values and passing them to
.metn function ,
the
.code maprod
function iterates over all
.I combinations
of elements from the sequences: the Cartesian product. The
.code prod
suffix stands for "product".
If one or more
.meta iterable
arguments specify an empty sequence, then the Cartesian product is empty.
In this situation,
.meta function
is not called. The result of the function is then
.code nil
converted to the same kind of sequence as the leftmost
.metn iterable .
The
.code maprod
function collects the values into a list just as
.code mapcar
does. Just like
.codn mapcar ,
it converts the resulting list into the same kind of sequence
as the leftmost
.meta iterable
argument, if possible. For instance, if the resulting list is
a list or vector of characters, and the leftmost
.meta iterable
is a character string, then the list or vector of characters
is converted to a character string and returned.
The
.code maprend
function ("map product through function and append") iterates the
.meta iterable
element combinations exactly like
.codn maprod ,
passing them as arguments to
.metn function .
The values returned by
.meta function
are then treated exactly as by the
.code mappend
function. The return values are expected to be sequences which
are appended together as if by
.codn append ,
and the final result is converted to the same kind of sequence as the leftmost
.meta iterable
if possible.
The
.code maprodo
function, like
.codn mapdo ,
ignores the result of
.meta function
and returns
.codn nil .
The combination iteration gives priority to the rightmost
.metn iterable ,
which means that the rightmost element of each generated tuple varies
fastest: the tuples are traversed in "rightmost major" order.
This is made clear in the examples.
.TP* Examples
.verb
[maprod list '(0 1 2) '(a b) '(i ii iii)]
->
((0 a i) (0 a ii) (0 a iii) (0 b i) (0 b ii) (0 b iii)
(1 a i) (1 a ii) (1 a iii) (1 b i) (1 b ii) (1 b iii)
(2 a i) (2 a ii) (2 a iii) (2 b i) (2 b ii) (2 b iii))
;; Vectors #(#\ea #\ex) #(#\ea #\ey) ... are appended
;; together resulting in #(#\ea #\ex #\ea #\ey ...)
;; which is converted to a string:
[maprend vec "ab" "xy"] -> "axaybxby"
;; One of the sequences is empty, so the product is an
;; empty sequence of the same kind as the leftmost
;; sequence argument, thus an empty string:
[maprend vec "ab" ""] -> ""
.brev
.coNP Function @ mapdo
.synb
.mets (mapdo < function << iterable *)
.syne
.desc
The
.code mapdo
function is similar to
.codn mapcar ,
but always returns
.codn nil .
It is useful
when
.meta function
performs some kind of side effect, hence the "do" in the name,
which is a mnemonic for the execution of imperative actions.
When only the
.meta function
argument is given,
.meta function
is never called,
and
.code nil
is returned.
If a single
.meta iterable
argument is given, then
.code mapdo
iterates over
.metn iterable ,
invoking
.meta function
on each element.
If two or more
.meta iterable
arguments are given, then
.code mapdo
iterates over
the sequences in parallel, extracting parallel tuples of items. These
tuples are passed as arguments to
.metn function ,
which must accept as many
arguments as there are sequences.
.coNP Functions @ transpose and @ zip
.synb
.mets (transpose << iterable )
.mets (zip << iterable *)
.syne
.desc
The
.code transpose
function performs a transposition on
.metn iterable .
This means that the
elements of
.meta iterable
must be iterable. These iterables are understood to be
columns; transpose exchanges rows and columns, returning a sequence of the rows
which make up the columns. The returned sequence is of the same kind as
.metn iterable ,
and the rows are also the same kind of sequence as the first column
of the original sequence. The number of rows returned is limited by the
shortest column among the sequences.
All of the input sequences (the elements of
.metn iterable )
must have elements
which are compatible with the first sequence. This means that if the first
element of
.meta iterable
is a string, then the remaining sequences must be
strings, or else sequences of characters, or of strings.
The
.code zip
function takes variable arguments, and is equivalent to calling
.code transpose
on a list of the arguments. The following equivalences hold:
.verb
(zip . x) <--> (transpose x)
[apply zip x] <--> (transpose x)
.brev
.TP* Examples:
.verb
;; transpose list of lists
(transpose '((a b c) (c d e))) -> ((a c) (b d) (c e))
;; transpose vector of strings:
;; - string columns become string rows
;; - vector input becomes vector output
(transpose #("abc" "def" "ghij")) -> #("adg" "beh" "cfi")
;; error: transpose wants to make a list of strings
;; but 1 is not a character
(transpose #("abc" "def" '(1 2 3))) ;; error!
;; String elements are catenated:
(transpose #("abc" "def" ("UV" "XY" "WZ")))
-> #("adUV" "beXY" "cfWZ")
;; Transpose list of ranges
(transpose (list 1..4 4..8 8..12))
-> ((1 4 8) (2 5 9) (3 6 10))
(zip '(a b c) '(c d e)) -> ((a c) (b d) (c e))
.brev
.coNP Functions @, window-map @ window-mappend and @ window-mapdo
.synb
.mets (window-map < range < boundary < function << sequence )
.mets (window-mappend < range < boundary < function << sequence )
.mets (window-mapdo < range < boundary < function << sequence )
.syne
.desc
The
.code window-map
and
.code window-mappend
functions process the elements of
.meta sequence
by passing arguments derived from each successive element to
.metn function .
Both functions return, if possible, a sequence of the same kind as
.codn sequence ,
otherwise a list.
Under
.codn window-map ,
values returned by
.meta function
are accumulated into a sequence of the same type as
.meta sequence
and that sequence is returned. Under
.codn window-mappend ,
the values returned by the calls to
.meta function
are expected to be sequence which are appended together to
form the output sequence.
These functions are analogous to
.code mapcar
and
.codn mappend .
Unlike these, they operate only on a single sequence, and over this sequence
they perform a
.IR "sliding window mapping" ,
whose description follows.
The function
.code window-mappend
avoids accumulating a sequence, and instead returns
.codn nil ;
it is analogous to
.codn mapdo .
The argument to the
.meta range
parameter must be a positive integer, not exceeding 512.
This parameter specifies the amount of ahead/behind context on either
side of each element which is processed. It indirectly determines
the window size for the mapping. The window size is twice
.metn range ,
plus one. For instance if range is 2, then the window size is 5:
the element being processed lies at the center of the window, flanked
by two elements on either side, making five.
The
.meta function
argument must specify a function which accepts a number of arguments
corresponding to the window size. For instance if
.meta range
is 2,
making the window size 5,
then
.meta function
must accept 5 arguments. These arguments constitute the sliding
window being processed. Each time
.meta function
is called, the middle argument is the element being processed,
and the arguments surrounding it are its window.
When an element is processed from somewhere in the interior of
a sequence, where it is flanked on either side by at least
.meta range
elements, then the window is populated by those flanking elements
taken from
.metn sequence .
The
.meta boundary
parameter specifies the window contents which are used for the
processing of elements which are closer than
.meta range
to either end of the sequence. The argument may be a sequence containing
at least twice
.meta range
number of elements (one less than the window size): if it has additional
elements, they are not used. If it is a list, it may be shorter than twice
.metn range .
The argument
may also be one of the two keyword symbols
.code :wrap
or
.codn :reflect ,
described below.
If
.meta boundary
is a sequence, it may be regarded as divided into two pieces of
.meta range
length. If it is a list of insufficient length, then missing elements
are supplied as
.code nil
to make two
.metn range 's
worth of elements. These two pieces then flank
.code sequence
on either end. The left half of
.meta boundary
is effectively prepended to the sequence, and the right half
effectively appended.
When the sliding window extends beyond the boundary of
.meta sequence
near its start or end, the window is populated from these
flanking elements obtained from
.metn boundary .
If
.meta boundary
is the keyword
.codn :wrap ,
then the sequence is effectively flanked by copies of itself on both
ends, repeated enough times to satisfy the window. For instance if
the sequence is
.code "(1 2 3)"
and the window size is 9 due to the value of
.meta range
being 7, then the behavior of
.code :wrap
is as if a
.meta boundary
were specified consisting of
.codn "(3 1 2 3 1 2 3 1)" .
The left flank is
.code "(3 1 2 3)"
and the right flank is
.code "(1 2 3 4)"
formed by repetitions of
.code "(1 2 3)"
surrounding it on either side, extending out to infinity, and chopped to
.metn range .
If
.meta boundary
is the keyword
.codn :reflect ,
then the sequence is effectively flanked by reversed copies of itself
on both ends, repeated enough times to satisfy the window.
For instance if the sequence is
.code "(1 2 3)"
and the window size is 9, then the behavior of
.code :wrap
is as if a
.meta boundary
were specified consisting of
.codn "(1 3 2 1 3 2 1 3)" .
.coNP Function @ interpose
.synb
.mets (interpose < sep << sequence )
.syne
.desc
The
.code interpose
function returns a sequence of the same type as
.metn sequence ,
in which the elements from
.meta sequence
appear with the
.meta sep
value inserted
between them.
If
.meta sequence
is an empty sequence or a sequence of length 1, then a
sequence identical to
.meta sequence
is returned. It may be a copy of
.meta sequence
or it may be
.meta sequence
itself.
If
.meta sequence
is a character string, then the value
.meta sep
must be a character.
It is permissible for
.metn sequence ,
or for a suffix of
.meta sequence
to be a lazy
list, in which case interpose returns a lazy list, or a list with a lazy
suffix.
.TP* Examples:
.verb
(interpose #\e- "xyz") -> "x-y-z"
(interpose t nil) -> nil
(interpose t #()) -> #()
(interpose #\ea "") -> ""
(interpose t (range 0 0)) -> (0)
(interpose t (range 0 1)) -> (0 t 1)
(interpose t (range 0 2)) -> (0 t 1 t 2)
.brev
.coNP Functions @ reduce-left and @ reduce-right
.synb
.mets (reduce-left < binary-function < list
.mets \ \ \ \ \ \ \ \ \ \ \ \ >> [ init-value <> [ key-function ]])
.mets (reduce-right < binary-function < list
.mets \ \ \ \ \ \ \ \ \ \ \ \ \ >> [ init-value <> [ key-function ]])
.syne
.desc
The
.code reduce-left
and
.code reduce-right
functions reduce lists of operands specified
by
.meta list
and
.meta init-value
to a single value by the repeated application of
.metn binary-function .
An effective list of operands is formed by combining
.meta list
and
.metn init-value .
If
.meta key-function
is specified, then the items of
.meta list
are
mapped to new values through
.metn key-function ,
as if by
.codn mapcar .
If
.meta init-value
is supplied,
then in the case of
.codn reduce-left ,
the effective list of operands is formed by
prepending
.meta init-value
to
.metn list .
In the case of
.codn reduce-right ,
the effective operand list is produced by appending
.meta init-value
to
.metn list .
The
.meta init-value
isn't mapped through
.metn key-function .
The production of the effective list can be expressed like this,
though this is not to be understood as the actual implementation:
.verb
(append (if init-value-present (list init-value))
[mapcar (or key-function identity) list]))))
.brev
In the
.code reduce-right
case, the arguments to
.code append
are reversed.
If the effective list of operands is empty, then
.meta binary-function
is called
with no arguments at all, and its value is returned. This is the only
case in which
.meta binary-function
is called with no arguments; in all
remaining cases, it is called with two arguments.
If the effective list contains one item, then that item is returned.
Otherwise, the effective list contains two or more items, and is decimated as
follows.
Note that an
.meta init-value
specified as
.code nil
is not the same as a missing
.metn init-value ;
this means that the initial value is the object
.codn nil .
Omitting
.meta init-value
is the same as specifying a value of
.code :
(the colon symbol).
It is possible to specify
.meta key-function
while omitting an
.meta init-value
argument. This is achieved by explicitly specifying
.code :
as the
.meta init-value
argument.
Under
.codn reduce-left ,
the leftmost pair of operands is removed
from the list and passed as arguments to
.metn binary-function ,
in the same order
that they appear in the list, and the resulting value initializes an
accumulator. Then, for each remaining item in the list,
.meta binary-function
is invoked on two arguments: the current accumulator value, and the next element
from the list. After each call, the accumulator is updated with the return
value of
.metn binary-function .
The final value of the accumulator is returned.
Under
.codn reduce-right ,
the list is processed right to left. The rightmost
pair of elements in the effective list is removed, and passed as arguments to
.metn binary-function ,
in the same order that they appear in the list. The
resulting value initializes an accumulator. Then, for each remaining item in
the list,
.meta binary-function
is invoked on two arguments: the
next element from the list, in right to left order, and the current
accumulator value. After each call, the accumulator is updated with the return
value of
.metn binary-function .
The final value of the accumulator is returned.
.TP* Examples:
.verb
;;; effective list is (1) so 1 is returned
(reduce-left (fun +) () 1 nil) -> 1
;;; computes (- (- (- 0 1) 2) 3)
(reduce-left (fun -) '(1 2 3) 0 nil) -> -6
;;; computes (- 1 (- 2 (- 3 0)))
(reduce-right (fun -) '(1 2 3) 0 nil) -> 2
;;; computes (* 1 2 3)
(reduce-left (fun *) '((1) (2) (3)) nil (fun first)) -> 6
;;; computes 1 because the effective list is empty
;;; and so * is called with no arguments, which yields 1.
(reduce-left (fun *) nil)
.brev
.coNP Functions @, some @ all and @ none
.synb
.mets (some < sequence >> [ predicate-fun <> [ key-fun ]])
.mets (all < sequence >> [ predicate-fun <> [ key-fun ]])
.mets (none < sequence >> [ predicate-fun <> [ key-fun ]])
.syne
.desc
The
.codn some ,
.code all
and
.code none
functions apply a predicate test function
.meta predicate-fun
over a list of elements. If the argument
.meta key-fun
is
specified, then elements of
.meta sequence
are passed into
.metn key-fun ,
and
.meta predicate-fun
is
applied to the resulting values. If
.meta key-fun
is omitted, the behavior is
as if
.meta key-fun
is the identity function. If
.meta predicate-fun
is omitted,
the behavior is as if
.meta predicate-fun
is the identity function.
These functions have short-circuiting semantics and return conventions similar
to the and and or operators.
The some function applies
.meta predicate-fun
to successive values
produced by retrieving elements of
.meta list
and processing them through
.metn key-fun .
If the list is empty, it returns
.codn nil .
Otherwise it returns the
first
.cod2 non- nil
return value returned by a call to
.meta predicate-fun
and
stops evaluating more elements. If
.meta predicate-fun
returns
.code nil
for all
elements, it returns
.metn nil .
The
.code all
function applies
.meta predicate-fun
to successive values
produced by retrieving elements of
.meta list
and processing them through
.metn key-fun .
If the list is empty, it returns
.codn t .
Otherwise, if
.meta predicate-fun
yields
.code nil
for any value, the
.code all
function immediately
returns without invoking
.meta predicate-fun
on any more elements.
If all the elements are processed, then the all function returns
the value which
.meta predicate-fun
yielded for the last element.
The
.code none
function applies
.meta predicate-fun
to successive values
produced by retrieving elements of
.meta list
and processing them through
.metn key-fun .
If the list is empty, it returns
.codn t .
Otherwise, if
.meta predicate-fun
yields
.cod2 non- nil
for any value, the none function
immediately returns nil. If
.meta predicate-fun
yields nil for all
values, the none function returns
.codn t .
.TP* Examples:
.verb
;; some of the integers are odd
[some '(2 4 6 9) oddp] -> t
;; none of the integers are even
[none '(1 3 4 7) evenp] -> t
.brev
.coNP Function @ multi
.synb
.mets (multi < function << sequence *)
.syne
.desc
The
.code multi
function distributes an arbitrary list processing function
.meta multi
over multiple sequences given by the
.meta list
arguments.
The
.meta sequence
arguments are first transposed into a single list of tuples. Each
successive element of this transposed list consists of a tuple of the
successive items from the lists. The length of the transposed list is that
of the shortest
.meta list
argument.
The transposed list is then passed to
.meta function
as an argument.
The
.meta function
is expected to produce a list of tuples, which are transposed
again to produce a list of lists which is then returned.
Conceptually, the input sequences are columns and
.meta function
is invoked on
a list of the rows formed from these columns. The output of
.meta function
is a transformed list of rows which is reconstituted into a list of columns.
.TP* Example:
.verb
;; Take three lists in parallel, and remove from all of them
;; them the element at all positions where the third list
;; has an element of 20.
(multi (op remove-if (op eql 20) @1 third)
'(1 2 3)
'(a b c)
'(10 20 30))
-> ((1 3) (a c) (10 30))
;; The (2 b 20) "row" is gone from the three "columns".
;; Note that the (op remove if (op eql 20) @1 third)
;; expression can be simplified using the ap operator:
;;
;; (op remove-if (ap eql @3 20))
.brev
.coNP Functions @ sort and @ nsort
.synb
.mets (sort < sequence >> [ lessfun <> [ keyfun ]])
.mets (nsort < sequence >> [ lessfun <> [ keyfun ]])
.syne
.desc
The
.code nsort
function destructively sorts
.metn sequence ,
producing a sequence
which is sorted according to the
.meta lessfun
and
.meta keyfun
arguments.
The
.meta keyfun
argument specifies a function which is applied to elements
of the sequence to obtain the key values which are then compared
using the lessfun. If
.meta keyfun
is omitted, the identity function is used
by default: the sequence elements themselves are their own sort keys.
The
.meta lessfun
argument specifies the comparison function which determines
the sorting order. It must be a binary function which can be invoked
on pairs of keys as produced by the key function. It must
return a
.cod2 non- nil
value if the left argument is considered to be lesser
than the right argument. For instance, if the numeric function
.code <
is used
on numeric keys, it produces an ascending sorted order. If the function
.code >
is used, then a descending sort is produced. If
.meta lessfun
is omitted, then it defaults to the generic
.code less
function.
The
.code sort
function has the same argument requirements as
.code nsort
but is non-destructive: it returns a new object, leaving the input
.meta sequence
unmodified, as if a copy of the input object were made using the
function
.code copy
and then that copy were sorted in-place using
.codn nsort .
The
.code sort
and
.code nsort
functions are stable for sequences which are lists. This means that the
original order of items which are considered identical is preserved.
For strings and vectors,
.code sort
is not stable.
The
.code sort
and
.code nsort
functions can be applied to hashes. It produces meaningful behavior
for a hash table which contains
.I N
keys which are the integers from 0 to
.IR "N - 1" .
Such as hash is treated as if it were a vector. The values are sorted
and re-assigned to sorted order to the integer keys.
The behavior of
.code sort
is not specified for hashes whose contents do not conform to this convention.
Note:
.code nsort
was introduced in \*(TX 238. Prior to that version,
.code sort
behaved like
.codn nsort .
.coNP Function @ grade
.synb
.mets (grade < sequence >> [ lessfun <> [ keyfun ]])
.syne
.desc
The
.code grade
function returns a list of integer indices which indicate the position
of the elements of
.meta sequence
in sorted order.
The
.meta lessfun
and
.meta keyfun
arguments behave like those of the
.code sort
function.
The
.meta sequence
object is not modified.
The internal sort performed by
.code grade
is not stable. The indices of any elements considered equivalent under
.code lessfun
may appear in any order in the returned index sequence.
Note: the
.code grade
function is inspired by the "grade up" and "grade down" operators
in the APL language.
.TP* Examples:
.verb
;; Order of the 2 3 positions of the "l"
;; characters is not specified:
[grade "Hello"] -> (0 1 2 3 4)
[grade "Hello" >] -> (4 2 3 1 0)
.brev
.coNP Functions @ shuffle and @ nshuffle
.synb
.mets (shuffle << sequence )
.mets (nshuffle << sequence )
.syne
.desc
The
.code nshuffle
function pseudo-randomly rearranges the elements of
.metn sequence .
This is performed in place:
.meta sequence
object is modified.
The return value is
.meta sequence
itself.
The rearrangement depends on pseudo-random numbers obtained from the
.code rand
function.
The
.code nshuffle
function supports hash tables in a manner analogous to the way
.code nsort
supports hash tables; the same remarks apply as in the description
of that function.
The
.code shuffle
function has the same argument requirements and
semantics, but differs from
.code nshuffle
in that it avoids in-place modification of
.metn sequence :
a new, shuffled sequence is returned, as if a copy of
.meta sequence
were made using
.code copy
and then that copy were shuffled in-place and returned.
Note:
.code nshuffle
was introduced in \*(TX 238. Prior to that version,
.code shuffle
behaved like
.codn nshuffle .
.coNP Function @ sort-group
.synb
.mets (sort-group < sequence >> [ keyfun <> [ lessfun ]])
.syne
.desc
The
.code sort-group
function sorts
.meta sequence
according to the
.meta keyfun
and
.meta lessfun
arguments, and then breaks the resulting sequence into groups,
based on the equivalence of the elements under
.metn keyfun .
The following equivalence holds:
.verb
(sort-group sq lf kf)
<-->
(partition-by kf (sort (copy sq) kf lf))
.brev
Note the reversed order of
.meta keyfun
and
.meta lessfun
arguments between
.code sort
and
.codn sort-group .
.coNP Function @ uniq
.synb
.mets (uniq << sequence )
.syne
.desc
The
.code uniq
function returns a sequence of the same kind as
.metn sequence ,
but with
duplicates removed. Elements of
.meta sequence
are considered equal under
the
.code equal
function. The first occurrence of each element is retained,
and the subsequent duplicates of that element, of any, are suppressed,
such that the order of the elements is otherwise preserved.
The
.code uniq
function is an alias for the one-argument case of
.codn unique .
That is to say, this equivalence holds:
.verb
(uniq s) <--> (unique s)
.brev
.coNP Function @ unique
.synb
.mets (unique < sequence >> [ keyfun <> { hash-arg }* ])
.syne
.desc
The
.code unique
function is a generalization of
.codn uniq .
It returns a sequence of the same kind as
.metn sequence ,
but with duplicates removed.
If neither
.meta keyfun
nor
.metn hash-arg -s
are specified, then elements of sequence are considered equal under the
.code eql
function. The first occurrence of each element is retained,
and the subsequent duplicates of that element, of any, are suppressed,
such that the order of the elements is otherwise preserved.
If
.meta keyfun
is specified, then that function is applied to each element,
and the resulting values are compared for equality.
In other words, the behavior is as if
.meta keyfun
were the
.code identity
function.
If one or more
.metn hash-arg -s
are present, these specify the arguments for the construction of
the internal hash table used by
.codn unique .
The arguments are like those of the
.code hash
function.
.coNP Function @ tuples
.synb
.mets (tuples < length < sequence <> [ fill-value ])
.syne
.desc
The
.code tuples
function produces a lazy list which represents a reorganization
of the elements of
.meta sequence
into tuples of
.metn length ,
where
.meta length
must be a positive integer.
The length of the sequence might not be evenly divisible by the tuple length.
In this case, if a
.meta fill-value
argument is specified, then the last tuple
is padded with enough repetitions of
.meta fill-value
to make it have
.meta length
elements. If
.meta fill-value
is not specified, then the last tuple is left
shorter than
.metn length .
The output of the function is a list, but the tuples themselves are sequences
of the same kind as
.metn sequence .
If
.meta sequence
is any kind of list, they
are lists, and not lazy lists.
.TP* Examples:
.verb
(tuples 3 #(1 2 3 4 5 6 7 8) 0) -> (#(1 2 3) #(4 5 6)
#(7 8 0))
(tuples 3 "abc") -> ("abc")
(tuples 3 "abcd") -> ("abc" "d")
(tuples 3 "abcd" #\ez) -> ("abc" "dzz")
(tuples 3 (list 1 2) #\ez) -> ((1 2 #\ez))
.brev
.coNP Function @ partition-by
.synb
.mets (partition-by < function << sequence )
.syne
.desc
If
.meta sequence
is empty, then
.code partition-by
returns an empty list,
and
.meta function
is never called.
Otherwise,
.code partition-by
returns a lazy list of partitions of the sequence
.metn sequence .
Partitions are consecutive, non-empty sub-strings of
.metn sequence ,
of the same kind as
.metn sequence .
The partitioning begins with the first element of
.meta sequence
being placed into a partition.
The subsequent partitioning is done according to
.metn function ,
which is applied
to each element of
.metn sequence .
Whenever, for the next element, the function
returns the same value as it returned for the previous element, the
element is placed into the same partition. Otherwise, the next element
is placed into, and begins, a new partition.
The return values of the calls to
.meta function
are compared using the
.code equal
function.
.TP* Examples:
.verb
[partition-by identity '(1 2 3 3 4 4 4 5)] -> ((1) (2) (3 3)
(4 4 4) (5))
(partition-by (op = 3) #(1 2 3 4 5 6 7)) -> (#(1 2) #(3)
#(4 5 6 7))
.brev
.SS* Open Sequence Traversal
Functions in this category perform efficient traversal of sequences.
There are two flavors of these functions: functions in the
.code iter-begin
group, and functions in the
.code seq-begin
group. The latter are obsolescent.
Application-defined iteration is possible via defining special methods on
structures. An object supports iteration by defining the special method
.code iter-begin
which is different from the
.code iter-begin
function. This special function returns an iterator object which supports
special methods
.codn iter-item ,
.code iter-more
and
.codn iter-step .
Two protocols are supported, one of which is more efficient by eliminating the
.code iter-more
method. Details are specified in the section
.BR "Special Structure Functions" .
.coNP Function @ iter-begin
.synb
.mets (iter-begin << seq )
.syne
.desc
The
.code iter-begin
function returns an iterator object specialized for the task of traversing the
.meta seq
object. The
.meta seq
argument may be any sequence. Additionally, it may be a character, number or
a numeric or character range.
Note: if
.meta seq
is a list-like sequence, then
.code iter-begin
may return
.meta seq
itself as the iterator. Likewise if
.meta seq
is a number.
A range is considered to be a numeric or character range if the
.code from
element is a number or character. The
.code to
is then required to to be either value which is comparable with that number
or character using the
.code <
function, or else it must be one of the two objects
.code t
or
.codn : ,
either of which indicate that the range is unbounded. In this unbounded range
case, the expressions
.code "(iter-begin X..:)"
and
.code "(iter-begin X..t)"
are equivalent to
.codn "(iter-begin X)" .
If
.meta seq
is a structure which supports the
.code iter-begin
method, then that method is called and its return value is returned.
.coNP Function @ iter-more
.synb
.mets (iter-more << iter )
.syne
.desc
The
.code iter-more
function returns
.code t
if there remain more elements to be traversed.
Otherwise it returns
.codn nil .
The
.meta iter
argument must be a valid iterator returned by a call to
.metn iter-begin ,
.meta iter-step
or
.metn iter-reset .
The
.code iter-more
function doesn't change the state of
.metn iter .
If
.code iter
is the object
.code nil
then
.code nil
is returned.
Note: the
.code iter-begin
may return
.code nil
if its argument is
.code nil
or any empty sequence, or an empty range (a range whose
.code to
and
.code from
fields are the same number or character).
If
.meta iter
is a
.code cons
cell, then
.code iter-more
returns
.codn t .
If
.meta iter
is a number, then
.code iter-more
returns
.codn t .
This is the case even if calculating the successor of that number isn't possible
due to floating-point overflow or insufficient system resources.
If
.meta iter
is a character, then
.code iter-more
returns
.code t
if
.meta iter
isn't the highest possible character code, otherwise
.codn nil .
If
.meta iter
was formed from a descending range, meaning that
.code iter-begin
was invoked on a range with a
.code from
fielding exceeding its
.code to
value, then
.code iter-begin
returns true while the current iterator value is greater than the
the limiting value given by the
.code to
field. For an ascending range, it returns true if the current iterator value is
lower than the limiting value. However, note the peculiar semantics of
.code iter-item
with regard to descending range iteration.
If
.meta iter
is a structure, then if it supports an
.code iter-more
method, then that method is called with no arguments, and its return value
is returned. If the structure does not have an
.code iter-more
method, then
.code t
is returned.
.coNP Function @ iter-item
.synb
.mets (iter-item << iter )
.syne
.desc
If the
.code iter-more
function indicates that more items remain to be visited, then
the next item can be retrieved using
.codn iter-item .
The
.meta iter
argument must be a valid iterator returned by a call to
.metn iter-begin ,
.meta iter-step
or
.metn iter-reset .
The
.code iter-more
function doesn't change the state of
.metn iter .
If
.code iter-more
is invoked on an iterator which indicates that no more items
remain to be visited, the return value is
.codn nil .
If
.meta iter
is a
.code cons
cell, then
.code iter-item
returns the
.code car
field of that cell.
If
.meta iter
is a character or number, then
.code iter-item
returns that character or number itself.
If
.meta iter
is based on an ascending numeric or character range, then
.code iter-item
returns the current iteration value, which is initialized by
.code iter-begin
as a copy of the range's
.code from
field. Thus, the range
.code 0..3
traverses the values
.codn 0 ,
.code 1
and
.codn 2 ,
excluding the
.codn 3 .
If
.meta iter
is based on a descending numeric or character range, then
.code iter-item
returns the predecessor of the current iteration value, which is initialized
.code iter-begin
as a copy of the range's
.code from
field.
Thus, the range
.code 3..0
traverses the values
.codn 2 ,
.code 1
and
.codn 0 ,
excluding the
.codn 3 :
exactly the same values are visited as for the range
.code 0..3
only in reverse order.
If
.meta iter
is a structure which supports the
.code iter-item
method, then that method is called and its return value is returned.
.coNP Function @ iter-step
.synb
.mets (iter-step << iter )
.syne
.desc
If the
.code iter-more
function indicates that more items remain to be visited, then the
.code iter-step
function may be used to consume the next item.
The function returns an iterator denoting the traversal of the
remaining items in the sequence.
The
.meta iter
argument must be a valid iterator returned by a call to
.metn iter-begin ,
.meta iter-step
or
.metn iter-reset .
The
.code iter-step
function may return a new object, in which case it avoids
changing the state of
.metn iter ,
or else it may change the state of
.meta iter
and return it.
If the application discontinues the use of
.metn iter ,
and continues the
traversal using the returned iterator, it will work correctly in either
situation.
If
.code iter-step
is invoked on an iterator which indicates that no more items
remain to be visited, the return value is unspecified.
If
.meta iter
is a
.code cons
cell, then
.code iter-step
returns the
.code cdr
field of that cell.
If
.meta iter
is a character or number, then
.code iter-step
returns its successor, as if using the
.code succ
function.
If
.meta iter
is a structure which supports the
.code iter-step
method, then that method is called and its return value is returned.
.coNP Function @ iter-reset
.synb
.mets (iter-reset < iter << seq )
.syne
.desc
The
.code iter-reset
function returns an iterator object specialized for the task of traversing
the sequence
.metn seq .
If it is possible for
.meta iter
to be that object, then the function may adjust the state of
.meta iter
and return it.
If
.code iter-reset
doesn't use
.metn iter ,
then it behaves exactly like
.code iter-begin
being invoked on
.metn seq .
If
.meta seq
is a structure which supports the
.code iter-reset
method, then that method is called and its return value is returned.
Note the reversed arguments. The
.code iter-reset
method is of the
.meta seq
object, not of
.metn iter .
That is to say, the call
.mono
.meti (iter-reset < iter << obj)
.onom
results in the
.mono
.meti << obj .(iter-reset << iter )
.onom
call. If
.meta seq
is a structure which doesn't support
.code iter-reset
then
.meta iter
is ignored,
.code iter-begin
is invoked on
.meta seq
and the result is returned.
.coNP Function @ seq-begin
.synb
.mets (seq-begin << object )
.syne
.desc
The obsolescent
.code seq-begin
function returns an iterator object specialized to the task of traversing
the sequence represented by the input
.metn object .
If
.meta object
isn't a sequence, an exception is thrown.
Note that if
.meta object
is a lazy list, the returned iterator maintains a reference to the
head of that list during the traversal; therefore, generic iteration
based on iterators from
.code seq-begin
is not suitable for indefinite iteration over infinite lists.
.coNP Function @ seq-next
.synb
.mets (seq-next < iter << end-value )
.syne
.desc
The obsolescent
.code seq-next
function retrieves the next available item from the sequence iterated by
.metn iter ,
which must be an object returned by
.codn seq-begin .
If the sequence has no more items to be traversed, then
.meta end-value
is returned instead.
Note: to avoid ambiguities, the application should provide an
.meta end-value
which is guaranteed distinct from any item in the sequence, such as a
freshly allocated object.
.coNP Function @ seq-reset
.synb
.mets (seq-reset < iter << object )
.syne
.desc
The obsolescent
.code seq-reset
re-initializes the existing iterator object
.meta iter
to begin a new traversal over the given
.metn object ,
which must be a value of a kind that would be a suitable argument for
.codn seq-begin .
The
.code seq-reset
function returns
.metn iter .
.SS* Procedural List Construction
\*(TL provides an a structure type called
.code list-builder
which encapsulates state and methods for constructing lists procedurally.
Among the advantages of using
.code list-builder
is that lists can be constructed in the left to right direction without
requiring multiple traversals or reversal. For example,
.code list-builder
naturally combines with iteration or recursion: items visited in an
iterative or recursive process can be collected easily using
.code list-builder
in the order they are visited.
The
.code list-builder
type provides methods for adding and removing items at either end of
the list, making it suitable where a
.I dequeue
structure is required.
The basic workflow begins with the instantiation of a
.code list-builder
object. This object may be initialized with a piece of list material which
begins the to-be-constructed list, or it may be initialized to begin with an
empty list. Methods such as
.code add
and
.code pend
are invoked on this object to extend the list with new elements. At any point,
the list constructed so far is available using the
.code get
method, which is also how the final version of the list is eventually
retrieved.
The
.code build
macro is provided which syntactically streamlines the process.
It implicitly creates a
.code list-builder
instance and binds it to a hidden lexical variable.
It then evaluates forms in a lexical scope in which
short-hand macros are available for building the list.
.coNP Structure @ list-builder
.synb
.mets (defstruct list-builder nil
.mets \ \ head tail)
.syne
.desc
The
.code list-builder
structure encapsulates the state for a list building process.
Programs should use the
.code build-list
function for creating an instance of
.codn list-builder .
The
.code head
and
.code tail
slots should be regarded as internal variables.
.coNP Function @ build-list
.synb
.mets (build-list <> [ initial-list ])
.syne
.desc
The
.code build-list
function instantiates and returns an object of struct type
.codn list-builder .
If no
.meta initial-list
argument is supplied, then the object is implicitly
with an empty list.
If the argument is supplied, then it is equivalent
to calling
.code build-list
without an argument to produce an object
.meta obj
the invoking the method call
.mono
.meti << obj .(ncon << initial-list )
.onom
on this object. The object produced by the expression
.meta list
is installed (without being copied) into the
object as the prefix of the list to be constructed.
The
.meta initial-list
argument can be a sequence other than a list.
.TP* Example:
.verb
;; build the list (a b) trivially
(let ((lb (build-list '(a b))))
lb.(get)
-> (a b)
.brev
.coNP Methods @ add and @ add*
.synb
.mets << list-builder .(add << element *)
.mets << list-builder .(add* << element *)
.syne
.desc
The
.code add
and
.code add*
methods extend the list being constructed by a
.code list-builder
object by adding individual
elements to it. The
.code add
method adds elements at the tail of the list,
whereas
.code add*
adds elements at the front.
These methods return
.codn nil .
The precise semantics is as follows.
All of the
.meta element
arguments are combined into a list as if by the
.code list
function, and the resulting list combined with the current contents of the
.code list-builder
object as if using the
.code append
function. The resulting list becomes the new contents.
.TP* Examples:
.verb
;; Build the list (1 2 3 4)
(let ((lb (build-list)))
lb.(add 3 4)
lb.(add* 1 2)
lb.(get))
-> (1 2 3 4)
;; Add "c" to "abc"
;; same semantics as (append "abc" #\ec)
(let ((lb (build-list "ab")))
lb.(add #\ec)
lb.(get))
-> "abc"
.brev
.coNP Methods @ pend and @ pend*
.synb
.mets << list-builder .(pend << list *)
.mets << list-builder .(pend* << list *)
.syne
.desc
The
.code pend
and
.code pend*
methods extend the list being constructed by a
.code list-builder
object by adding lists to it. The
.code pend
method catenates the
.code list
arguments together as if by the
.code append
function, then appends the resulting list to
the end of the list being constructed.
The
.code pend*
method is similar, except it prepends the
catenated lists to the front of the list
being constructed.
The
.code pend
and
.code pend*
operations do not mutate the input lists, but may cause the
resulting list to share structure with the input lists.
These functions may mutate the list already contained in
.metn list-builder ;
however, they avoid mutating those parts of the current list
that are shared with inputs that were given in earlier
calls to these functions.
These methods return
.codn nil .
.TP* Example:
.verb
;; Build the list (1 2 3 4)
(let ((lb (build-list)))
lb.(pend '(3 4))
lb.(pend* '(1 2))
lb.(get))
-> (1 2 3 4)
.brev
.coNP Methods @ ncon and @ ncon*
.synb
.mets << list-builder .(ncon << list *)
.mets << list-builder .(ncon* << list *)
.syne
.desc
The
.code ncon
and
.code ncon*
methods extend the list being constructed by a
.code list-builder
object by adding lists to it. The
.code ncon
method destructively catenates the
.meta list
arguments as if by the
.code nconc
function. The resulting list is appended
to the list being constructed.
The
.code ncon*
method is similar, except it prepends
the catenated lists to the front of the
list being constructed.
These methods may destructively manipulate the list already contained in the
.meta list-builder
object, and likewise may destructively manipulate the input lists.
They may cause the list being constructed to share substructure with the input
lists.
Additionally, these methods may destructively manipulate the list already
contained in the
.meta list-builder
object without regard for shared structure between that list and inputs
given earlier any of the
.codn pend ,
.codn pend* ,
.code ncon
or
.code ncon*
functions.
The
.code ncon*
function can be called with a single argument
which is an atom. This atom will simply be
installed as the terminating atom of the
list being constructed, if the current list is
an ordinary list.
These methods return
.codn nil .
.TP* Example:
.verb
;; Build the list (1 2 3 4 . 5)
(let ((lb (build-list)))
lb.(ncon* (list 1 2))
lb.(ncon (list 3 4))
lb.(ncon 5)
lb.(get))
-> (1 2 3 4 . 5)
.brev
.coNP Method @ get
.synb
.mets << list-builder .(get)
.syne
.desc
The
.code get
method retrieves the list constructed so far by a
.code list-builder
object. It doesn't change the state of the object.
The retrieved list may be passed as an argument
into the construction methods on the same object.
.TP* Examples:
.verb
;; Build the circular list (1 1 1 1 ...)
;; by appending (1) to itself destructively:
(let ((lb (build-list '(1))))
lb.(ncon* lb.(get))
lb.(get))
-> (1 1 1 1 ...)
;; build the list (1 2 1 2 1 2 1 2)
;; by doubling (1 2) twice:
(let ((lb (build-list)))
lb.(add 1 2)
lb.(pend lb.(get))
lb.(pend lb.(get))
lb.(get))
-> (1 2 1 2 1 2 1 2)
.brev
.coNP Methods @ del and @ del*
.synb
.mets << list-builder .(del)
.mets << list-builder .(del*)
.syne
.desc
The
.code del
and
.code del*
methods each remove an element from the list and return it.
If the list is empty, they return
.codn nil .
The
.code del
method removes an element from the front of the list, whereas
.code del*
removes an element from the end of the list.
Note: this orientation is opposite to
.code add
and
.codn add* .
Thus
.code del
pairs with
.code add
to produce FIFO queuing behavior.
.coNP Macros @ build and @ buildn
.synb
.mets (build << form *)
.mets (buildn << form *)
.syne
.desc
The
.code build
and
.code buildn
macros provide a shorthand notation for constructing lists using the
.code list-builder
structure. They eliminate the explicit call to the
.code build-list
function to construct the object, and eliminate the explicit
references to the object.
Both of these macros create a lexical environment in which a
.code list-builder
object is implicitly constructed and bound to a hidden variable.
This lexical environment also provides local functions named
.codn add ,
.codn add* ,
.codn pend ,
.codn pend* ,
.codn ncon ,
.codn ncon* ,
.codn get ,
.code del
and
.codn del* ,
which mimic the
.code list-builder
methods, but operate implicitly on this hidden variable, so that
the object need not be mentioned as an argument.
With the exception of
.codn get ,
.code del
and
.codn del* ,
the local functions return
.codn nil ,
like the same-named
.code list-builder
methods.
In this lexical environment, each
.meta form
is evaluated in order.
When the last
.meta form
is evaluated,
.code build
returns the constructed list, whereas
.code buildn
returns the value of the last
.metn form .
If no forms are enclosed, both macros return
.codn nil .
Note: because the local function
.code del
has the same name as a global macro, it is implemented as a
.code macrolet.
Inside a
.code build
or
.codn buildn ,
if
.code del
is invoked with no arguments, then it denotes a call to the
.code list-builder
.code del
method. If invoked with an argument, then it resolves to the global
.code del
macro for deleting a place.
.TP* Examples:
.verb
;; Build the circular list (1 1 1 1 ...)
;; by appending (1) to itself destructively:
(build
(add 1)
(ncon* (get))) -> (1 1 1 1 ...)
;; build the list (1 2 1 2 1 2 1 2)
;; by doubling (1 2) twice:
(build
(add 1 2)
(pend (get))
(pend (get))) -> (1 2 1 2 1 2 1 2)
;; build a list by mapping over the local
;; add function:
(build [mapdo add (range 1 3)]) -> (1 2 3)
;; breadth-first traversal of nested list;
(defun bf-map (tree visit-fn)
(buildn
(add tree)
(whilet ((item (del)))
(if (atom item)
[visit-fn item]
(each ((el item))
(add el))))))
(let (flat)
(bf-map '(1 (2 (3 4 (5))) ((6 7) 8)) (do push @1 flat))
(nreverse flat))
-> (1 2 8 3 4 6 7 5)
.brev
.SS* Permutations and Combinations
.coNP Function @ perm
.synb
.mets (perm < seq <> [ len ])
.syne
.desc
The
.code rperm
function returns a lazy list which consists of all
length
.meta len
permutations of formed by items taken from
.metn seq .
The permutations do not use any element of
.meta seq
more than once.
Argument
.metn len ,
if present, must be a positive integer, and
.meta seq
must be a sequence.
If
.meta len
is not present, then its value defaults to the length of
.metn seq :
the list of the full permutations of the entire sequence is returned.
The permutations in the returned list are sequences of the same kind as
.codn seq .
If
.meta len
is zero, then a list containing one permutation is returned, and that
permutation is of zero length.
If
.meta len
exceeds the length of
.metn seq ,
then an empty list is returned,
since it is impossible to make a single non-repeating permutation that
requires more items than are available.
The permutations are lexicographically ordered.
.coNP Function @ rperm
.synb
.mets (rperm < seq << len )
.syne
.desc
The
.code rperm
function returns a lazy list which consists of all the repeating
permutations of length
.meta len
formed by items taken from
.metn seq .
"Repeating" means that the items from
.meta seq
can appear more than
once in the permutations.
The permutations which are returned are sequences of the same kind as
.metn seq .
Argument
.meta len
must be a nonnegative integer, and
.meta seq
must be a sequence.
If
.meta len
is zero, then a single permutation is returned, of zero length.
This is true regardless of whether
.meta seq
is itself empty.
If
.meta seq
is empty and
.meta len
is greater than zero, then no permutations are
returned, since permutations of a positive length require items, and the
sequence has no items. Thus there exist no such permutations.
The first permutation consists of
.meta le
repetitions of the first element of
.metn seq .
The next repetition, if there is one, differs from the first
repetition in that its last element is the second element of
.metn seq .
That is to say, the permutations are lexicographically ordered.
.TP* Examples:
.verb
(rperm "01" 3) -> ("000" "001" "010" "011"
"100" "101" "110" "111")
(rperm #(1) 3) -> (#(1 1 1))
(rperm '(0 1 2) 2) -> ((0 0) (0 1) (0 2) (1 0)
(1 1) (1 2) (2 0) (2 1) (2 2))
.brev
.coNP Function @ comb
.synb
.mets (comb < seq << len )
.syne
.desc
The
.code comb
function returns a lazy list which consists of all
length
.meta len
non-repeating combinations formed by taking items taken from
.metn seq .
"Non-repeating combinations" means that the combinations do not use any
element of
.meta seq
more than once. If
.meta seq
contains no duplicates, then
the combinations contain no duplicates.
Argument
.meta len
must be a nonnegative integer, and
.meta seq
must be a sequence or a hash table.
The combinations in the returned list are objects of the same kind as
.metn seq .
If
.meta len
is zero, then a list containing one combination is returned, and that
combination is of zero length.
If
.meta len
exceeds the number of elements in
.metn seq ,
then an empty list is returned, since it is impossible to make a single
non-repeating combination that requires more items than are available.
If
.meta seq
is a sequence, the returned combinations are lexicographically ordered.
This requirement is not applicable when
.meta seq
is a hash table.
.TP* Example:
.verb
;; powerset function, in terms of comb.
;; Yields a lazy list of all subsets of s,
;; expressed as sequences of the same type as s.
(defun powerset (s)
(mappend* (op comb s) (range 0 (length s))))
.brev
.coNP Function @ rcomb
.synb
.mets (rcomb < seq << len )
.syne
.desc
The
.code comb
function returns a lazy list which consists of all
length
.meta len
repeating combinations formed by taking items taken from
.metn seq .
"Repeating combinations" means that the combinations can use
an element of
.meta seq
more than once.
Argument
.meta len
must be a nonnegative integer, and
.meta seq
must be a sequence.
The combinations in the returned list are sequences of the same kind as
.metn seq .
If
.meta len
is zero, then a list containing one combination is returned, and that
combination is of zero length. This is true even if
.meta seq
is empty.
If
.meta seq
is empty, and
.meta len
is nonzero, then an empty list is returned.
The combinations are lexicographically ordered.
.SS* Macros
\*(TL supports structural macros. \*(TX's model of macroexpansion is that
\*(TL code is processed in two phases: the expansion phase and the
evaluation phase. The expansion phase is invoked on Lisp code early during the
processing of source code. For instance when a \*(TX file containing a
.code "@(do ...)"
directive
is loaded, expansion of the Lisp forms are its arguments takes place during the
parsing of the entire source file, and is complete before any of the code in
that file is executed. If the
.code "@(do ...)"
form is later executed,
the expanded forms are then evaluated.
\*(TL also supports symbol macros, which are symbolic forms that stand
for forms, with which they are replaced at macro expansion time.
When Lisp data is processed as code by the
.code eval
function, it is first expanded,
and so processed in its entirety in the expansion phase. Then it is processed
in the evaluation phase.
.NP* Macro parameter lists
\*(TX macros support destructuring, similarly to Common Lisp macros.
This means that macro parameter lists are like function argument lists,
but support nesting. A macro parameter list can specify a nested parameter
list in every place where an argument symbol may appear. For instance,
consider this macro parameter list:
.verb
((a (b c)) : (c frm) ((d e) frm2 de-p) . g)
.brev
The top-level of this nested form has the structure
.mono
.meti \ \ >> ( I : < J < K . << L )
.onom
in which we can identify the major constituent positions as
.metn I ,
.metn J ,
.meta K
and
.metn L .
The constituent at position
.meta I
is the mandatory parameter
.codn "(a (b c))" .
Position
.meta J
holds the optional parameter
.code c
(with default init form
.codn frm ).
At
.meta K
is found the optional parameter
.code "(d e)"
(with default init form
.code frm2
and presence-indicating variable
.codn de-p ).
Finally, the parameter in the dot position
.meta L
is
.codn g ,
which captures trailing arguments.
Obviously, some of the parameters are compound expressions rather
than symbols:
.code "(a (b c))"
and
.codn "(d e)" .
These compounds express nested macro parameter lists.
Nested macro parameter lists recursively match the corresponding structure
in the argument object. For instance if a simple argument would capture
the structure
.code "(1 (2 3))"
then we can replace the argument with the nested argument list
.code "(a (b c))"
which destructures the
.code "(1 (2 3))"
such that the parameters
.codn a ,
.code b
and
.code c
will end up bound
to
.codn 1 ,
.code 2
and
.codn 3 ,
respectively.
Nested macro parameter lists have all the features of the top-level
macro parameter lists: they can have optional arguments with default
values, use the dotted position, and contain the
.codn :env ,
.code :whole
and
.code :form
special parameters, which are described below.
In nested parameter lists, the binding strictness is relaxed for optional
parameters. If
.code "(a (b c))"
is optional, and the argument is, say,
.codn (1) ,
then
.code a
gets
.codn 1 ,
and
.code b
and
.code c
receive
.codn nil .
Macro parameter lists also supports three special keywords, namely
.codn :env ,
.code :whole
and
.codn :form .
The parameter list
.code "(:whole x :env y :form z)"
will bind parameter
.code x
to the entire
macro parameter list, bind parameter
.code y
to the macro environment and bind parameter
.code z
to the entire macro form (the original compound form used to invoke the
macro).
The
.codn :env ,
.code :whole
and
.code :form
notations can occur anywhere in a macro parameter list, other than
to the right of the consing dot. They can be used in nested
macro parameter lists also. Note that in a nested macro
parameter list,
.code :form
and
.code :env
do not change meaning: they bind the same object as they would in
the top-level of the macro parameter list.
However the
.code :whole
parameter inside has a restricted scope in a nested parameter
list: its parameter will capture just that part of the argument material which
matches that parameter list, rather than the entire argument list.
The processing of macro parameter lists omits the feature that when the
keyword symbol
.code :
(colon) given as the argument to an optional parameter, that argument is
treated as a missing argument. This special logic is implemented only
in the function argument passing mechanism, not in the binding of macro
parameters to object structure. If the colon symbol appears in the object
structure and is matched against an optional parameter, it is an
ordinary value. That parameter is considered present, and takes on
that
.code :
keyword symbol as its value.
.TP* "Dialect Note:"
In ANSI Common Lisp, the lambda list keyword
.code &whole
binds its corresponding variable to the entire macro form, whereas
\*(TL's
.code :whole
binds its variable only to the arguments of the macro form.
Note, however, that ANSI CL distinguishes destructuring lambda lists
and macro lambda lists and the
.code &whole
parameter has a different behavior between the two. Under
.codn destructuring-bind ,
the
.code &whole
parameter receives just the arguments, just like the behavior
of \*(TL's
.code :whole
parameter.
\*(TL does not distinguish destructuring and macro lambda lists;
they are the same and behave the same way. Thus
.code :whole
is treated the same way in macros as in
.code tree-bind
and related binding operators: it binds just the arguments
to the parameter. \*(TL has the special parameter
.code :form
by means of which macros can access their invoking form.
This parameter is also supported in
.code tree-bind
and binds to the entire
.code tree-bind
form.
.coNP Operator @ macro-time
.synb
.mets (macro-time << form *)
.syne
.desc
The
.code macro-time
operator has a syntax similar to the
.code progn
operator. Each
.meta form
is evaluated from left to right, and the resulting value is that of the last
form.
The special behavior of
.code macro-time
is that the evaluation takes place during
the expansion phase, rather than during the evaluation phase.
Also,
.code macro-time
macro-expands each
.meta form
and evaluates it before processing the next
.meta form
in the same way. Thus, for instance, if a
.meta form
introduces a global definition, that definition will be visible not
only during the evaluation of a subsequent
.metn form ,
but also during its macro-expansion time.
During the expansion phase, all
.code macro-time
expressions which occur in a context
that calls for evaluation are evaluated, and replaced by their quoted values.
For instance
.code "(macro-time (list 1 2 3))"
evaluates
.code "(list 1 2 3)"
to the object
.code "(1 2 3)"
and the entire
.code macro-time
form is replaced by that value, quoted:
.codn "'(1 2 3)" .
If the form is evaluated again at evaluation-time, the resulting value will be
that of the quote, in this case
.codn "(1 2 3)" .
.code macro-time
forms do not see the surrounding lexical environment; the see only
global function and variable bindings and macros.
Note:
.code macro-time
supports techniques that require a calculation to be performed in the
environment where the program is being compiled, and inserting the result of
that calculation as a literal into the program source. Possibly, the
calculation can have some useful effect in that environment, or use
as an input information that is available in that environment.
The
.code load-time
operator also inserts a calculated value as a
.I "de facto"
literal into the program, but it performs that calculation in the
environment where the compiled file is being loaded.
The two operators may be considered complementary in this sense.
Consider the source file:
.verb
(defun host-name-c () (macro-time (uname).nodename))
(defun host-name-l () (load-time (uname).nodename))
.brev
If this is compiled via
.codn compile-file ,
the
.code uname
call in
.code host-name-c
takes place when it is macro-expanded. Thereafter, the compiled version
of the function returns the name of the machine where the
compilation took place, no matter in what environment it is subsequently
loaded and called.
In contrast, the compilation of
.code host-name-l
arranges for that function's
.code uname
call to take place just one time, whenever the compiled file is loaded.
Each time the function is subsequently called, it will
return the name of the machine where it was loaded, without making
any additional calls to
.codn uname .
The
.code macro-time
operator can occasionally be required in order for some constructs to evaluate
or compile. One way that occurs is when a construct that is being fully
expanded itself defines a macro which is later required in that same construct.
For example:
.verb
(progn (defmacro mac () 42) (mac))
.brev
This specific example actually works under
.code eval
or file compilation, because in that situation it isn't fully expanded
all at once. When
.code eval
and
.code compile-file
process a top-level form that is a
.codn progn ,
they treat its argument forms as individual, separate top-level forms. In
general, \*(TL is designed in such a way as to not to require, in most ordinary
programs, extra verbiage to tell the compiler or evaluator that certain
definitions are required by macros. However, somewhat unusual situations can
arise which are not handled in this way.
Also,
.codn macro-time ,
or the related
.code @(mdo)
directive, can be occasionally necessary in \*(TX
queries, which are parsed and subject to macro-expansion in their entirety
before being executed.
.coNP Operator @ defmacro
.synb
.mets (defmacro < name
.mets \ \ \ \ \ \ \ \ \ <> ( param * [: << opt-param * ] [. < rest-param ])
.mets \ \ << body-form *)
.syne
.desc
The
.code defmacro
operator is evaluated at expansion time. It defines a
macro-expander function under the name
.metn name ,
effectively creating a new operator.
Note that the above syntax synopsis describes only the canonical
parameter syntax which remains after parameter list macros are
expanded. See the section Parameter List Macros.
Note that the parameter list is a macro parameter list, and not a
function parameter list. This means that each
.meta param
and
.meta opt-param
can be not only a symbol, but it can itself be a parameter list.
The corresponding argument is then treated as a structure which
matches that parameter list. This nesting of parameter lists
can be carried to an arbitrary depth.
A macro is called like any other operator, and resembles a function. Unlike in
a function call, the macro receives the argument expressions themselves, rather
than their values. Therefore it operates on syntax rather than on values.
Also, unlike a function call, a macro call occurs in the expansion phase,
rather than the evaluation phase.
The return value of the macro is the macro expansion. It is substituted in
place of the entire macro call form. That form is then expanded again;
it may itself be another macro call, or contain more macro calls.
A global macro defined using
.code defmacro
may decline to expand a macro form. Declining to expand is achieved by
returning the original unexpanded form, which may be captured using the
.code :form
parameter. When a global macro declines to expand a form, the form is
taken as-is. At evaluation time, it will be treated as a function call.
Note: when a local macro defined by
.code macrolet
declines, more complicated requirements apply; see the description of
.codn macrolet .
.TP* "Dialect Notes:"
A macro in the global namespace introduced by
.code defmacro
may co-exist with a function of the same name introduced by
.codn defun .
This is not permitted in ANSI Common Lisp.
ANSI Common Lisp doesn't describe the concept of declining to expand, except in
the area of compiler macros. Since TXR Lisp allows global macros and functions
of the same name to co-exist, ordinary macros can be used to optimize functions
in a manner similar to Common Lisp compiler macros. A macro can be written
of the same name as a function, and can optimize certain cases of the function
call by expanding them to some alternative syntax. Cases which it doesn't
optimize are handled by declining to expand, in which case the form remains
as the original function call.
.TP* Example:
.verb
;; dolist macro similar to Common Lisp's:
;;
;; The following will print 1, 2 and 3
;; on separate lines:
;; and return 42.
;;
;; (dolist (x '(1 2 3) 42)
;; (format t "~s\en"))
(defmacro dolist ((var list : result) . body)
(let ((i (my-gensym)))
^(for ((i ,list)) (i ,result) ((set i (cdr i)))
(let ((,var (car i)))
,*body))))
.brev
.coNP Operator @ macrolet
.synb
.mets (macrolet >> ({( name < macro-style-params
.mets \ \ \ \ \ \ \ \ \ \ \ \ \ \ << macro-body-form *)}*)
.mets \ \ << body-form *)
.syne
.desc
The
.code macrolet
binding operator extends the macro-time lexical environment
by making zero or more new local macros visible.
The
.code macrolet
symbol is followed by a list of macro definitions.
Each definition is a form which begins with a
.metn name ,
followed by
.meta macro-style-params
which is a macro parameter list, and zero or more
.metn macro-body-form -s.
These macro definitions are similar
to those globally defined by the
.code defmacro
operator, except that they
are in a local environment.
The macro definitions are followed by optional
.metn body-forms .
The macros specified in the definitions are visible to these
forms.
Forms inside the macro definitions such as the
.metn macro-body-form -s,
and initializer forms appearing in the
.meta macro-style-params
are subject
to macro-expansion in a scope in which none of the new macros being
defined are yet visible. Once the macro definitions are themselves
macro-expanded, they are placed into a new macro environment, which
is then used for macro expanding the
.metn body-form -s.
A
.code macrolet
form is fully processed in the expansion phase of a form, and is
effectively replaced by
.code progn
form which contains expanded versions of
.metn body-form -s.
This expanded structure shows no evidence that any
macrolet forms ever existed in it. Therefore, it is impossible for the code
evaluated in the bodies and parameter lists of
.code macrolet
macros to have any visibility to any surrounding lexical variable bindings,
which are only instantiated in the evaluation phase, after expansion is done
and macros no longer exist.
A local macro defined using
.code defmacro
may decline to expand a macro form. Declining to expand is achieved by returning the original
unexpanded form, which may be captured using the
.code :form
parameter. When a local macro declines to expand a form, the macro definition
is temporarily hidden, as if it didn't exist in the lexical scope. If another
macro of the same name is thereby revealed (a global macro or another local macro
at a shallower nesting level), then an expansion is tried with that macro. If
no such macro is revealed, or if a lexical function binding of that name is
revealed, then no expansion takes place; the original form is taken as-is.
When another macro is tried, the process repeats, resulting in a search which
proceeds as far as possible through outer lexical scopes and finally the
global scope.
.coNP Function @ macro-form-p
.synb
.mets (macro-form-p < obj <> [ env ])
.syne
.desc
The
.code macro-form-p
function returns
.code t
if
.meta obj
represents the syntax of
a form which is a macro form: either a compound macro or a symbol macro.
Otherwise it returns
.codn nil .
A macro form is one that will transform under
.code macroexpand-1
or
.codn macroexpand ;
an object which isn't a macro form will not undergo expansion.
The optional
.meta env
parameter is a macroexpansion environment.
A macroexpansion environment is passed down to macros and can be received
via their special
.code :env
parameter.
.meta env
is used by
.code macro-form-p
to determine whether
.meta obj
is a macro in a lexical macro environment.
If
.meta env
is not specified or is
.codn nil ,
then
.code macro-form-p
only recognizes global macros.
.TP* Example:
.verb
;; macro which translates to 'yes if its
;; argument is a macro from, or otherwise
;; transforms to the form 'no.
(defmacro ismacro (:env menv form)
(if (macro-form-p form menv)
''yes ''no))
(macrolet ((local ()))
(ismacro (local))) ;; yields yes
(ismacro (local)) ;; yields no
(ismacro (ismacro foo)) ;; yields yes
.brev
During macro expansion, the global macro
.code ismacro
is handed the macro-expansion environment
via
.codn ":env menv" .
When the macro is invoked within the macrolet,
this environment includes the macro-time lexical scope in which the
.code local
macro is defined. So when global checks whether the argument form
.code (local)
is a macro, the conclusion is yes: the (local) form is a macro
call in that environment:
.code macro-form-p
yields
.codn t .
When
.code "(global (local))"
is invoked outside of the macrolet, no local macro is visible is
there, and so
.code macro-form-p
yields
.codn nil .
.coNP Functions @ macroexpand-1 and @ macroexpand
.synb
.mets (macroexpand-1 < obj <> [ env ])
.mets (macroexpand < obj <> [ env ])
.syne
.desc
If
.meta obj
is a macro form (an object for which
.code macro-form-p
returns
.codn t ),
these functions expand the macro form and return the expanded form.
Otherwise, they return
.metn obj .
.code macroexpand-1
performs a single expansion, expanding just the macro
that is referenced by the symbol in the first position of
.metn obj ,
and returns the expansion. That expansion may itself be a macro form.
.code macroexpand
performs an expansion similar to
.codn macroexpand-1 .
If the result is
a macro form, then it expands that form, and keeps repeating this process
until the expansion yields a non-macro-form. That non-macro-form is then
returned.
The optional
.meta env
parameter is a macroexpansion environment.
A macroexpansion environment is passed down to macros and can be received
via their special
.code :env
parameter. The environment they receive is their
lexically apparent macro-time environment in which local macros may be
visible. A macro can use this environment to "manually" expand some
form in the context of that environment.
.TP* Example:
.verb
;; (rem-num x) expands x, and if x begins with a number,
;; it removes the number and returns the resulting
;; form. Otherwise, it returns the entire form.
(defmacro rem-num (:env menv some-form)
(let ((expanded (macroexpand some-form menv)))
(if (numberp (car expanded))
(cdr expanded)
some-form)))
(macrolet ((foo () '(1 list 42))
(bar () '(list 'a)))
(list (rem-num (foo)) (rem-num (bar))))
--> ((42) (a))
.brev
The
.code rem-num
macro is able to expand the
.code (foo)
and
.code (bar)
forms it receives as
the
.code some-form
argument, even though these forms use local macro that are only
visible in their local scope. This is thanks to the macro
environment passed to
.codn rem-num .
It is correctly able to work with the
expansions
.code "(1 list 42)"
and
.code "(list 'a)"
to produce
.code "(list 42)"
and
.code "(list 'a)"
which evaluate to
.code 42
and
.code a
respectively.
.coNP Functions @ macroexpand-1-lisp1 and @ macroexpand-lisp1
.synb
.mets (macroexpand-1-lisp1 < obj <> [ env ])
.mets (macroexpand-lisp1 < obj <> [ env ])
.syne
.desc
The
.code macroexpand-1-lisp1
and
.code macroexpand-lisp1
functions closely resemble, respectively,
.code macroexpand-1
and
.codn macroexpand .
The argument and return value syntax and semantics is almost
identical, except for one difference. These functions consider argument
.meta obj
to be syntax in a Lisp-1 evaluation context, such as any argument
position of the
.code dwim
operator, or the equivalent DWIM Brackets notation.
This makes a difference because in a Lisp-1 evaluation context, an
inner function binding is able to shadow an outer symbol macro binding
of the same name.
The requirements about this language area are given in more
detail in the description of the
.code dwim
operator.
Note: the
.code macroexpand-lisp1
function is useful to the implementor of a macro whose semantics requires
one or more argument forms to be treated in a Lisp-1 context, in situations
when such a macro needs to itself expand the material, rather than merely
insert it as-is into the output code template.
.coNP Functions @ expand and @ *expand
.synb
.mets (expand < form <> [ env ])
.mets (expand* < form <> [ env ])
.syne
.desc
The functions
.code expand
and
.code expand*
both perform a complete expansion of
.meta form
in the macro-environment
.metn env ,
and return that expansion.
If
.meta env
is omitted, the expansion takes place in the global environment in
which only global macros are visible.
The returned object is a structure that
is devoid of any macro calls. Also, all
.code macrolet
and
.code symacrolet
blocks in form
.meta form
are removed in the returned structure, replaced by their fully
expanded bodies.
The difference between
.code expand
and
.code expand*
is that
.code expand
suppresses any warning exceptions that are issued during expansion.
.coNP Function @ expand-with-free-refs
.synb
.mets (expand-with-free-refs < form >> [ inner-env <> [ outer-env ]])
.syne
.desc
The
.code expand-with-free-refs
form performs a full expansion of
.metn form ,
as if by the
.code expand
function and returns a list containing that expansion, plus four additional
items which provide information about variable and function references which
occur in
.metn form .
If both
.meta inner-env
and
.meta outer-env
are provided, then it is expected that
.meta inner-env
is lexically nested within
.metn outer-env .
Note: it is not required that
.meta outer-env
be the immediate parent of
.metn inner-env .
Note: a common usage situation is that
.meta outer-env
is the environment of the invocation of a "parent" macro which generates a form
that contains local macros. The bodies of those local macros use
.codn expand-with-free-refs ,
specifying their own environment as
.meta inner-env
and that of their generating "parent" as
.metn outer-env .
In detail, the five items of the returned list are
.mono
.meti >> ( expansion < fv-inner < ff-inner < fv-outer << ff-outer )
.onom
whose descriptions are:
.RS
.meIP < expansion
The full expansion of
.metn form ,
containing no macro invocations, or
.code symacrolet
or
.code macrolet
forms.
.meIP < fv-inner
A list of the free variables which occur in
.meta form
relative to the
.meta inner-env
environment. That is to say, variables that are not bound inside
.meta form
and are not also bound in
.metn inner-env .
If
.meta inner-env
is omitted, then these are the absolutely free variables
occurring in
.metn form .
.meIP < ff-inner
Exactly like
.meta fv-inner
but informing about function bindings rather than variables.
.meIP < fv-outer
A list of the variables which which occur in
.meta form
which would be free if the environments between
.meta inner-env
and
.meta outer-env
(including the former, excluding the latter)
were removed from consideration. A more detailed description of this semantics
is given below. If
.meta outer-env
is omitted, then these are the absolutely free variables
occurring in
.metn form ,
ignoring the
.metn inner-env .
.meIP < ff-outer
Exactly like
.meta fv-outer
but informing about function bindings rather than variables.
.RE
.IP
The semantics of the treatment of
.meta inner-env
and
.meta outer-env
in the calculation of
.meta fv-outer
and
.meta ff-outer
is as follows. A new environment
.meta diff-env
is calculated from these two environments, and
.meta form
is expanded in this environment. Variables and functions occurring in
.meta form
which are not bound in
.meta diff-env
are listed as
.meta fv-outer
and
.metn ff-outer .
This
.meta diff-env
is calculated as follows. First
.meta diff-env
is initialized as a copy of
.metn outer-env .
Then, all environments below
.meta outer-env
down to
.meta inner-env
are examined for bindings which shadow bindings in
.metn diff-env .
Those shadows are removed from
.metn diff-env .
Therefore, what remains in
.meta diff-env
are those bindings from
.meta outer-env
that are
.I not
shadowed by the environments between
.meta inner-env
and
.metn outer-env .
Within each of the lists of variables returned by
.codn expand-with-free-refs ,
the order of the variables is not specified.
.TP* Example:
Suppose that
.code mac
is a macro which somehow has access to the two indicated lexical environments
in the following code snippet:
.verb
(let (a c) ;; <- outer-env
(let (b)
(let (c) ;; <- inner-env
(mac (list a b c d)))))
.brev
Suppose that
.code mac
invokes the
.code expand-with-free-refs
function, passing in the
.code "(list a b c d)"
argument form as
.code form
and two macro-time environment objects corresponding to the indicated
environments.
Then the following object shall be a correct return value of
.codn expand-with-free-refs :
.verb
((list a b c d) (d) nil (d c b) nil)
.brev
A complete code example of this is given below.
Other correct return values are possible due to permitted variations in the
order of the variables within the four lists. For instance, instead of
.code "(d c b)"
the list
.code "(c b d)"
may appear.
The
.meta fv-inner
list is
.code "(d)"
because this is the only variable that occurs in
.code "(list a b c d)"
which is free with regard to
.metn inner-env .
The
.codn a ,
.code b
and
.code c
variables are not listed because they appear bound inside
.metn inner-env .
The reported
.meta fv-outer
list is
.code "(b c d)"
because the form is considered against
.meta diff-env
which is formed by removing the shadowing bindings from
.metn outer-env .
The difference between
.code "(a c)"
and
.code "(b c)"
is
.code a
and so the form is considered in an environment containing the binding
.code a
which leaves
.code "(b c d)"
free.
The following is a complete code sample demonstrating the above
descriptions:
.verb
;; Given this macro:
(defmacro bigmac (:env out-env big-form)
^(macrolet ((mac (:env in-env little-form)
^',(expand-with-free-refs
little-form in-env ,out-env)))
,big-form))
(let (a c) ;; <- outer-env, surrounding bigmac
(bigmac
(let (b)
(let (c) ;; <- inner-env, surrounding mac
(mac (list a b c d))))))
--> ((list a b c d) (d) nil (d c b) nil)
.brev
Note: this information is useful because a set difference can be calculated
between the two reported sets. The set difference between the
.meta fv-outer
variables
.code "(b c d)"
and the
.meta fv-inner
variables
.code "(d)"
is
.codn "(b c)" .
That set difference
.code "(b c)"
is significant because it precisely informs about the
.I bound
variables which occur in
.code "(list a b c d)"
which appear bound in
.metn inner-env ,
but are not bound due to a binding coming from
.metn outer-env .
In the above example, these are the variables enclosed in the
.code bigmac
macro, but external to the inner
.code mac
macro.
The variable
.code d
is not listed in
.code "(b c)"
because it is not a bound variable.
The variable
.code a
is not in
.code "(b c)"
because though it is bound in
.metn inner-env ,
that binding comes from
.metn outer-env .
The upshot of this logic is that it allows a macro to inspect a form in order
to discover the identities of the variables and functions which are used inside
that form, whose definitions come from a specific, bounded scope surrounding
that form.
.coNP Functions @ lexical-var-p and @ lexical-fun-p
.synb
.mets (lexical-var-p < env << form )
.mets (lexical-fun-p < env << form )
.syne
.desc
These two functions are useful to macro writers. They are intended
to be called from the bodies of macro expanders, such as the bodies of
.code defmacro
or
.code macrolet
forms. The
.meta env
argument is a macro-time environment, which is available to macros
via the special
.code :env
parameter. Using these functions, a macro can enquire whether
a given
.meta form
is a symbol which has a variable binding or a function binding
in the lexical environment.
This information is known during macro expansion. The macro expander
recognizes lexical function and variable bindings, because these
bindings can shadow macros.
.TP* Example:
.verb
;;
;; this macro replaces itself with :lexical-var if its
;; argument is a lexical variable, :lexical-fun if
;; its argument is a lexical function, or with
;; :not-lex-fun-var if neither is the case.
;;
(defmacro classify (sym :env e)
(cond
((lexical-var-p e sym) :lexical-var)
((lexical-fun-p e sym) :lexical-fun)
(t :not-lex-fun-var)))
;;
;; This returns:
;;
;; (:lexical-var :not-lex-fun-var :lexical-fun)
;;
(let ((x 1) (y 2))
(symacrolet ((y x))
(flet ((f () (+ 2 2)))
(list (classify x) (classify y) (classify f)))))
.brev
.TP* Note:
These functions do not call
.code macroexpand
on the form. In most cases, it is necessary for the macro writers
to do so. Not that in the above example, symbol
.code y
is classified as neither a lexical function nor variable.
However, it can be macro-expanded to
.code x
which is a lexical variable.
.coNP Function @ lexical-lisp1-binding
.synb
.mets (lexical-lisp1-binding < env << symbol )
.syne
.desc
The
.code lexical-lisp1-binding
function inspects the macro-time environment
.meta env
to determine what kind of binding, if any, does
.meta symbol
have in that environment, from a Lisp-1 perspective.
That is to say, it considers function bindings, variable bindings
and symbol macro bindings to be in a single name space and finds
the innermost binding of one of these types for
.metn symbol .
If such a binding is found, then the function returns one of
the three keyword symbols
.codn :var ,
.codn :fun ,
or
.codn :symacro .
If no such lexical binding is found, then the function
returns
.codn nil .
Note that a
.code nil
return doesn't mean that the symbol doesn't have a lexical binding. It could
have an operator macro lexical binding (a macro binding in the function
namespace established by
.codn macrolet ).
.coNP Operator @ defsymacro
.synb
.mets (defsymacro < sym << form )
.syne
.desc
A
.code defsymacro
form introduces a symbol macro. A symbol macro consists of a binding
between a symbol
.meta sym
and and a
.metn form .
The binding denotes the form itself, rather than its value. How the
symbol macro works is that if
.meta sym
occurs as a form in a scope where the symbol macro definition is
in scope,
.meta sym
is replaced by
.metn form .
Immediately after this replacement takes place,
.meta form
itself is then processed for further replacement of macros and
symbol macros.
Symbol macros are also recognized in contexts
where
.meta sym
denotes a place which is the target of an assignment operation
like
.code set
and similar.
A
.code defsymacro
form is implicitly executed at expansion time, and thus need
not be wrapped in a
.code macro-time
form, just like
.codn defmacro .
Note: if a symbol macro expands to itself directly, expansion stops. However,
if a symbol macro expands to itself through a chain of expansions,
runaway expansion-time recursion will occur.
If a global variable exists by the name
.metn sym ,
then
.code defsymacro
first removes that variable from the global environment, and if that
variable is special, the symbol's special marking is removed.
.code defsymacro
doesn't alter the dynamic binding of a special variable. Any such
a binding remains intact.
If
.code defsymacro
is evaluated in a scope in which there is any lexical or dynamic binding
of
.meta sym
in the variable namespace, whether as a variable or macro,
the global symbol macro is shadowed by that binding.
.coNP Operator @ symacrolet
.synb
.mets (symacrolet >> ({( sym << form )}*) << body-form *)
.syne
.desc
The
.code symacrolet
operator binds local, lexically scoped macros that are
similar to the global symbol macros introduced by
.codn defsymacro .
Each
.meta sym
in the bindings list is bound to its corresponding form, creating a
new extension of the expansion-time lexical macro environment.
Each
.meta body-form
is subsequently macro-expanded in this new environment
in which the new symbol macros are visible.
Note: ordinary lexical bindings such as those introduced by let or by
function parameters lists shadow symbol macros. If a symbol
.code x
is bound by nested instances of
.code macrolet
and a
.codn let ,
then the scope enclosed by both
constructs will see whichever of the two bindings is more inner,
even though the bindings are active in completely separate phases of
processing.
From the perspective of the arguments of a
.code dwim
form, lexical function bindings also shadow symbol macros.
This is consistent with the Lisp-1-style name resolution which
applies inside a
.code dwim
form. Lexical operator macros do not shadow
symbol macros under any circumstances.
.coNP Macros @ placelet and @ placelet*
.synb
.mets (placelet >> ({( sym << place )}*) << body-form *)
.mets (placelet* >> ({( sym << place )}*) << body-form *)
.syne
.desc
The
.code placelet
macro binds lexically scoped symbol macros in such
a way that they behave as aliases for places
denoted by place forms.
Each
.meta place
must be an expression denoting a syntactic place. The
corresponding
.meta sym
is established as an alias for the storage location which that place denotes,
over the scope of the
.metn body-form -s.
This binding takes place in such a way that each
.meta place
is evaluated exactly once, only in order to determine its
storage location. The corresponding
.meta sym
then serves as an alias for that location, over the
scope of the
.metn body-form -s.
This means that whenever
.meta sym
is evaluated, it stands for the value of the storage
location, and whenever a value is apparently stored into
.metn sym ,
it is actually the storage location which receives it.
The
.code placelet*
variant implements an alternative scoping rule, which allows a later
.meta place
form to refer to a
.meta sym
bound to an earlier
.meta place
form. In other words, a given
.meta sym
binding is visible not only to the
.metn body-form -s
but also to
.meta place
forms which occur later.
Note: certain kinds of places, notably
.mono
.meti (force << promise )
.onom
expressions, must be accessed before they can be stored,
and this restriction continues to hold when those
places are accessed through
.code placelet
aliases.
Note:
.code placelet
differs from
.code symacrolet
in that the forms themselves are not aliased, but the storage
locations which they denote.
.code "(symacrolet ((x y)) z)"
performs the syntactic substitution of symbol
.code x
by form
.codn y ,
wherever
.code x
appears inside
.code z
as an evaluated form, and is not shadowed by any inner binding.
Whereas
.code "(placelet ((x y)) z)"
generates code which arranges for
.code y
to be evaluated to a storage location, and syntactically replaces occurrences
of
.code x
with a form which directly denotes that storage location,
wherever
.code x
appears inside
.code z
as an evaluated form, and is not shadowed by any inner binding.
Also,
.code x
is not necessarily substituted by a single, fixed form,
as in the case of
.codn symacrolet .
Rather it may be substituted by one kind of form when it
is treated as a pure value, and another kind of form
when it is treated as a place.
.TP* "Example:"
Implementation of
.code inc
using
.codn placelet :
.verb
(defmacro inc (place : (delta 1))
(with-gensyms (p)
^(placelet ((,p ,place))
(set ,p (+ ,p ,delta)))))
.brev
The gensym
.code p
is used to avoid accidental capture of references
emanating from the
.code delta
form.
.coNP Macro @ equot
.synb
.mets (equot << form )
.syne
.desc
The
.code equot
macro ("expand and quote") performs a full expansion of
.code form
in the surrounding macro environment. Then it constructs a
.code quote
form whose argument is the expansion. This quote form is
then returned as the macro replacement for the original
.code equot
form.
.TP* Example:
.verb
(symacrolet ((a (+ 2 2)))
(list (quote a) (equot a) a))
--> (a (+ 2 2) 4)
.brev
Above, the expansion of
.code a
is
.codn "(+ 2 2)" .
Thus the macro call
.code "(equot a)"
expands to
.codn "(quote (+ 2 2))" .
When that is evaluated, it yields
.codn "(+ 2 2)" .
If
.code a
is quoted, then the result is
.codn a :
no expansion or evaluation takes place.
Whereas if
.code a
is presented for evaluation, then not only is it expanded to
.codn "(+ 2 2)" ,
but that expansion is reduced to 4.
The
.code equot
operator is a mongrel of these two semantics: it permits expansion to proceed,
but then suppresses evaluation of the result.
.coNP Operators @ tree-bind and @ mac-param-bind
.synb
.mets (tree-bind < macro-style-params < expr << form *)
.mets (mac-param-bind < context-expr
.mets \ \ < macro-style-params < expr << form *)
.syne
.desc
The
.code tree-bind
operator evaluates
.codn expr ,
and then uses the
resulting value as a counterpart to a macro-style parameter list.
If the value has a tree structure which matches the parameters,
then those parameters are established as bindings, and the
.metn form -s,
if any, are evaluated in the scope of those bindings. The value
of the last
.meta form
is returned. If there are no forms,
.code nil
is returned.
Note: this operator throws an exception if there is a
structural mismatch between the parameters and the value of
.codn expr .
One way to avoid this exception is to use
.codn tree-case .
The
.code mac-param-bind
operator is similar to
.code tree-bind
except that it takes an extra argument,
.metn context-expr .
This argument is an expression which is evaluated. It is expected to
evaluate to a compound form. If an error occurs during binding, the error
diagnostic message is based on information obtained from this form.
By contrast, the
.code tree-bind
operator's error diagnostic refers to the
.code tree-bind
form, which is cryptic if the binding is used for the implementation
of some other construct, hidden from the user of that construct.
.coNP Operator @ tree-case
.synb
.mets (tree-case < expr >> {( macro-style-params << form *)}*)
.syne
.desc
The
.code tree-case
operator evaluates
.meta expr
and matches it against a succession
of zero or more cases. Each case defines a pattern match, expressed as a macro
style parameter list
.metn macro-style-params .
If the object produced by
.meta expr
matches
.metn macro-style-params ,
then the parameters are bound, becoming local variables, and the
.metn form -s,
if any, are evaluated in order in the environment in which those variables are
visible. If there are forms, the value of the last
.meta form
becomes the result
value of the case, otherwise the result value of the case is nil.
If the result value of a case is the object
.code :
(the colon symbol), then processing continues with the next case. Otherwise the
evaluation of
.code tree-case
terminates, returning the result value.
If the value of
.meta expr
does not match the
.meta macro-style-params
parameter list of a case, processing continues with the next case.
If no cases match, then
.code tree-case
terminates, returning
.codn nil .
.TP* Example:
.verb
;; reverse function implemented using tree-case
(defun tb-reverse (obj)
(tree-case obj
(() ()) ;; the empty list is just returned
((a) obj) ;; one-element list returned
((a . b) ^(,*(tb-reverse b) ,a)) ;; car/cdr recursion
(a a))) ;; atom is just returned
.brev
Note that in this example, the atom case is placed last, because an
argument list which consists of a symbol is a "catch all" match
that matches any object. We know that it matches an atom, because
the previous
.code "(a . b)"
case matches conses. In general, the order of the cases in
.code tree-case
is important: even more so than the order of cases in a
.code cond
or
.codn caseql .
The one-element list case is unnecessary; it can be removed.
.coNP Macro @ tb
.synb
.mets (tb < macro-style-params << form *)
.syne
.desc
The
.code tb
macro is similar to the
.code lambda
operator but its argument binding is based on a macro-style parameter list.
The name is an abbreviation of
.codn tree-bind .
A
.code tb
form evaluates to a function which takes a variable number of
arguments.
When that function is called, those arguments are taken as a list object which
is matched against
.meta macro-style-params
as if by
.metn tree-bind .
If the match is successful, then the parameters are bound to the
corresponding elements from the argument structure and each successive
.meta form
is evaluated an environment in which those bindings are visible.
The value of the last
.meta form
is the return value of the function. If there are no forms,
the function's return value is
.codn nil .
The following equivalence holds, where
.code args
should be understood to be a globally unique symbol:
.verb
(tb pattern body ...) <--> (lambda (. args)
(tree-bind pattern args body ...))
.brev
.coNP Macro @ tc
.synb
.mets (tc >> {( macro-style-params << form *)}*)
.syne
.desc
The
.code tc
macro produces an anonymous function whose behavior is closely
based on the
.code tree-case
operator. Its name is an abbreviation of
.codn tree-case .
The anonymous function takes a variable number of arguments.
Its argument list is taken to be the value macro is tested
against the multiple pattern clauses of an implicit
.codn tree-case .
The return value of the function is that of the implied
.codn tree-case .
The following equivalence holds, where
.code args
should be understood to be a globally unique symbol:
.verb
(tc clause1 clause2 ...) <--> (lambda (. args)
(tree-case args
clause1 clause2 ...))
.brev
.coNP Macro @ with-gensyms
.synb
.mets (with-gensyms <> ( sym *) << body-form *)
.syne
.desc
The
.code with-gensyms
evaluates the
.metn body-form -s
in an environment in which each variable name symbol
.meta sym
is bound to a new uninterned symbol ("gensym").
.TP* "Example:"
The code:
.verb
(let ((x (gensym))
(y (gensym))
(z (gensym)))
^(,x ,y ,z))
.brev
may be expressed more conveniently using the
.code with-gensyms
shorthand:
.verb
(with-gensyms (x y z)
^(,x ,y ,z))
.brev
.SS* Parameter List Macros
Parameter list macros, also more briefly called
.I "parameter macros"
are an original feature of \*(TL.
If the first element of a function or macro parameter list is a keyword
symbol other than
.codn :env ,
.codn :whole ,
.code :form
or
.code :
(the colon symbol),
it denotes a parameter macro. This keyword symbol is expected to
have a binding in the parameter macro namespace: a global namespace
which associates keyword symbols with parameter list expander
functions.
Expansion of a parameter list macro occurs at macro-expansion
time, when a function's parameter list is traversed by the
macro expander. It takes place as follows.
First, the keyword is removed from the parameter list.
The keyword's binding in the parameter macro namespace is
retrieved. If it doesn't exist, an exception is thrown.
Otherwise, the remaining parameter list is first recursively
processed for more occurrences of parameter macros.
This expansion produces a transformed parameter list,
along with a transformed function body. These two artifacts
are then passed to the transformer function retrieved from
the keyword symbol's binding. The function returns a
further transformed version of the parameter list and
body. These are processed for more parameter macros.
The process terminates when no more expansion is
possible, because a parameter list has been produced
which does not begin with a parameter macro. This
final parameter list and its accompanying body are then
taken in place of the original parameter list and
body.
\*(TL provides a built-in parameter list macro bound to the symbol
.code :key
which endows a function keyword parameters. The implementation is
written entirely using this parameter list macro mechanism, by means
of the
.code define-param-expander
macro.
.coNP Special variable @ *param-macro*
.desc
The variable
.code *param-macro*
holds a hash table which associates keyword symbols with
parameter list expander functions.
The functions are expected to conform to the following
syntax:
.mono
.mets (lambda >> ( params < body < env << form ) << form *)
.onom
The
.meta params
parameter receives the parameter list of the function
which is undergoing parameter expansion. All other
parameter macros have already been expanded.
The
.meta body
parameter receives the list of body forms.
The function is expected to return a
.code cons
cell whose
.code car
contains the transformed parameter list, and whose
.code cdr
contains the transformed list of body forms.
Parameter expansion takes place at macro expansion time.
The
.meta env
parameter receives the macro-expansion-time environment
which surrounds the function being expanded.
Note that this environment doesn't take into account the
parameters themselves; therefore, it is not the correct environment
for expanding macros among the
.meta body
forms. For that purpose, it must be extended with
shadowing entries, the manner of doing which is
undocumented. However
.meta env
may be used directly for expanding init forms
for optional parameters occurring in
.metn params .
The
.meta form
parameter receives the overall function-defining
form that is being processes, such as a
.code defun
or
.code lambda
form. This is intended for error reporting.
.coNP Macro @ define-param-expander
.synb
.mets (define-param-expander < name >> ( pvar < bvar : < evar << fvar )
.mets \ \ << form *)
.syne
.desc
The
.code define-param-expander
macro provides syntax for defining parameter macros. Invocations
of this macro expand to code which constructs an anonymous
function and installs it into the
.code *param-macro*
hash table, under the key given by
.metn name .
The
.meta name
parameter's argument should be a keyword symbol that is valid for use
as a parameter macro name.
The
.metn pvar ,
.metn bvar ,
.meta evar
and
.meta fvar
arguments must be symbols suitable for variable
binding. These symbols define the parameters of the
expander function which shall, respectively, receive
the parameter list, body forms, macro environment
and function form. If
.meta evar
is omitted, a symbol generated by the
.code gensym
function is used. Likewise if
.meta fvar
is omitted.
The
.meta form
arguments constitute the body of the expander.
The
.code define-param-expander
form returns
.metn name .
.TP* Example:
The following example shows the implementation
of a parameter macro
.code :memo
which provides rudimentary memoization.
Using the macro is extremely easy. It is a matter
of simply inserting the
.code :memo
keyword at the front of a function's parameter list.
The function is then memoized.
.verb
(defvarl %memo% (hash :weak-keys))
(defun ensure-memo (sym)
(or (gethash %memo% sym)
(sethash %memo% sym (hash))))
(define-param-expander :memo (param body)
(let* ((memo-parm [param 0..(posq : param)])
(hash (gensym))
(key (gensym)))
^(,param (let ((,hash (ensure-memo ',hash))
(,key (list ,*memo-parm)))
(or (gethash ,hash ,key)
(sethash ,hash ,key (progn ,*body)))))))
.brev
The above
.code :memo
macro may be used to define a memoized Fibonacci function
as follows:
.verb
(defun fib (:memo n)
(if (< n 2)
(clamp 0 1 n)
(+ (fib (pred n)) (fib (ppred n)))))
.brev
All that is required is the insertion of the
.code :memo
keyword.
.coNP Parameter list macro @ :key
.synb
.mets (:key << non-key-param *
.mets \ \ [ -- >> { sym | >> ( sym >> [ init-form <> [ p-sym ]])}* ]
.mets \ \ [ . rest-param ])
.syne
.desc
Parameter list macro
.code :key
injects keyword parameter support into functions and macros.
When
.code :key
appears as the first item in a function parameter list, a special syntax is
recognized in the parameter list. After any required and optional parameters,
the symbol
.code --
(two dashes) may appear. Parameters after this symbol are interpreted
as keyword parameters. After the keyword parameters, a rest parameter
may appear in the usual way as a symbol in the dotted position.
Keyword parameters use the same syntax as optional parameters, except
that if used in a macro parameter list, they do not support
destructuring whereas optional parameters do. That is to say, regardless
whether
.code :key
is used in a function or macro, keyword parameters are symbols.
A keyword parameter takes three possible forms:
.RS
.meIP < sym
A keyword parameter may be specified as a simple symbol
.metn sym .
If the argument for such a keyword parameter is missing,
it takes on the value
.codn nil .
.meIP >> ( sym << init-form )
If the keyword parameter symbol
.meta sym
is enclosed in a list, then the second element of that list
specifies a default value, similarly to the default value for
an optional argument. If the function is called in such a way
that the argument for the parameter is missing, the
.meta init-form
is evaluated and the resulting value is bound to the keyword parameter.
The evaluation takes place in a lexical scope in which the
required and optional parameters are are already visible,
and their values are bound. If there is a
.meta rest-param
it is also visible in this scope, even though in the parameter
list it appears to the left.
.meIP >> ( sym < init-form << p-sym )
The three-element form of the keyword parameter specifies
an additional symbol
.metn p-sym ,
which names an argument that implicitly receives a Boolean
argument indicating the presence of the keyword argument.
If an argument is not passed for the keyword parameter
.metn sym ,
then parameter
.meta sym-p
takes on the value
.codn nil .
If an argument is given for
.metn sym ,
then the
.meta sym-p
argument takes on the value
.codn t .
This mechanism also closely resembles the analogous
one supported in optional arguments. See the previous
paragraph regarding the evaluation scope of
.metn init-form .
.RE
.IP
In a call to a
.codn :key -enabled
function, keyword arguments begin after those arguments which satisfy
all of the required and optional parameters. Keyword arguments consist
of interleaved indicators and values, which are separate arguments.
Thus passing a keyword argument actually requires the passing of two
function arguments: an indicator keyword symbol, followed by the
associated value. The indicator keywords are expected to have the
same symbol name as the defined keyword parameters. For instance, the
indicator-value pair
.code ":xyz 42"
passes the value
.code 42
to a keyword parameter that may be named
.code xyz
in any package: it may be
.code usr:xyz
or
.code mypackage:xyz
and so forth.
Arguments specifying unrecognized keywords are ignored.
If the function has a
.metn rest-param ,
then that parameter receives the keyword arguments as a list.
Since that list contains indicators and values, it is a
.I "de facto"
property list. In detail, the
.code :key
mechanism generates a regular variadic function which receives the keyword
arguments as the trailing argument list. That function
parses the recognized keyword arguments out of the trailing list, and
binds them to the keyword parameter symbols as local variables. If a
.meta rest-param
parameter is defined, then the entire keyword argument list is available
through that parameter, and the keyword argument parsing logic also refers to
the value of that parameter to gain access to the keyword arguments. If
there is no
.meta rest-param
specified, then the
.code :key
macro adds a
.meta rest-param
using a machine-generated symbol. The argument parsing logic then
refers to the value of that symbol.
.TP* Example:
Define a function
.code fun
with two required arguments
.codn "a b" ,
one optional argument
.codn c ,
two keyword arguments
.code foo
and
.codn bar ,
and a rest parameter
.codn klist :
.verb
(defun fun (:key a b : c -- foo bar . klist)
(list a b c foo bar klist))
(fun 1 2 3 :bar 4) -> (1 2 3 nil 4 (:bar 4))
.brev
Define a function with only keyword arguments, with default expressions and
Boolean indicator params:
.verb
(defun keyfun (:key -- (a 10 a-p) (b 20 b-p))
(list a a-p b b-p))
(keyfun :a 3) -> (3 t 20 nil)
(keyfun :b 4) -> (10 nil 4 t)
(keyfun :c 4) -> (10 nil 20 nil)
(keyfun) -> (10 nil 20 nil)
.brev
.SS* Mutation of Syntactic Places
.coNP Macro @ set
.synb
.mets (set >> { place << new-value }*)
.syne
.desc
The
.code set
operator stores the values of expressions in places. It must
be given an even number of arguments.
If there are no arguments, then
.code set
does nothing and returns
.codn nil .
If there are two arguments,
.meta place
and
.metn new-value ,
then
.meta place
is evaluated to determine its storage location, then
.meta new-value
is evaluated to determine the value to be stored there,
and then the value is stored in that location. Finally,
the value is also returned as the result value.
If there are more than two arguments, then
.code set
performs multiple assignments in left to right order.
Effectively,
.code "(set v1 e1 v2 e2 ... vn en)"
is precisely equivalent to
.codn "(progn (set v1 e1) (set v2 e2) ... (set vn en))" .
.coNP Macro @ pset
.synb
.mets (pset >> { place << new-value }*)
.syne
.desc
The syntax of
.code pset
is similar to that of
.codn set ,
and the semantics is similar also in that zero or more places are
assigned zero or more values. In fact, if there are no arguments, or
if there is exactly one pair of arguments,
.code pset
is equivalent to
.codn set .
If there are two or more argument pairs, then all of the arguments
are evaluated first, in left-to-right order. No store takes place
until after every
.meta place
is determined, and every
.meta new-value
is calculated. During the calculation, the values to be stored
are retained in hidden, temporary locations. Finally, these values
are moved into the determined places. The rightmost value is returned
as the form's value.
The assignments thus appear to take place in parallel, and
.code pset
is capable of exchanging the values of a pair of places, or rotating
the values among three or more places. (However, there are more convenient
operators for this, namely
.code rotate
and
.codn swap ).
.TP* Example:
.verb
;; exchange x and y
(pset x y y x)
;; exchange elements 0 and 1; and 2 and 3 of vector v:
(let ((v (vec 0 10 20 30))
(i -1))
(pset [vec (inc i)] [vec (inc i)]
[vec (inc i)] [vec (inc i)])
vec)
-> #(10 0 30 20)
.brev
.coNP Macro @ zap
.synb
.mets (zap < place <> [ new-value ])
.syne
.desc
The
.code zap
macro assigns
.meta new-value
to
.meta place
and returns the previous value of
.metn place .
If
.meta new-value
is missing, then
.code nil
is used.
In more detail, first
.code place
is evaluated to determine the storage location.
Then, the location is accessed to retrieve the
previous value. Then, the
.code new-value
expression is evaluated, and that value is
placed into the storage location.
Finally, the previously retrieved value is returned.
.coNP Macro @ flip
.synb
.mets (flip << place )
.syne
.desc
The
.code flip
macro toggles the Boolean value stored in
.metn place .
If
.meta place
previously held
.codn nil ,
it is set to
.codn t ,
and if it previously held a value other than
.codn nil ,
it is set to
.codn nil .
.coNP Macros @ test-set and @ test-clear
.synb
.mets (test-set << place )
.mets (test-clear << place )
.syne
.desc
The
.code test-set
macro examines the value of
.metn place .
If it is
.code nil
then it stores
.code t
into the place, and returns
.codn t .
Otherwise it leaves
.meta place
unchanged and returns
.codn nil .
The
.code test-clear
macro examines the value of
.metn place .
If it is Boolean true (any value except
.codn nil )
then it stores
.code nil
into the place, and returns
.codn t .
Otherwise it leaves
.meta place
unchanged and returns
.codn nil .
.coNP Macro @ compare-swap
.synb
.mets (compare-swap < place < cmp-fun < cmp-val << store-val )
.syne
.desc
The
.code compare-swap
macro examines the value of
.meta place
and compares it to
.meta cmp-val
using the comparison function given by the function name
.metn cmp-fun .
This comparison takes places as if by evaluating the expression
.meti >> ( cmp-fun < value << cmp-val )
where
.meta value
denotes the current value of
.metn place .
If the comparison is false,
.meta place
is not modified, the
.meta store-val
expression is not evaluated, and the macro returns
.codn nil .
If the comparison is true, then
.code compare-swap
evaluates the
.meta store-val
expression, stores the resulting value into
.meta place
and returns
.codn t .
.coNP Macros @ inc and @ dec
.synb
.mets (inc < place <> [ delta ])
.mets (dec < place <> [ delta ])
.syne
.desc
The
.code inc
macro increments
.meta place
by adding
.meta delta
to its value.
If
.meta delta
is missing, the value used in its place the integer 1.
First the
.meta place
argument is evaluated as a syntactic place to determine the location.
Then, the value currently stored in that location is retrieved.
Next, the
.meta delta
expression is evaluated. Its value is added to the previously retrieved
value as if by the
.code +
function. The resulting value is stored in the place, and returned.
The macro
.code dec
works exactly like
.code inc
except that addition is replaced by subtraction. The similarly defaulted
.meta delta
value is subtracted from the previous value of the place.
.coNP Macros @ pinc and @ pdec
.synb
.mets (pinc < place <> [ delta ])
.mets (pdec < place <> [ delta ])
.syne
.desc
The macros
.code pinc
and
.code pdec
are similar to
.code inc
and
.codn dec .
The only difference is that they return the previous value of
.meta place
rather than the incremented value.
.coNP Macros @ test-inc and @ test-dec
.synb
.mets (test-inc < place >> [ delta <> [ from-val ]])
.mets (test-dec < place >> [ delta <> [ to-val ]])
.syne
.desc
The
.code test-inc
and
.code test-dec
macros provide combined operations which change the value of a place and
provide a test whether, respectively, a certain previous value was
overwritten, or a certain new value was attained. By default, this tested
value is zero.
The
.code test-inc
macro notes the prior value of
.meta place
and then updates it with that value, plus
.metn delta ,
which defaults to 1. If the prior value is
.code eql
to
.meta from-val
then it returns
.codn t ,
otherwise
.codn nil .
The default value of
.meta from-val
is zero.
The
.code test-dec
macro produces a new value by subtracting
.meta delta
from the value of
.metn place .
The argument
.meta delta
defaults to 1. The new value is stored into
.metn place .
If the new value is
.code eql
to
.meta to-val
then
.code t
is returned, otherwise
.codn nil .
.coNP Macro @ swap
.synb
.mets (swap < left-place << right-place )
.syne
.desc
The
.code swap
macro exchanges the values of
.meta left-place
and
.meta right-place
and returns the value which is thereby transferred to
.metn right-place .
First,
.meta left-place
and
.meta right-place
are evaluated, in that order, to determine their locations.
Then the prior values are retrieved, exchanged and stored back.
The value stored in
.meta right-place
is also returned.
If
.meta left-place
and
.meta right-place
are ranges of the same sequence, the behavior is not specified
if the ranges overlap or are of unequal length.
Note: the
.code rotate
macro's behavior is somewhat more specified in this regard.
Thus, although any correct
.code swap
expression can be expressed using
.codn rotate ,
but the reverse isn't true.
.coNP Macro @ push
.synb
.mets (push < item << place )
.syne
.desc
The
.code push
macro places
.meta item
at the head of the list stored in
.meta place
and returns the updated list which is stored back in
.metn place .
First, the expression
.meta item
is evaluated to produce the push value.
Then,
.meta place
is evaluated to determine its storage location.
Next, the storage location is accessed to retrieve the
list value which is stored there. A new object is
produced as if by invoking
.code cons
function on the push value and list value.
This object is stored into the location,
and returned.
.coNP Macro @ pop
.synb
.mets (pop << place )
.syne
.desc
The
.code pop
macro removes an element from the list stored in
.meta place
and returns it.
First,
.meta place
is evaluated to determine the place. The place is accessed to
retrieve the original value. Then a new value is calculated,
as if by applying the
.code cdr
function to the old value. This new value is stored.
Finally, a return value is calculated and returned, as if by applying the
.code car
function to the original value.
.coNP Macro @ pushnew
.synb
.mets (pushnew < item < place >> [ testfun <> [ keyfun ]])
.syne
.desc
The
.code pushnew
macro inspects the list stored in
.metn place .
If the list already contains the item, then
it returns the list. Otherwise it creates a new list
with the item at the front and stores it back
into
.metn place ,
and returns it.
First, the expression
.meta item
is evaluated to produce the push value.
Then,
.meta place
is evaluated to determine its storage location.
Next, the storage location is accessed to retrieve the
list value which is stored there. The list is
inspected to check whether it already contains the push
value, as if using the
.code member
function. If that is the case, the list
is returned and the operation finishes.
Otherwise, a new object is
produced as if by invoking
.code cons
function on the push value and list value.
This object is stored into the location
and returned.
.coNP Macro @ shift
.synb
.mets (shift << place + << shift-in-value)
.syne
.desc
The
.code shift
macro treats one or more places as a "multi-place shift register".
The values of the places are shifted one place to the left.
The first (leftmost) place receives the value of the second place,
the second receives that of the third, and so on.
The last (rightmost) place receives
.meta shift-in-value
(which is not treated as a place, even if it is a syntactic place form).
The previous value of the first place is returned.
More precisely, all of the argument forms are evaluated left to right, in the
process of which the storage locations of the places are determined,
.meta shift-in-value
is reduced to its value.
The values stored in the places are sampled and saved.
Note that it is not specified whether the places are sampled in a separate
pass after the evaluation of the argument forms, or whether the
sampling is interleaved into the argument evaluation. This affects
the behavior in situations in which the evaluation of any of the
.meta place
forms, or of
.metn shift-in-value ,
has the side effect of modifying later places.
Next, the places are updated by storing the saved value of the second
place into the first place, the third place into the second and so forth,
and the value of
.meta shift-in-value
into the last place.
Finally, the saved original value of the first place is returned.
If any of the places are ranges which index into the same sequence,
and the behavior is not otherwise unspecified due to the issue
noted in an earlier paragraph, the effect upon the multiply-stored
sequence can be inferred from the above-described storage order.
Note that even if stores take place which change the length of
the sequence and move some elements, not-yet-processed stores whose ranges
to refer to these elements are not adjusted.
With regard to the foregoing paragraph, a recommended practice is
that if subranges of the same sequence object are shifted, they be
given to the macro in ascending order of starting index. Furthermore, the
semantics is simpler if the ranges do not overlap.
.coNP Macro @ rotate
.synb
.mets (rotate << place *)
.syne
.desc
Treats zero or more places as a "multi-place rotate register".
If there are no arguments, there is no effect and
.code nil
is returned. Otherwise, the last (rightmost) place receives
the value of the first (leftmost) place. The leftmost place
receives the value of the second place, and so on.
If there are two arguments, this equivalent to
.codn swap .
The prior value of the first place, which is the the value
rotated into the last place, is returned.
More precisely, the
.meta place
arguments are evaluated left to right,
and the storage locations are thereby determined. The storage
locations are sampled, and then the sampled values are
stored back into the locations, but rotated by one place
as described above. The saved original value of the leftmost
.meta place
is returned.
It is not specified whether the sampling of the original values
is a separate pass which takes place after the arguments
are evaluated, or whether this sampling it is interleaved into argument
evaluation. This affects
the behavior in situations in which the evaluation of any of the
.meta place
forms has the side effect of modifying the value stored in
a later
.meta place
form.
If any of the places are ranges which index into the same sequence,
and the behavior is not otherwise unspecified due to the issue
noted in the preceding paragraph, the effect upon the multiply-stored
sequence can be inferred from the above-described storage order.
Note that even if stores take place which change the length of
the sequence and move some elements, not-yet-processed stores whose ranges
to refer to these elements are not adjusted.
With regard to the foregoing paragraph, a recommended practice is
that if subranges of the same sequence object are shifted, they be
given to the macro in ascending order of starting index. Furthermore, the
semantics is simpler if the ranges do not overlap.
.coNP Macro @ del
.synb
.mets (del << place )
.syne
.desc
The
.code del
macro requests the deletion of
.codn place .
If
.code place
doesn't support deletion, an exception is thrown.
First
.code place
is evaluated, thereby determining its location.
Then the place is accessed to retrieve its value.
The place is then subject to deletion. Finally, the
previously retrieved value is returned.
Precisely what deletion means depends on the kind of place.
The built-in places in \*(TL have deletion semantics which are
intended to be unsurprising to the programmer familiar with the
data structure which holds the place.
Generally, if a place denotes the element of a sequence, then deletion of the
place implies deletion of the element, and deletion of the element implies that
the gap produced by the element is closed. The deleted element is effectively
replaced by its successor, that successor by its successor and so on. If a
place denotes a value stored in a dynamic data set such as a hash table,
then deletion of that place implies deletion of the entry which holds
that value. If the entry is identified by a key, that key is also removed.
.coNP Macro @ lset
.synb
.mets (lset <> { place }+ << sequence-expr )
.syne
.desc
The
.code lset
operator's parameter list consists of one or more places followed
by an expression
.metn sequence-expr .
The macro evaluates
.codn sequence-expr ,
which is expected to produce a sequence.
Successive elements of the resulting list are then assigned to each
successive
.codn place .
If there are fewer elements in the sequence than places, the
unmatched places receive the value
.codn nil .
Excess elements in the sequence are ignored.
An error exception occurs if the sequence is an improper list with fewer
elements than places.
A
.code lset
form produces the value of
.meta sequence-expr
as its result value.
.coNP Macro @ upd
.synb
.mets (upd < place << opip-arg *)
.syne
.desc
The
.code upd
macro evaluates
.meta place
and passes the value as an argument to the operational pipeline
function formed,
as if by the
.code opip
macro, from the
.meta opip-arg
arguments. The result of this function is then stored back into
.metn place .
The following equivalence holds, except that place
.code p
is evaluated only once:
.verb
(upd p x y z ...) <--> (set p (call (opip x y z ...) p))
.brev
.SS* User-Defined Places and Place Operators
\*(TL provides a number of place-modifying operators such as
.codn set ,
.codn push ,
and
.codn inc .
It also provides a variety of kinds of syntactic places
which may be used with these operators.
Both of these categories are open-ended: \*(TL programs may extend
the set of place-modifying operators, as well as the vocabulary of
forms which are recognized as syntactic places.
Regarding place operators, it might seem obvious that new place operators can
be developed, since they are macros, and macros can expand to uses
of existing place operators. As an example, it may seem that
.code inc
operator could be written as a macro which uses
.codn set :
.verb
(defmacro new-inc (place : (delta 1))
^(set ,place (+ ,place ,delta)))
.brev
However, the above
.code new-inc
macro has a problem: the
.code place
argument form is inserted into two places in the expansion, which
leads to two evaluations. This is visibly incorrect if the place
form contains any side effects. It is also potentially inefficient.
\*(TL provides a framework for writing place update macros which
evaluate their argument forms once, even if they have to access
and update the same places.
The framework also supports the development of new kinds of place forms
as capsules of code which introduce the right kind of material into
the lexical environment of the body of an update macro, to enable
this special evaluation.
.NP* Place-Expander Functions
The central design concept in \*(TL syntactic places are
.IR "place-expander functions" .
Each compound place is defined by up to three place-expander functions,
which are associated with the place via the leftmost operator
symbol of the place form. One place-expander, the
.IR "update expander" ,
is mandatory. Optionally, a place may also provide a
.I "clobber expander"
as well as a
.IR "delete expander" .
An update expander provides the expertise for evaluating a place form once
in its proper run-time context to determine its actual run-time storage
location, and to access and modify the storage location.
A clobber expander provides an optimized mechanism for uses that perform
a one-time store to a place without requiring its prior value.
If a place definition does not supply a clobber expander, then the syntactic
places framework uses the update expander to achieve the functionality.
A delete expander provides the expertise for determining the actual run-time
storage location corresponding to a place, and obliterating it,
returning its prior value. If a place does not supply a delete expander, then
the place does not support deletion. Operators which require deletion, such as
.code del
will raise an error when applied to that place.
The expanders operate independently, and it is expected that place-modifying
operators choose one of the three, and use only that expander. For example,
accessing a place with an update expander and then overwriting its value
with a clobber expander may result in incorrect code which contains multiple
evaluations of the place form.
The programmer who implements a new place does not write expanders directly,
but rather defines them via the
.codn defplace ,
.code define-accessor
or
.code defset
macro.
The programmer who implements a new place update macro likewise does not
call the expanders directly. Usually, they are invoked via the macros
.codn with-update-expander ,
.code with-clobber-expander
and
.codn with-delete-expander .
These are sufficient for most kind of macros.
In certain complicated cases, expanders may be invoked using the wrapper
functions
.codn call-update-expander ,
.code call-clobber-expander
and
.codn call-delete-expander .
These convenience macros and functions perform certain common chores, like
macro-expanding the place in the correct environment, and choosing the
appropriate function.
The expanders are described in the following sections.
.NP* The Update Expander
.synb
.mets (lambda >> ( getter-sym < setter-sym < place-form
.mets \ \ \ \ \ \ \ \ << body-form ) ...)
.syne
.desc
The update expander is a code-writer. It takes a
.meta body-form
argument, representing code, and returns a larger form which surrounds
this code with additional code.
This larger form returned by the update expander can be regarded as having two
abstract actions, when it is substituted and evaluated in the context where
.meta place-form
occurs. The first abstract action is to evaluate
.meta place-form
exactly one time, in order to determine the actual run-time location to which
that form refers.
The second abstract action is to evaluate the caller's
.metn body-form -s,
in a lexical environment in which bindings exist for some lexical
functions or (more usually) lexical macros. These lexical macros
are explicitly referenced by the
.metn body-form ;
the update expander just provides their definition, under the names
it is given via the
.meta getter-sym
and
.meta setter-sym
arguments.
The update expander writes local functions or macros under these names: a
getter function and a setter function. Usually, update expanders write
macros rather than functions, possibly in combination with some lexical
anonymous variables which hold temporary objects. Therefore the getter
and setter are henceforth referred to as macros.
The code being generated is with regard to some concrete instance of
.metn place-form .
This argument is the actual form which occurs in a program. For
instance, the update expander for the
.code car
place might be called with an arbitrary variant of the
.meta place-form
which might look like
.codn "(car (inc (third some-list)))" .
In the abstract semantics, upfront code wrapped around the
.meta body-form
by the update expander provides the logic to evaluate this place to
a location, which is retained in some hidden local context.
The getter local macro named by
.meta getter-sym
must provide the logic for retrieving the value of this place.
The getter macro takes no arguments.
The
.meta body-form
makes free use of the getter function; they may call it multiple times,
which must not trigger multiple evaluations of the original place
form.
The setter local macro named by
.meta setter-sym
must generate the logic for storing a new value into the once-evaluated
version of
.metn place-form .
The setter function takes exactly one argument, whose
value specifies the value to be stored into the place.
It is the caller's responsibility to ensure that the
argument form which produces the value to be stored via the setter is evaluated
only once, and in the correct order. The setter does not concern itself with
this form. Multiple calls to the setter can be expected to result in multiple
evaluations of its argument. Thus, if necessary, the caller must supply the code
to evaluate the new value form to a temporary variable, and then pass the
temporary variable to the setter. This code can be embedded in
the
.meta body-form
or can be added to the code returned by a call to the update expander.
The setter local macro or function must return the new value which is stored.
That is to say, when
.meta body-form
invokes this local macro or function, it may rely on it yielding the
new value which was stored, as part of achieving its own semantics.
The update expander does not macro-expand
.codn place-form .
It is assumed that the expander is invoked in such a way that the
place has been expanded in the correct environment. In other words, the
form matches the type of place which the expander handles.
If the expander had to macro-expand the place form, it would sometimes have
to come to the conclusion that the place form must be handled by a different
expander. No such consideration is the case: when an expander is called on
a form, that is final; it is certain that it is the correct expander, which
matches the symbol in the
.code car
position of the form, which is not a macro in the context where it occurs.
An update expander is free to assume that any place which is stored
(the setter local macro is invoked on it) is accessed at least once by
an invocation of the getter. A place update macro which relies on an update
expander, but uses only the store macro, might not work properly.
An example of an update expander which relies on this assumption is the
expander for the
.mono
.meti (force << promise )
.onom
place type. If
.meta promise
has not yet been forced, and only the setter is used, then
.meta promise
might remain unforced as its internal value location is updated.
A subsequent access to the place will incorrectly trigger a force,
which will overwrite the value. The expected behavior is that storing
a value in an unforced
.code force
place changes the place to forced state, preempting the evaluation of
the delayed form. Afterward, the promise exhibits the value which was
thus assigned.
The update expander is not responsible for all issues of evaluation order. A
place update macro may consist of numerous places, as well as numerous
value-producing forms which are not places. Each of the places can provide its
registered update expander which provides code for evaluating just that place,
and a means of accessing and storing the values. The place update macro must
call the place expanders in the correct order, and generate any additional code
in the correct order, so that the macro achieves its required documented
evaluation order.
.TP* "Example Update Expander Call:"
.verb
;; First, capture the update expander
;; function for (car ...) places
;; in a variable, for clarity.
(defvar car-update-expander [*place-update-expander* 'car])
;; Next, call it for the place (car [a 0]).
;; The body form specifies logic for
;; incrementing the place by one and
;; returning the new value.
(call car-update-expander 'getit 'setit '(car [a 0])
'(setit (+ (getit) 1)))
;; --> Resulting code:
(rlet ((#:g0032 [a 0]))
(macrolet ((getit nil
(append (list 'car) (list '#:g0032)))
(setit (val)
(append (list 'sys:rplaca)
(list '#:g0032) (list val))))
(setit (+ (getit) 1))))
;; Same expander call as above, with a call to expand added
;; to show the fully expanded version of the returned code,
;; in which the ;; setit and getit calls have disappeared,
;; replaced by their macro-expansions.
(expand
(call car-update-expander 'getit 'setit '(car [a 0])
'(setit (+ (getit) 1))))
;; --> Resulting code:
(let ((#:g0032 [a 0]))
(sys:rplaca #:g0032 (+ (car #:g0032) 1)))
.brev
The main noteworthy points about the generated code are:
.RS
.IP -
the
.code "(car [a 0])"
place is evaluated by evaluating the embedded form
.code "[a 0]"
and storing storing the resulting object into a hidden local variable.
That's as close a reference as we can make to the
.code car
field.
.IP -
the getter macro expands to code which simply calls the
.code car
function on the cell.
.IP -
the setter uses a system function called
.codn sys:rplaca ,
which differs from
.code rplaca
in that it returns the stored value, rather than the cell.
.RE
.NP* The Clobber Expander
.synb
.mets (lambda >> ( simple-setter-sym < place-form
.mets \ \ \ \ \ \ \ \ << body-form ) ...)
.syne
.desc
The clobber expander is a code-writer similar to the update expander.
It takes a
.meta body-form
argument, and returns a larger form which surrounds this form
with additional program code.
The returned block of code has one main abstract action.
It must arrange for the evaluation of
.meta body-form
in a lexical environment in which a lexical macro or lexical function
exists which has the name requested by the
.meta simple-setter-sym
argument.
The simple setter local macro written by the clobber expander is similar to the
local setter written by the update expander. It has exactly the
same interface, performs the same action of storing a value into
the place, and returns the new value.
The difference is that its logic may be considerably simplified by the
assumption that the place is being subject to exactly one store,
and no access.
A place update macro which uses a clobber expander, and calls it more than
once, break the assumption; doing so may result in multiple evaluations
of the
.metn place-form .
.NP* The Delete Expander
.synb
.mets (lambda >> ( deleter-sym < place-form
.mets \ \ \ \ \ \ \ \ << body-form ) ...)
.syne
.desc
The delete expander is a code-writer similar to clobber expander.
It takes a
.meta body-form
arguments, and returns a larger form which surrounds this form
with additional program code.
The returned block of code has one main abstract action.
It must arrange for the evaluation of
.meta body-form
in a lexical environment in which a lexical macro or lexical function
exists which has the name requested by the
.meta deleter-sym
argument.
The deleter macro written by the clobber expander takes no arguments.
It may be called at most once. It returns the previous value of the
place, and arranges for its obliteration, whatever that means for
that particular kind of place.
.coNP Macro @ with-update-expander
.synb
.mets (with-update-expander >> ( getter << setter ) < place < env
.mets \ << body-form )
.syne
.desc
The
.code with-update-expander
macro evaluates the
.meta body-form
argument, whose result is expected to be a Lisp form.
The macro adds additional code around this code, and the result is returned.
This additional code is called the
.IR "place-access code" .
The
.meta getter
and
.meta setter
arguments must be symbols. Over the evaluation of the
.metn body-form ,
these symbols are bound to the names of local functions which
are provided in the place-access code.
The
.meta place
argument is a form which evaluates to a syntactic place. The generated
place-access code is based on this place.
The
.meta env
argument is a form which evaluates to a macro-expansion-time environment.
The
.code with-update-expander
macro uses this environment to perform macro-expansion on the value of the
.meta place
form, to obtain the correct update expander function for the fully
macro-expanded place.
The place-access code is generated by calling the update expander
for the expanded version of
.codn place .
.TP* "Example:"
The following is an implementation of the
.code swap
macro, which exchanges the contents of two places.
Two places are involved, and, correspondingly, the
.code with-update-expander
macro is used twice, to add two instances of place-update code
to the macro's body.
.verb
(defmacro swap (place-0 place-1 :env env)
(with-gensyms (tmp)
(with-update-expander (getter-0 setter-0) place-0 env
(with-update-expander (getter-1 setter-1) place-1 env
^(let ((,tmp (,getter-0)))
(,setter-0 (,getter-1))
(,setter-1 ,tmp))))))
.brev
The basic logic for swapping two places is contained in the code template:
.verb
^(let ((,tmp (,getter-0)))
(,setter-0 (,getter-1))
(,setter-1 ,tmp))
.brev
The temporary variable named by the
.code gensym
symbol
.code tmp
is initialized by calling the getter function for
.metn place-0 .
Then the setter function of
.meta place-0
is called in order to store the value of
.meta place-1
into
.metn place-0 .
Finally, the setter for
.meta place-1
is invoked to store the previously saved temporary value into
that place.
The name for the temporary variable is provided by the
.code with-gensyms
macro, but establishing the variable is the caller's responsibility;
this is seen as an explicit
.code let
binding in the code template.
The names of the getter and setter functions are similarly provided
by the
.code with-update-expander
macros. However, binding those functions is the responsibility of that
macro. To achieve this, it adds the place-access code to the code generated by
the
.code "^(let ...)"
backquote template. In the following example macro-expansion, the additional
code added around the template is seen. It takes the form of two
.code macrolet
binding blocks, each added by an invocation of
.codn with-update-expander :
.verb
(macroexpand '(swap a b))
-->
(macrolet ((#:g0036 () 'a) ;; getter macro for a
(#:g0037 (val-expr) ;; setter macro for a
(append (list 'sys:setq) (list 'a)
(list val-expr))))
(macrolet ((#:g0038 () 'b) ;; getter macro for b
(#:g0039 (val-expr) ;; setter macro for b
(append (list 'sys:setq) (list 'b)
(list val-expr))))
(let ((#:g0035 (#:g0036))) ;; temp <- a
(#:g0037 (#:g0038)) ;; a <- b
(#:g0039 #:g0035)))) ;; b <- temp
.brev
In this expansion, for example
.code #:g0036
is the generated symbol which forms the value of the
.code getter-0
variable in the
.code swap
macro. The getter is a macro which simply expands to a
.codn a :
straightforward access to the variable a.
The
.code #:g0035
symbol is the value of the
.code tmp
variable. Thus the swap macro's
.mono
^(let ((,tmp (,getter-0))) ...)
.onom
has turned into
.mono
^(let ((#:g0035 (#:g0036))) ...)
.onom
A full expansion, with the
.code macrolet
local macros expanded out:
.verb
(expand '(swap a b))
-->
(let ((#:g0035 a))
(sys:setq a b)
(sys:setq b #:g0035))
.brev
In other words, the original syntax
.mono
(,getter-0)
.onom
became
.mono
(#:g0036)
.onom
and finally just
.codn a .
Similarly,
.mono
(,setter-0 (,getter-1))
.onom
became the
.code macrolet
invocations
.mono
(#:g0037 (#:g0038))
.onom
which finally turned into:
.codn "(sys:setq a b)" .
.coNP Macro @ with-clobber-expander
.synb
.mets (with-clobber-expander <> ( simple-setter ) < place < env
.mets \ << body-form )
.syne
.desc
The
.code with-clobber-expander
macro evaluates
.metn body-form ,
whose result is expected to be a Lisp form. The macro adds additional code
around this form, and the result is returned. This additional code is called
the
.IR "place-access code" .
The
.meta simple-setter
argument must be a symbol. Over the evaluation of the
.metn body-form ,
this symbol is bound to the name of a functions which
are provided in the place-access code.
The
.meta place
argument is a form which evaluates to a syntactic place. The generated
place-access code is based on this place.
The
.meta env
argument is a form which evaluates to a macro-expansion-time environment.
The
.code with-clobber-expander
macro uses this environment to perform macro-expansion on the value of the
.meta place
form, to obtain the correct update expander function for the fully
macro-expanded place.
The place-access code is generated by calling the update expander
for the expanded version of
.codn place .
.TP* "Example:"
The following implements a simple assignment statement, similar to
.code set
except that it only handles exactly two arguments:
.verb
(defmacro assign (place new-value :env env)
(with-clobber-expander (setter) place env
^(,setter ,new-value)))
.brev
Note that the correct evaluation order of
.code place
and
.code new-value
is taken care of, because
.code with-clobber-expander
generates the code which performs all the necessary evaluations of
.codn place .
This evaluation occurs before the code which is generated by
.mono
^(,setter ,new-value)
.onom
part is evaluated, and that code is what evaluates
.codn new-value .
Suppose that a macro were desired which allows assignment to be notated in a right to left
style, as in:
.verb
(assign 42 a) ;; store 42 in variable a
.brev
Now, the new value must be evaluated prior to the place, if left to right
evaluation order is to be maintained. The standard
.code push
macro has this property: the push value is on the left, and the place
is on the right.
Now, the code has to explicitly take care of the order, like this:
.verb
;; WRONG! We can't just swap the parameters;
;; place is still evaluated first, then new-value:
(defmacro assign (new-value place :env env)
(with-clobber-expander (setter) place env
^(,setter ,new-value)))
;; Correct: arrange for evaluation of new-value first,
;; then place:
(defmacro assign (new-value place :env env)
(with-gensym (tmp)
^(let ((,tmp ,new-value))
,(with-clobber-expander (setter) place env
^(,setter ,tmp)))))
.brev
.coNP Macro @ with-delete-expander
.synb
.mets (with-delete-expander <> ( deleter ) < place < env
.mets \ << body-form )
.syne
.desc
The
.code with-delete-expander
macro evaluates
.metn body-form ,
whose result is expected to be a Lisp form.
The macro adds additional code
around this code, and the resulting code is returned. This additional code is
called the
.IR "place-access code" .
The
.meta deleter
argument must be a symbol. Over the evaluation of the
.metn body-form ,
this symbol is bound to the name of a functions which
are provided in the place-access code.
The
.meta place
argument is a form which evaluates to a syntactic place. The generated
place-access code is based on this place.
The
.meta env
argument is a form which evaluates to a macro-expansion-time environment.
The
.code with-delete-expander
macro uses this environment to perform macro-expansion on the value of the
.meta place
form, to obtain the correct update expander function for the fully
macro-expanded place.
The place-access code is generated by calling the update expander
for the expanded version of
.codn place .
.TP* "Example:"
The following implements the
.code del
macro:
.verb
(defmacro del (place :env env)
(with-delete-expander (deleter) place env
^(,deleter)))
.brev
.coNP Function @ call-update-expander
.synb
.mets (call-update-expander < getter < setter < place < env
.mets \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ << body-form )
.syne
.desc
The
.code call-update-expander
function provides an alternative interface for making use of an update
expander, complementary to
.codn with-update-expander .
Arguments
.meta getter
and
.meta setter
are symbols, provided by the caller. These are passed to the update
expander function, and are used for naming local functions in the
generated code which the update expander adds to
.metn body-form .
The
.meta place
argument is a place which has not been subject to macro-expansion.
The
.code call-update-expander
function takes on the responsibility for macro-expanding the place.
The
.meta env
parameter is the macro-expansion environment object required to
correctly expand
.code place
in its original environment.
The
.meta body-form
argument represents the source code of a place update operation.
This code makes references to the local functions whose names
are given by
.meta getter
and
.metn setter .
Those arguments allow the update expander to write these functions
with the matching names expected by
.metn body-form .
The return value is an object representing source code which incorporates
the
.metn body-form ,
augmenting it with additional code which evaluates
.code place
to determine its location, and provides place accessor local functions
expected by the
.metn body-form .
.TP* "Example:"
The following shows how to implement a
.code with-update-expander
macro using
.codn call-update-expander :
.verb
(defmacro with-update-expander ((getter setter)
unex-place env body)
^(with-gensyms (,getter ,setter)
(call-update-expander ,getter ,setter
,unex-place ,env ,body)))
.brev
Essentially, all that
.code with-update-expander
does is to choose the names for the local functions, and bind them
to the local variable names it is given as arguments. Then it
calls
.codn call-update-expander .
.TP* "Example:"
Implement the swap macro using
.codn call-update-expander :
.verb
(defmacro swap (place-0 place-1 :env env)
(with-gensyms (tmp getter-0 setter-0 getter-1 setter-1)
(call-update-expander getter-0 setter-0 place-0 env
(call-update-expander getter-1 setter-1 place-1 env
^(let ((,tmp (,getter-0)))
(,setter-0 (,getter-1))
(,setter-1 ,tmp))))))
.brev
.coNP Function @ call-clobber-expander
.synb
.mets (call-clobber-expander < simple-setter < place < env
.mets \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ << body-form )
.syne
.desc
The
.code call-clobber-expander
function provides an alternative interface for making use of a clobber
expander, complementary to
.codn with-clobber-expander .
Argument
.meta simple-setter
is a symbol, provided by the caller. It is passed to the clobber
expander function, and is used for naming a local function in the
generated code which the update expander adds to
.metn body-form .
The
.meta place
argument is a place which has not been subject to macro-expansion.
The
.code call-clobber-expander
function takes on the responsibility for macro-expanding the place.
The
.meta env
parameter is the macro-expansion environment object required to
correctly expand
.code place
in its original environment.
The
.meta body-form
argument represents the source code of a place update operation.
This code makes references to the local function whose name
is given by
.metn simple-setter .
That argument allows the update expander to write this function
with the matching name expected by
.metn body-form .
The return value is an object representing source code which incorporates
the
.metn body-form ,
augmenting it with additional code which evaluates
.code place
to determine its location, and provides the clobber local function
to the
.metn body-form .
.coNP Function @ call-delete-expander
.synb
.mets (call-delete-expander < deleter < place < env << body-form )
.syne
.desc
The
.code call-delete-expander
function provides an alternative interface for making use of a delete
expander, complementary to
.codn with-delete-expander .
Argument
.meta deleter
is a symbol, provided by the caller. It is passed to the delete
expander function, and is used for naming a local function in the
generated code which the update expander adds to
.metn body-form .
The
.meta place
argument is a place which has not been subject to macro-expansion.
The
.code call-delete-expander
function takes on the responsibility for macro-expanding the place.
The
.meta env
parameter is the macro-expansion environment object required to
correctly expand
.code place
in its original environment.
The
.meta body-form
argument represents the source code of a place delete operation.
This code makes references to the local function whose name
is given by
.metn deleter .
That argument allows the update expander to write this function
with the matching name expected by
.metn body-form .
The return value is an object representing source code which incorporates
the
.metn body-form ,
augmenting it with additional code which evaluates
.code place
to determine its location, and provides the delete local function
to the
.metn body-form .
.coNP Macro @ define-modify-macro
.synb
.mets (define-modify-macro < name < parameter-list << function-name )
.syne
.desc
The
.code define-modify-macro
macro provides a simplified way to write certain kinds of place update
macros. Specifically, it provides a way to write place update macros
which modify a place by retrieving the previous value, pass it through
a function (perhaps together with some additional arguments), and then store
the resulting value back into the place and return it.
The
.meta name
parameter specifies the name for the place update macro to be written.
The
.meta function-name
parameter must specify a symbol: the name of the update function.
The update macro and update function both take at least one parameter:
the place to be updated, and its value, respectively.
The
.meta parameter-list
specifies the additional parameters for update function, which will also
become additional parameters of the macro. Because it is a
function parameter list, it cannot use the special destructuring features of
macro parameter lists, or the
.code :env
or
.code :whole
special parameters. It can use optional parameters, and may be empty.
The
.code define-modify-macro
macro writes a macro called
.metn name .
The leftmost parameter of this macro is a place, followed by the additional arguments
specified by
.metn parameter-list .
The macro will arrange for the evaluation of the place argument to determine
the place location. It will then retrieve and save the prior value of the
place, and evaluate the remaining arguments. The prior value of the
place, and the values of the additional arguments, are all passed to
.meta function
and the resulting value is then stored back into the location previously
determined for
.metn place .
.TP* "Example:"
Some standard place update macros are implementable using
.codn define-modify-macro ,
such as
.codn inc .
The
.code inc
macro reads the old value of the place, then passes it through the
.code +
(plus) function, along with an extra argument: the delta value, which
defaults to one. The
.code inc
macro could be written using
.code define-modify-macro
as follows:
.verb
(define-modify-macro inc (: (delta 1)) +)
.brev
Note that the argument list
.code "(: (delta 1))"
doesn't specify the place, because the place is the implicit leftmost
argument of the macro which isn't given a name. With the above definition
in place, when
.code "(inc (car a))"
is invoked, then
.code "(car a)"
is first reduced to a location, and that location's value is retrieved and
saved. Then the
.code delta
parameter s evaluated to its value, which has defaulted to 1, since
the argument was omitted.
Then these two values are passed to the
.code +
function, and so 1 is added to the value previously retrieved from
.codn "(car a)" .
The resulting sum is then stored back
.code "(car a)"
without evaluating
.code "(car a)"
again.
.coNP Macro @ defplace
.synb
.mets (defplace < place-destructuring-args < body-sym
.mets \ \ \ \ \ \ \ \ \ >> ( getter-sym < setter-sym << update-body )
.mets \ \ \ \ \ \ \ \ \ >> [( ssetter-sym << clobber-body )
.mets \ \ \ \ \ \ \ \ \ \ >> [( deleter-sym << delete-body )]])
.syne
.desc
The
.code defplace
macro is used to introduce a new kind of syntactic place.
It writes the update expander, and optionally clobber and delete
expander functions, from a simpler, more compact specification,
and automatically registers the resulting functions. The compact specification
of a
.code defplace
call contains only code fragments for the expander functions.
The name and syntax of the place is determined by the
.meta place-destructuring-args
argument, which is macro-style parameter list whose structure
mimics that of the the place. In particular, its leftmost symbol
gives the name under which the place is registered.
The
.code defplace
macro provides automatic destructuring of the syntactic place,
so that the expander code fragments can refer to the components
of a place by name.
The
.meta body-sym
parameter must be be a symbol. This symbol will capture the
.meta body-forms
parameter which is passed to the update expander, clobber
expander or delete expander. The code fragments then have
access to the the body forms via this name.
The
.metn getter-sym ,
.metn setter-sym ,
and
.meta update-body
parenthesized triplet specify the update expander fragment.
The
.code defplace
macro will bind
.meta getter-sym
and
.meta setter-sym
to symbols. The
.meta update-body
must then specify a template of code which evaluates the syntactic place to
determine its storage location, and provides a pair of local functions, using
these two symbols as their name. The template must also insert the
.meta body-sym
forms into the scope of these local functions, and the place determining code.
The
.meta setter-sym
and
.meta clobber-body
arguments similarly specify an optional clobber expander fragment,
as a single optional argument. If specified, the
.meta clobber-body
must generate a local function named using
.meta setter-sym
wrapped around
.meta body-sym
forms.
The
.meta deleter-sym
and
.meta deleter-body
likewise specify a delete expander fragment. If this is omitted,
then the place shall not support deletion.
.TP* "Example:"
Implementation of the place denoting the
.code car
field of
.code cons
cells:
.verb
(defplace (car cell) body
;; the update expander fragment
(getter setter
(with-gensyms (cell-sym) ;; temporary symbol for cell
^(let ((,cell-sym ,cell)) ;; evaluate place to cell
;; getter and setter access cell via temp var
(macrolet ((,getter ()
^(car ,',cell-sym))
(,setter (val)
^(sys:rplaca ,',cell-sym ,val)))
;; insert body form from place update macro
,body))))
;; clobber expander fragment: simpler: no need
;; to evaluate cell to temporary variable.
(ssetter
^(macrolet ((,ssetter (val)
^(sys:rplaca ,',cell ,val)))
,body))
;; deleter: delegate to pop semantics:
;; (del (car a)) == (pop a).
(deleter
^(macrolet ((,deleter () ^(pop ,',cell)))
,body)))
.brev
.coNP Macro @ defset
.synb
.mets (defset < name < params < new-val-sym << set-form )
.mets (defset < get-fun-sym << set-fun-sym )
.syne
.desc
The
.code defset
macro provides a mechanism for introducing a new kind of syntactic place.
It is simpler to use than
.code defplace
and more concise, but not as general.
The
.code defset
macro is designed for situations in which a function or macro which evaluates
all of its arguments is required to serve as a syntactic place.
It provides two flavors of syntax: the long form, indicated by giving
.code defset
five arguments, and a short form, which uses two arguments.
In the long form of
.codn defset ,
the syntactic place is described by
.meta name
and
.metn params .
The
.code defset
form expresses the request that call to the function or operator named
.meta name
is to be treated as a syntactic place, which has arguments described by
the parameter list
.metn params .
The
.meta set-form
argument specifies an expression which generates the code for storing a new
value to the place.
The
.code defset
macro makes the necessary arrangements such that when an operator form
named by
.meta name
is treated as a syntactic place, then at macro-expansion time, code is
generated to evaluate all of its argument expressions into machine-generated
variables. The names of those variables are automatically bound to the
corresponding symbols given in the
.meta params
argument list of the
.code defset
syntax. Code is also generated to evaluate the expression which gives the
new value to be stored, and that is bound to a generated variable whose
name is bound to the
.code new-val-sym
symbol. Then arrangements are made to invoke the operator named by
.meta name
and to evaluate the
.code set-form
in an environment in which these symbol bindings are visible.
The operator named
.meta name
is invoked using an altered argument list which uses temporary symbols in place
of the original expressions. The task of
.code set-form
is to insert the values of the symbols from
.meta params
and
.meta new-val-sym
into a suitable code templates that will perform the store actions.
The code generated by
.code set-form
must also take on the responsibility of yielding the new value as its result.
If
.meta params
list contains optional parameters, the default value expressions of those
parameters shall be evaluated in the scope of the
.code defset
definition.
The
.meta params
list may specify a rest parameter. In the expansion, this parameter will
capture a list of temporary symbols, corresponding to the list of variadic
argument expressions. For instance if the
.code defset
parameter list for a place
.code g
is
.codn "(a b . c)" ,
featuring the rest parameter
.codn c ,
and its
.meta set-form
is
.code "^(s ,a ,b ,*c)"
and the place is invoked as
.code "(g (i) (j) (k) (l))"
then parameter
.code c
will be bound to a list of gensyms such as
.code "(#:g0123 #:g0124)"
so that the evaluation of
.meta set-form
will yield syntax resembling
.codn "(s #:g0121 #:g0122 #:g0123 #:g0124)" .
Here, gensyms
.code #:g0123
and
.code #:g0124
are understood to be bound to the values of the expressions
.code (k)
and
.codn (l) ,
the two trailing parameters corresponding to the rest parameter
.codn c .
Syntactic places defined by
.code defset
that have a rest parameter may be invoked with improper syntax such as
.codn "(set (g x y . z) v)" .
In this situation, that rest parameter will be bound to the name of
a temporary variable which holds the value of
.code z
rather than to a list of temporary variable names holding the values
of trailing expressions.
The
.code set-form
must be prepared for this situation. In particular, the rest parameter's value
is an atom, then it cannot be spliced in the backquote syntax, except at the
last position of a list.
Although syntactic places defined by
.code defset
perform macro-parameter-like destructuring of the place form, binding
unevaluated argument expressions to the parameter symbols,
nested macro parameter lists are not supported:
.meta params
specifies a function parameter list.
The parameter list may use parameter macros, keeping in mind that
the parameter expansion is applied at the time the
.code defset
form is processed, specifying an expanded parameter list which
receives unevaluated expressions. The
.meta set-form
may refer to all symbols produced by parameter list expansion, other
than generated symbols. For instance, if a parameter list macro
.code :addx
exists which adds the parameter symbol
.code x
to the parameter list, and this
.code :addx
is invoked in the
.meta params
list of a
.codn defset ,
then
.code x
will be visible to the
.metn set-form .
The short, two-argument form of
.code defset
simply specifies the names of two functions or operators:
.code get-fun-sym
names the operator which accesses the place, and
.code set-fun-sym
names the operator which stores a new value into the place.
It is expected that all arguments of these operators are evaluated
expressions, and that the store operator takes one argument more
than the access operator. The operators are otherwise assumed to be
variadic: each instance of a place based on
.code get-fun-sym
individually determines how many arguments are passed to that operator
and to the one named by
.codn set-fun-sym .
The definition
.code "(defset g s)"
means that
.code "(inc (g x y))"
will generate code which ensures that
.code x
and
.code y
are evaluated exactly once, and then those two values are passed as
arguments to
.code g
which returns the current value of the place. That value is then incremented
by one, and stored into the place by calling the
.code s
function/operator with three arguments: the two values that were passed to
.code g
and the new value. The exact number of arguments is determined by each
individual use of
.code g
as a place; the
.code defset
form doesn't specify the arity of
.code g
and
.codn s ,
only that
.code s
must accept one more argument relative to
.codn g .
The following equivalence holds between the short and long forms:
.verb
(defset g s) <--> (defset g (. r) n ^(g ,*r) ^(s ,*r ,n))
.brev
Note:
the short form of
.code defset
is similar to the
.code define-accessor
macro.
.TP* "Example:"
Implementation of
.code car
as a syntactic place using a long form
.codn defset :
.verb
(defset car (cell) new
(let ((n (gensym)))
^(rlet ((,n ,new))
(progn (rplaca ,cell ,n) ,n))))
.brev
Given such a definition, the expression
.code "(inc (car (abc)))"
expands to code closely resembling:
.verb
(let ((#:g0048 (abc)))
(let ((#:g0050 (succ (car #:g0048))))
(rplaca #:g0048 #:g0050)
#:g0050))
.brev
The
.code defset
macro has arranged for the argument expression
.code (abc)
of
.code car
to be evaluated to a temporary variable
.codn #:g0048 ,
a
.codn gensym .
This, then, holds the
.code cons
cell being operated on.
At macro-expansion time, the variable
.code cell
from the parameter list specified by the
.code defset
is bound to this symbol. The access expression
.code "(car #:0048)"
to retrieve the prior value is automatically generated
by combining the name of the place
.code car
with the gensym to which its argument
.code (abc)
has been evaluated.
The
.code new
variable was bound to the expression giving the new value, namely
.codn "(succ (car #:g0048))" .
The
.meta set-form
is careful to evaluate this only one time, storing its value into
the temporary variable
.codn #:g0050 ,
referenced by the variable
.codn n .
The
.metn set-form 's
.code "(rplaca ,cell ,n)"
fragment thus turned into
.code "(rplaca #:g0048 #:g0050)"
where
.code #:g0048
references the cons cell being operated on, and
.code #:g0050
the calculated new value to be stored into its
.code car
field.
The
.meta set-form
is careful to arrange for the new value
.code #:g0050
to be returned. Those place-mutating operators which yield the new value, such
as
.code set
and
.code inc
rely on this behavior.
.coNP Macro @ define-place-macro
.synb
.mets (define-place-macro < name < macro-style-params
.mets \ \ << body-form *)
.syne
.desc
In some situations, an equivalence exists between two forms, only one
of which is recognized as a place. The
.code define-place-macro
macro can be used to establish a form as a place in terms of a translation to
an equivalent form which is already a place.
The
.code define-place-macro
has the same syntax as
.codn defmacro .
It specifies a macro transformation for a compound form which has the
.meta name
symbol in its leftmost position.
Place macro expansion doesn't use an environment; place macros are in a single
global namespace, special to place macros. There are no lexically scoped place
macros. Such an effect can be achieved by having a place macro expand to
an a form which is the target of a global or local macro, as necessary.
To support place macros, forms which are used as syntactic places are subject
to a modified macro-expansion algorithm:
.RS
.IP 1.
If a place macro exists for a form that is being used as a place, then the
that place macro is invoked to expand the
form, and the expansion is taken in place of the original form. This process
repeats until the form can no longer be expanded as a place macro, or
the place macro declines to expand the form by returning the unexpanded
input.
.IP 2.
A form that has been fully expanded as a place macro is then subject
to a single-round of macro-expansion, as if by
.codn macroexpand-1 ,
which takes place in the original form's lexical environment.
If the form doesn't expand, or the result of expansion is
.code nil
or a
non-symbolic atom, then the process terminates. Otherwise, the
process is repeated from step 1.
.RE
.IP
The
.code define-place-macro
macro does not cause
.meta name
to become
.codn mboundp .
There can exist both an ordinary macro and a place macro of the same name.
In this situation, when the macro call appears as a place form, it is
expanded as a place macro, according to the above steps. When the macro call
appears as an evaluated form, not being used as a place, the form is
expanded using the ordinary macro.
.TP* "Example:"
Implementation of
.code first
in terms of
.codn car :
.verb
(define-place-macro first (obj)
^(car ,obj))
.brev
.coNP Macro @ rlet
.synb
.mets (rlet >> ({( sym << init-form )}*) << body-form *)
.syne
.desc
The macro
.code rlet
is similar to the
.code let
operator. It establishes bindings for one or more
.metn sym -s,
which are initialized using the values of
.metn init-form -s.
Note that the simplified syntax for a variable which initializes to
.code nil
by default is not supported by
.codn rlet ;
that is to say, the syntax
.meta sym
cannot be used in place of the
.meti >> ( sym << init-form )
syntax when
.meta sym
is to be initialized to
.codn nil .
The
.code rlet
macro differs from
.code let
in that
.code rlet
assumes that those
.metn sym -s
whose
.metn init-form -s,
after macro expansion,
are constant expressions
(according to the
.code constantp
function) may be safely implemented as a symbol macro rather than a lexical
variable.
Therefore
.code rlet
is suitable in situations in which simpler code is desired from the output
of certain kinds of machine-generated code, which binds local symbols:
code with fewer temporary variables.
On the other hand,
.code rlet
is not suitable in some situations when true variables are required, which
are assignable, and provide temporary storage.
.TP* "Example:"
.verb
;; WRONG! Real storage location needed.
(rlet ((flag nil))
(flip flag)) ;; error: flag expands to nil
;; Demonstration of constant-propagation
(let ((a 42))
(rlet ((x 1)
(y a))
(+ x y))) --> 43
(expand
'(let ((a 42))
(rlet ((x 1)
(y a))
(+ x y)))) --> (let ((a 42))
(let ((y a))
(+ 1 y)))
.brev
The last example shows that the
.code x
variable has disappeared in the expansion. The
.code rlet
macro turned it into into a
.code symacrolet
denoting the constant 1, which then propagated to the use site,
turning the expression
.code "(+ x y)"
into
.codn "(+ 1 y)" .
.coNP Macro @ slet
.synb
.mets (slet >> ({( sym << init-form )}*) << body-form *)
.syne
.desc
The macro
.code slet
a weaker form of the
.code rlet
macro. Just like
.codn rlet ,
.code slet
reduces bindings initialized by constant expressions
to symbol macros. In addition, unlike
.codn rlet ,
.code slet
also reduces to symbol macros those bindings which
are initialized by symbol expressions (values of variables).
.coNP Macro @ alet
.synb
.mets (alet >> ({( sym << init-form )}*) << body-form *)
.syne
.desc
The macro
.code alet
("atomic" or "all") is a stronger form of the
.code slet
macro. All bindings initialized by constant expressions are
turned to symbol macros. Then, if all of the remaining bindings are
all initialized by symbol expressions, they are also turned to
symbol macros. Otherwise, none of the remaining bindings
are turned to symbol macros.
The
.code alet
macro can be used even in situations when it is possible that the initializing
forms the variables may have side effects through which they affect each
others' evaluations. In this situation
.code alet
still propagates constants via symbol macros, and can eliminate the
remaining temporaries if they can all be made symbol macros for
existing variables: i.e. there doesn't exist any initialization form
with interfering side effects.
.coNP Macro @ define-accessor
.synb
.mets (define-accessor < get-function << set-function )
.syne
.desc
The
.code define-accessor
macro is used for turning a function into an accessor,
such that forms which call the function can be treated
as places.
Arguments to
.code define-accessor
are two symbols, which must name functions. When the
.code define-accessor
call is evaluated, the
.meta get-function
symbol is registered as a syntactic place. Stores to the
place are handled via calls to
.metn set-function .
If
.meta get-function
names a function which takes N
arguments,
.meta set-function
must name a function which takes N+1 arguments.
Moreover, in order for the accessor semantics to be correct
.meta set-function
must treat its rightmost argument as the value being stored,
and must also return that value.
When a function call form targeting
.meta get-function
is treated as a place which is subject
to an update operation (for instance an increment via the
.code inc
macro),
the accessor definition created by
.code define-accessor
ensures that the arguments of
.meta get-function
are evaluated only once, even though the update involves
a call to
.meta get-function
and
.meta set-function
with the same arguments. The argument forms are evaluated to
temporary variables, and these temporaries are used as the
arguments in the calls.
No other assurances are provided by
.codn define-accessor .
In particular, if
.meta get-function
and
.meta set-function
internally each perform some redundant calculation over their arguments,
this cannot be optimized. Moreover, if that calculation has a visible effect,
that effect is observed multiple times in an update operation.
If further optimization or suppression of multiple effects is required,
the more general
.code defplace
macro must be used to define the accessor. It may also be possible to
treat the situation in a satisfactory way using a
.code define-place-macro
definition, which effectively then supplies inline code whenever a certain form
is used as a place, and that code itself is treated as a place.
Note:
.code define-accessor
is similar to the short form of
.codn defset .
.coNP Special variables @, *place-update-expander* @ *place-clobber-expander* and @ *place-delete-expander*
.desc
These variables hold hash tables, by means of which update expanders,
clobber expanders and delete expanders are registered, as associations
between symbols and functions.
If
.code "[*place-update-expander* 'sym]"
yields a function, then symbol
.code sym
is the basis for a syntactic place. If the expression yields
.codn nil ,
then forms beginning with
.code sym
are not syntactic places. (The situation of a clobber accessor or delete
accessor being defined without an update expander is improper).
.coNP Special variable @ *place-macro*
.desc
The
.code *place-macro*
special variable holds the hash table of associations between
symbols and place macro expanders.
If the expression
.code "[*place-macro* 'sym]"
yields a function, then symbol
.code sym
has a binding as a place macro. If that
expression yields
.codn nil ,
then there is no such binding: compound forms beginning with
.code sym
do not undergo place macro expansion.
.SS* Quasiquote Operator Syntax
.coNP Macro @ qquote
.synb
.mets (qquote << form )
.syne
.desc
The
.code qquote
(quasi-quote) macro operator implements a notation for convenient
list construction. If
.meta form
is an atom, or a list structure which
does not contain any
.code unquote
or
.code splice
operators, then
.mono
.meti (qquote << form )
.onom
is equivalent to
.mono
.meti (qquote << form ).
.onom
If
.metn form ,
however, is a list structure which contains
.code unquote
or
.code splice
operators, then the substitutions implied by those operators are performed
on
.metn form ,
and the
.code qquote
operator returns the resulting structure.
Note: how the qquote operator actually works is that it is compiled into
code. It becomes a Lisp expression which, when evaluated, computes the
resulting structure.
A
.code qquote
can contain another
.codn qquote .
If an
.code unquote
or
.code splice
operator occurs
within a nested
.codn qquote ,
it belongs to that
.codn qquote ,
and not to the outer one.
However, an unquote operator which occurs inside another one belongs one level
higher. For instance in
.verb
(qquote (qquote (unquote (unquote x))))
.brev
the leftmost
.code qquote
belongs with the rightmost unquote, and the inner
.code qquote
and
.code unquote
belong together. When the outer
.code qquote
is evaluated,
it will insert the value of
.codn x ,
resulting in the object
.codn "(qquote (unquote [value-of-x]))" .
If this resulting qquote value is evaluated again as Lisp syntax, then it will
yield
.codn [value-of-value-of-x] ,
the value of
.code [value-of-x]
when treated as a Lisp expression and evaluated.
.TP* Examples:
.verb
(qquote a) -> a
(qquote (a b c)) -> (a b c)
(qquote (1 2 3 (unquote (+ 2 2)) (+ 2 3))) -> (1 2 3 4 (+ 2 3))
(qquote (unquote (+ 2 2))) -> 4
.brev
In the second-to-last example, the
.code "1 2 3"
and the
.code "(+ 2 3)"
are quoted verbatim.
Whereas the
.code "(unquote (+ 2 2))"
operator caused the evaluation of
.code "(+ 2 2)"
and the substitution of the resulting value.
The last example shows that
.meta form
can itself (the entire argument of
.codn qquote )
can be an unquote operator.
However, note:
.code "(quote (splice form))"
is not valid.
Note: a way to understand the nesting behavior is a via a possible model of
quasi-quote expansion which recursively compiles any nested quasi quotes first,
and then treats the result of their expansion. For instance, in the processing
of
.verb
(qquote (qquote (unquote (unquote x))))
.brev
the
.code qquote
operator first encounters the
embedded
.code "(qquote ...)"
and compiles it to code. During that recursive
compilation, the syntax
.code "(unquote (unquote x))"
is encountered. The inner quote
processes the outer unquote which belongs to it, and the inner
.code "(unquote x)"
becomes material that is embedded verbatim in the compilation, which will then
be found when the recursion pops back to the outer quasiquote, which will
then traverse the result of the inner compilation and find the
.codn "(unquote x)" .
.TP* "Dialect note:"
In Lisp dialects which have a published quasiquoting operator syntax, there is
the expectation that the quasiquote read syntax corresponds to it. That is to
say, that for instance the read syntax
.code "^(a b ,c)"
is expected translated to
.codn "(qquote b (unquote c))" .
In \*(TL, this is not true! Although
.code "^(b b ,c)"
is translated to a
quasiquoting macro, it is an internal one, not based on the public
.codn qquote ,
.code unquote
and
.code splice
symbols being documented here.
This idea exists for hygiene. The quasiquote read syntax is not confused
by the presence of the symbols
.codn qquote ,
.code unquote
or
.code splice
in the template, since it doesn't treat them specially.
This also allows programmers to use the quasiquote read syntax to construct
quasiquote macros. For instance
.verb
^(qquote (unquote ,x)) ;; does not mean ^^,,x !
.brev
To the quasiquote reader, the
.code qquote
and
.code unquote
symbols mean nothing special,
and so this syntax simply means that if the value of
.code x
is
.codn foo ,
the result of evaluating this expression will be
.codn "(qquote (unquote foo))" .
The form's expansion is actually this:
.verb
(sys:qquote (qquote (unquote (sys:unquote x))))
.brev
the
.code sys:qquote
macro recognizes
.code sys:unquote
embedded in the form, and
the other symbols not in the
.code sys:
package are just static template material.
The
.code sys:quote
macro and its associated
.code sys:unquote
and
.code sys:splice
operators work exactly like their ordinary counterparts. So in effect, \*(TX has
two nearly identical, independent quasi-quote implementations, one of which is
tied to the read syntax, and one of which isn't. This is useful for writing
quasiquotes which write quasiquotes.
.coNP Operator @ unquote
.synb
.mets (qquote (... (unquote << form ) ...))
.mets (qquote (unquote << form ))
.syne
.desc
The
.code unquote
operator is not an operator
.I per
.IR se .
The
.code unquote
symbol has no
binding in the global environment. It is a special syntax that is recognized
within a
.code qquote
form, to indicate forms within the quasiquote which are to be
evaluated and inserted into the resulting structure.
The syntax
.mono
.meti (qquote (unquote << form ))
.onom
is equivalent to
.metn form :
the
.code qquote
and
.code unquote
"cancel out".
.coNP Operator @ splice
.synb
.mets (qquote (... (splice << form ) ...))
.syne
.desc
The
.code splice
operator is not an operator
.I per
.IR se .
The
.code splice
symbol has no
binding in the global environment. It is a special syntax that is recognized
within a
.code qquote
form, to indicate forms within the quasiquote which are to be
evaluated and inserted into the resulting structure.
The syntax
.mono
.meti (qquote (splice << form ))
.onom
is not permitted and raises an exception if evaluated. The
.code splice
syntax must occur within a list, and not in the dotted position.
The
.code splice
form differs from unquote in that
.mono
.meti (splice << form )
.onom
requires that
.meta form
must evaluate to a list. That list is
integrated into the surrounding list.
.SS* Math Library
.coNP Functions @ + and @ -
.synb
.mets (+ << number *)
.mets (- < number << number *)
.mets (* << number *)
.syne
.desc
The
.codn + ,
.code -
and
.code *
functions perform addition, subtraction and multiplication,
respectively. Additionally, the
.code -
function performs additive inverse.
The
.code +
function requires zero or more arguments. When called with no
arguments, it produces 0 (the identity element for addition), otherwise it
produces the sum over all of the arguments.
Similarly, the
.code *
function requires zero or more arguments. When called
with no arguments, it produces 1 (the identity element for multiplication).
Otherwise it produces the product of all the arguments.
The semantics of
.code -
changes from subtraction to additive inverse
when there is only one argument. The argument is treated as a subtrahend,
against an implicit minuend of zero. When there are two or more
argument, the first one is the minuend, and the remaining are subtrahends.
When there are three or more operands, these operations are performed as if by
binary operations, in a left-associative way. That is to say,
.code "(+ a b c)"
means
.codn "(+ (+ a b) c)" .
The sum of
.code a
and
.code b
is computed first, and then this is added to
.codn c .
Similarly
.code "(- a b c)"
means
.codn "(- (- a b) c)" .
First,
.code b
is subtracted from
.codn a ,
and then
.code c
is subtracted from that result.
The arithmetic inverse is performed as if it were subtraction from integer 0.
That is,
.code "(- x)"
means the same thing as
.codn "(- 0 x)" .
The operands of
.codn + ,
.code -
and
.code *
can be characters, integers (fixnum and bignum), and
floats, in nearly any combination.
If two operands have different types, then one of them is converted to the
type of the one with the higher rank, according to this ranking:
character < integer < float. For instance if one operand is integer, and the
other float, the integer is converted to a float.
.TP* Restrictions:
Characters are not considered numbers, and participate in these operations in
limited ways. Subtraction can be used to computed the displacement between the
Unicode values of characters, and an integer displacement can be added to a
character, or subtracted from a character. For instance
.codn "(- #\e9 #\e0) is 9" .
The Unicode value of a character
.code C
can be found using
.codn "(- C #\ex0)" :
the displacement from the NUL character.
The rules can be stated as a set of restrictions:
.RS
.IP 1
Two characters may not be added together.
.IP 2
A character may not be subtracted from an integer (which also rules out
the possibility of computing the additive inverse of a character).
.IP 3
A character operand may not be opposite to a floating point operand
in any operation.
.IP 4
A character may not be an operand of multiplication.
.RE
.PP
.coNP Function @ /
.synb
.mets (/ << divisor )
.mets (/ < dividend << divisor *)
.syne
.desc
The
.code /
function performs floating-point division. Each operands is first
converted to floating-point type, if necessary. In the one-argument
form, the
.meta dividend
argument is omitted. An implicit dividend is present, whose value is
.codn 1.0 ,
such that the one-argument form
.code "(/ x)"
is equivalent to the two-argument form
.codn "(/ 1.0 x)" .
If there are two or more arguments, explicitly or by the above equivalence,
then a cumulative division is performed. The
.meta divisor
value is taken into consideration, and divided by the first
.codn divisor .
If another
.code divisor
follows, then that value is divided by that subsequent divisor.
This process repeats until all divisors are exhausted, and the
value of the last division is returned.
A division by zero throws an exception of type
.codn numeric-error .
.coNP Functions @ sum and @ prod
.synb
.mets (sum < sequence <> [ keyfun ])
.mets (prod < sequence <> [ keyfun ])
.syne
.desc
The
.code sum
and
.code prod
functions operate on an effective sequence of numbers derived from
.metn sequence .
If the
.meta keyfun
argument is omitted, then the effective sequence is the
.meta sequence
argument itself. Otherwise, the effective sequence is understood to be
a projection mapping of the elements of
.meta sequence
through
.meta keyfun
as would be calculated by the
.mono
.meti (mapcar < keyfun << sequence )
.onom
expression.
The
.code sum
function returns the left-associative sum of the elements of
the effective sequence calculated as if using the
.code +
function. Similarly, the
.code prod
function calculates the left-associative product of the elements of
the sequence as if using the
.code *
function.
If
.meta sequence
is empty then
.code sum
returns
.code 0
and
.code prod
returns
.codn 1 .
If the effective sequence contains one number, then both functions
return that number.
.coNP Functions @ wrap and @ wrap*
.synb
.mets (wrap < start < end << number )
.mets (wrap* < start < end << number )
.syne
.desc
The
.code wrap
and
.code wrap*
functions reduce
.meta number
into the range specified by
.meta start
and
.metn end .
Under
.code wrap
the range is inclusive of the
.meta end
value, whereas under
.code wrap*
it is exclusive.
The following equivalence holds
.verb
(wrap a b c) <--> (wrap* a (succ b) c)
.brev
The expression
.code "(wrap* x0 x1 x)"
performs the following calculation:
.mono
.mets (+ (mod (- x x0) (- x1 x0)) x0)
.onom
In other words, first
.meta start
is subtracted from
.metn number .
Then the result is reduced modulo the displacement
between
.code start
and
.codn end .
Finally,
.meta start
is added back to that result, which is returned.
.TP* Example:
.verb
;; perform ROT13 on the string "nop"
[mapcar (opip (+ 13) (wrap #\ea #\ez)) "nop"] -> "abc"
.brev
.coNP Functions @ gcd and @ lcm
.synb
.mets (gcd << number *)
.mets (lcm << number *)
.syne
.desc
The
.code gcd
function computes the greatest common divisor: the largest positive
integer which divides each
.metn number .
The
.code lcm
function computes the lowest common multiple: the smallest positive
integer which is a multiple of
each
.metn number .
Each
.meta number
must be an integer.
Negative integers are replaced by their absolute values, so
.code "(lcm -3 -4)"
is
.code 12
and
.code "(gcd -12 -9)"
yields
.codn 3 .
The value of
.code (gcd)
is
.code 0
and that of
.code (lcm)
is 1 .
The value of
.code "(gcd x)"
and
.code "(lcm x)"
is
.codn "(abs x)" .
Any arguments of
.code gcd
which are zero are effectively ignored so that
.code "(gcd 0)"
and
.code "(gcd 0 0 0)"
are both the same as
.code (gcd)
and
.code "(gcd 1 0 2 0 3)"
is the same as
.codn "(gcd 1 2 3)" .
If
.code lcm
has any argument which is zero, it yields zero.
.coNP Function @ divides
.synb
.mets (divides < d << n )
.syne
.desc
The
.code divides
function tests whether integer
.meta d
divides integer
.metn n .
If this is true,
.code t
is returned, otherwise
.codn nil .
The integers 1 and -1 divide every other integer and themselves.
By established convention, every integer, except zero, divides zero.
For other values,
.meta d
divides
.meta n
if division of
.meta n
by
.meta d
leaves no remainder.
.coNP Function @ abs
.synb
.mets (abs << number )
.syne
.desc
The
.code abs
function computes the absolute value of
.metn number .
If
.meta number
is positive, it is returned. If
.meta number
is negative, its additive inverse is
returned: a positive number of the same type with exactly the same magnitude.
.coNP Function @ signum
.synb
.mets (signum << number )
.syne
.desc
The
.code signum
function calculates a representation of the sign of
.meta number
as a numeric value.
If
.meta number
is an integer, then
.code signum
returns -1 if the integer is negative, 1 if the integer is positive,
or else 0.
If
.meta number
is a floating-point value then
.code signum
returns -1.0 if the value is negative, 1.0 if the value is positive or
else 0.0.
.coNP Functions @, trunc @, floor @ ceil and @ round
.synb
.mets (trunc < dividend <> [ divisor ])
.mets (floor < dividend <> [ divisor ])
.mets (ceil < dividend <> [ divisor ])
.mets (round < dividend <> [ divisor ])
.syne
.desc
The
.codn trunc ,
.codn floor ,
.code ceiling
and
.code round
functions perform division of the
.meta dividend
by the
.metn divisor ,
returning an integer quotient.
If the
.meta divisor
is omitted, it defaults to 1.
A zero
.meta divisor
results in an exception of type
.codn numeric-error .
If both inputs are integers,
the result is of type integer.
If all inputs are numbers and at least one of them is
floating-point, the others are converted to floating-point
and the result is floating-point.
The
.code dividend
input may be a range. In this situation, the operation is
recursively distributed over the
.code from
and
.code to
fields of the range, individually matched against the
.metn divisor ,
and the result is a range composed of these two individual
quotients.
When the quotient is a scalar value,
.code trunc
returns the closest integer, in the zero direction,
from the value of the quotient.
The
.code floor
function returns the highest integer which does not exceed
the value of the quotient. That is to say, the division is
truncated to an integer value toward negative infinity.
The
.code ceil
function the lowest integer which is not below the value
of the quotient.
does not exceed the value of
.metn dividend .
That is to say, the division is truncated to an integer
value toward positive infinity. The
.code round
function returns the nearest integer to the quotient.
Exact halfway cases are rounded to the integer away from
zero so that
.code "(round -1 2)"
yields
.code -1
and
.code "(round 1 2)"
yields 1,
Note that for large floating point values, due to the limited
precision, the integer value corresponding to the mathematical
floor or ceiling may not be available.
.TP* "Dialect note:"
In ANSI Common Lisp, the
.code round
function chooses the nearest even integer, rather than
rounding halfway cases away from zero. \*(TX's choice
harmonizes with the semantics of the
.code round
function in the C language.
.coNP Function @ mod
.synb
.mets (mod < dividend << divisor )
.syne
.desc
The
.code mod
function performs a modulus operation. Firstly, the absolute value
of
.meta divisor
is taken to be a modulus. Then a residue of
.meta dividend
with respect to
.meta modulus
is calculated. The residue's sign follows
that of the sign of
.metn divisor .
That is, it is the smallest magnitude
(closest to zero) residue of
.meta dividend
with respect to the absolute
value of
.metn divisor ,
having the same sign as
.metn divisor .
If the operands are integer, the result is an integer. If either operand
is of type float, then the result is a float. The modulus operation is
then generalized into the floating point domain. For instance the expression
.code "(mod 0.75 0.5)"
yields a residue of 0.25 because 0.5 "goes into" 0.75 only
once, with a "remainder" of 0.25.
If
.meta divisor
is zero,
.code mod
throws an exception of type
.codn numeric-error .
.coNP Functions @, trunc-rem @, floor-rem @ ceil-rem and @ round-rem
.synb
.mets (trunc-rem < dividend <> [ divisor ])
.mets (floor-rem < dividend <> [ divisor ])
.mets (ceil-rem < dividend <> [ divisor ])
.mets (round-rem < dividend <> [ divisor ])
.syne
.desc
These functions, respectively, perform the same division operation
as
.codn trunc ,
.codn floor ,
.codn ceil ,
and
.codn round ,
referred to here as the respective target functions.
If the
.meta divisor
is missing, it defaults to 1.
Each function returns a list of two values: a
.meta quotient
and a
.metn remainder .
The
.meta quotient
is exactly the same value as what would be returned by the
respective target function for the same inputs.
The
.meta remainder
value obeys the following identity:
.mono
.mets (eql < remainder (- < dividend >> (* divisor << quotient )))
.onom
If
.meta divisor
is zero, these functions throw an exception of type
.codn numeric-error .
.coNP Functions @, sin @, cos @, tan @, asin @, acos @ atan and @ atan2
.synb
.mets (sin << radians )
.mets (cos << radians )
.mets (tan << radians )
.mets (atan << slope )
.mets (atan2 < y << x )
.mets (asin << num )
.mets (acos << num )
.syne
.desc
These trigonometric functions convert their argument to floating point and
return a float result. The
.codn sin ,
.code cos
and
.code tan
functions compute the sine and
cosine and tangent of the
.meta radians
argument which represents an angle
expressed in radians. The
.codn atan ,
.code acos
and
.code asin
are their respective inverse
functions. The
.meta num
argument to
.code asin
and
.code acos
must be in the
range -1.0 to 1.0. The
.code atan2
function converts the rectilinear coordinates
.meta x
and
.meta y
to an angle in polar coordinates in the range [0, 2\(*p).
.coNP Functions @, sinh @, cosh @, tanh @, asinh @ acosh and @ atanh
.synb
.mets (sinh << argument )
.mets (cosh << argument )
.mets (tanh << argument )
.mets (atanh << argument )
.mets (asinh << argument )
.mets (acosh << argument )
.syne
.desc
These functions are the hyperbolic analogs of the trigonometric functions
.codn sin ,
.code cos
and so forth. They convert their argument to floating point and
return a float result.
.coNP Functions @, exp @, log @ log10 and @ log2
.synb
.mets (exp << arg )
.mets (log << arg )
.mets (log10 << arg )
.mets (log2 << arg )
.syne
.desc
The
.code exp
function calculates the value of the transcendental number e raised to
the exponent
.metn arg .
The
.code log
function calculates the base e logarithm of
.metn arg ,
which must be a positive value.
The
.code log10
function calculates the base 10 logarithm of
.metn arg ,
which must be a positive value.
The
.code log2
function calculates the base 2 logarithm of
.metn arg ,
which must be a positive value.
.coNP Functions @, expt @ sqrt and @ isqrt
.synb
.mets (expt < base << exponent *)
.mets (sqrt << arg )
.mets (isqrt << arg )
.syne
.desc
The
.code expt
function raises
.meta base
to zero or more exponents given
by the
.meta exponent
arguments.
.code "(expt x)"
is equivalent to
.codn "(expt x 1)" ,
and yields
.code x
for all
.codn x .
For three or more arguments, the operation is right-associative.
That is to say,
.code "(expt x y z)"
is equivalent to
.codn "(expt x (expt y z))" ,
similarly to the way nested exponents work in standard algebraic
notation.
Exponentiation is done pairwise using a binary operation.
If both operands to this binary operation are non-negative integers, then the
result is an integer.
If the exponent is negative, and the base is zero, the situation is
treated as a division by zero: an exception of type
.code numeric-error
is thrown. Otherwise, a negative exponent is converted to floating-point,
if it already isn't, and a floating-point exponentiation is performed.
If either operand is a float, then the other
operand is converted to a float, and a floating point exponentiation
is performed. Exponentiation that would produce a complex number is
not supported.
The
.code sqrt
function produces a floating-point square root of
.metn arg ,
which is converted from integer to floating-point if necessary. Negative
operands are not supported.
The
.code isqrt
function computes the integer square root of
.metn arg ,
which must be an integer.
The integer square root is a value which is the
greatest integer that is no greater than the real square root of
.metn arg .
The input value must be an integer.
.coNP Function @ exptmod
.synb
.mets (exptmod < base < exponent << modulus )
.syne
.desc
The
.code exptmod
function performs modular exponentiation and accepts only integer
arguments. Furthermore,
.meta exponent
must be a non-negative and
.meta modulus
must be positive.
The return value is
.meta base
raised to
.metn exponent ,
and reduced to the
least positive residue modulo
.metn modulus .
.coNP Function @ square
.synb
.mets (square << argument )
.syne
.desc
The
.code square
function returns the product of
.meta argument
with itself. The following
equivalence holds, except that
.code x
is evaluated only once in the the
.code square
expression:
.verb
(square x) <--> (* x x)
.brev
.coNP Function @ cum-norm-dist
.synb
.mets (cum-norm-dist << argument )
.syne
.desc
The
.code cum-norm-dist
function calculates an approximation to the cumulative normal
distribution function: the integral, of the normal distribution function, from
negative infinity to the
.metn argument .
.coNP Function @ inv-cum-norm
.synb
.mets (inv-cum-norm << argument )
.syne
.desc
The
.code inv-cum-norm
function calculates an approximate to the inverse of the cumulative
normal distribution function. The argument, a value expected to lie
in the range [0, 1], represents the integral of the normal distribution
function from negative infinity to some domain point
.IR p .
The function calculates the approximate value of
.IR p .
The minimum value returned is -10, and the maximum value returned is 10,
regardless of how closely the argument approaches, respectively,
the 0 or 1 integral endpoints. For values less than zero, or exceeding 1, the
values returned, respectively, are -10 and 10.
.coNP Functions @ n-choose-k and @ n-perm-k
.synb
.mets (n-choose-k < n << k )
.mets (n-perm-k < n << k )
.syne
.desc
The
.code n-choose-k
function computes the binomial coefficient nCk which
expresses the number of combinations of
.meta k
items that can be chosen from
a set of
.metn n ,
where combinations are subsets.
The
.code n-perm-k
function computes nPk: the number of permutations of size
.meta k
that can be drawn from a set of
.metn n ,
where permutations are sequences,
whose order is significant.
The calculations only make sense when
.meta n
and
.meta k
are nonnegative integers, and
.meta k
does not exceed
.metn n .
The behavior is not specified if these conditions
are not met.
.coNP Functions @, fixnump @, bignump @, integerp @ floatp and @ numberp
.synb
.mets (fixnump << object )
.mets (bignump << object )
.mets (integerp << object )
.mets (floatp << object )
.mets (numberp << object )
.syne
.desc
These functions test the type of
.metn object ,
returning
.code t
if it is an object
of the implied type,
.code nil
otherwise. The
.codn fixnump ,
.code bignump
and
.code floatp
functions return
.code t
if the object is of the basic type
.codn fixnum ,
.code bignum
or
.codn float .
The function
.code integerp
returns true of
.meta object
is either a
.code fixnum
or
a
.codn bignum .
The function
.code numberp
returns
.code t
if
.meta object
is either
a
.codn fixnum ,
.code bignum
or
.codn float .
.coNP Functions @ zerop and @ nzerop
.synb
.mets (zerop << number )
.mets (nzerop << number )
.syne
.desc
The
.code zerop
function tests
.meta number
for equivalence to zero. The argument must be
a number or character. It returns
.code t
for the integer value
.code 0
and for the floating-point
value
.codn 0.0 .
For other numbers, it returns
.codn nil .
It returns
.code t
for the null character
.code #\enul
and
.code nil
for all other characters.
If
.meta number
is a range, then
.code zerop
returns
.code t
if both of the range endpoints individually satisfy
.codn zerop .
The
.code nzerop
function is the logical inverse of
.codn zerop :
it returns
.code t
for those arguments for which
.code zerop
returns
.code nil
and
.IR "vice versa" .
.coNP Functions @ plusp and @ minusp
.synb
.mets (plusp << number )
.mets (minusp << number )
.syne
.desc
These functions test whether a number is positive or negative,
returning
.code t
or
.codn nil ,
as the case may be.
The argument may also be a character. All characters other than
the null character
.code #\enul
are positive. No character is negative.
.coNP Functions @ evenp and @ oddp
.synb
.mets (evenp << integer )
.mets (oddp << integer )
.syne
.desc
The
.code evenp
and
.code oddp
functions require integer arguments.
.code evenp
returns
.code t
if
.meta integer
is even (divisible by two), otherwise it returns
.codn nil .
.code oddp
returns
.code t
if
.meta integer
is not divisible by two (odd), otherwise
it returns
.codn nil .
.coNP Functions @, succ @, ssucc @, sssucc @, pred @ ppred and @ pppred
.synb
.mets (succ << number )
.mets (ssucc << number )
.mets (sssucc << number )
.mets (pred << number )
.mets (ppred << number )
.mets (pppred << number )
.syne
.desc
The
.code succ
function adds 1 to its argument and returns the resulting value.
If the argument is an integer, then the return value is the successor
of that integer, and if it is a character, then the return value
is the successor of that character according to Unicode.
The
.code pred
function subtracts 1 from its argument, and under similar considerations
as above, the result represents the predecessor.
The
.code ssucc
and
.code sssucc
functions add 2 and 3, respectively. Similarly,
.code ppred
and
.code pppred
subtract 2 and 3 from their argument.
.coNP Functions @, > @, < @, >= @ <= and @ =
.synb
.mets (> < object << object *)
.mets (< < object << object *)
.mets (>= < object << object *)
.mets (<= < object << object *)
.mets (= < object << object *)
.syne
.desc
These relational functions compare characters, numbers ranges and sequences of
characters or numbers for numeric equality or inequality. The arguments must be
one or more numbers, characters, ranges, or sequences of these objects,
or, recursively, of sequences.
If just one argument is given, then these functions all return
.codn t .
If two arguments are given then, they are compared as follows.
First, if the numbers do not have the same type, then the one
which has the lower ranking type is converted to the type of
the other, according to this ranking: character < integer < float.
For instance if a character and integer are compared, the character
is converted to integer. Then a straightforward numeric comparison
is applied.
Three or more arguments may be given, in which case the comparison proceeds
pairwise from left to right. For instance in
.codn "(< a b c)" ,
the comparison
.code "(< a b)"
is performed in isolation. If the comparison is false, then
.code nil
is returned, otherwise
the comparison
.code "(< b c)"
is performed in isolation, and if that is false,
.code nil
is returned, otherwise
.code t
is returned. Note that it is possible for
.code b
to
undergo two different conversions. For instance in the
.mono
.meti (< < float < character << integer )
.onom
comparison,
.meta character
will first convert to a floating-point representation
of its Unicode value so that it can be compared to
.metn float ,
and if that comparison succeeds, then in the second comparison,
.meta character
will be converted to integer so that it can be compared to
.metn integer .
Ranges may only be compared with ranges. Corresponding
fields of ranges are compared for equality by
.code =
such that
.code "#R(0 1)"
and
.code "#R(0 1.0)"
are reported as equal.
The inequality comparisons are lexicographic, such that the
.code from
field of the range is considered more major than the
.code to
field. For example the inequalities
.code "(< #R(1 2) #R(2 0))"
and
.code "(< #R(1 2) #R(1 3))"
hold.
Sequences may only be compared with sequences, but
mixtures of any kinds of sequences may be compared:
lists with vectors, vectors with strings, and so on.
The
.code =
function considers a pair of sequences of unequal length
to be unequal, reporting
.codn nil .
Sequences are equal if they have the same length
and their corresponding elements are recursively
equal under the
.code =
function.
The inequality functions treat sequences lexicographically.
A pair of sequences is compared by comparing corresponding
elements. The
.code <
function tests each successive pair of corresponding
elements recursively using the
.code <
function. If this recursive comparison reports
.codn t ,
then the function immediately returns
.code t
without considering any more pairs of elements.
Otherwise the same pair of elements is compared again
using the
.code =
function. If that reports false, then the function reports false without
considering any more pairs of elements. Otherwise processing continues with the
next pair, if any. If all corresponding elements are equal, but the right
sequence is longer,
.code <
returns
.codn t ,
otherwise the function reports
.codn nil .
The
.code <=
function tests each successive pair of corresponding
elements recursively using the
.code <=
function. If this returns
.code nil
then the function returns
.code nil
without considering any more pairs. Otherwise processing continues
with the next pair, if any.
If all corresponding elements satisfy the test, but the
left sequence is longer, then
.code nil
is returned. Otherwise
.code t
is returned.
The inequality relations exhibit symmetry, which means that
the functions
.code >
and
.code >=
functions are equivalent, respectively, to
.code <
and
.code <=
with the order of the argument values reversed. For instance, the expression
.code "(< a b c)"
is equivalent to
.code "(> c b a)"
except for the difference in evaluation order of the
.codn a ,
.code b
and
.code c
operands themselves. Any semantic description of
.code <
or
.code <=
applies, respectively, also to
.code >
or
.code >=
with the appropriate adjustment for argument order reversal.
.coNP Function @ /=
.synb
.mets (/= << number *)
.syne
.desc
The arguments to
.code /=
may be numbers or characters. The
.code /=
function returns
.code t
if no two of its arguments are numerically equal. That is to say, if there
exist some
.code a
and
.code b
which are distinct arguments such that
.code "(= a b)"
is true, then
the function returns
.codn nil .
Otherwise it returns
.codn t .
.coNP Functions @ max and @ min
.synb
.mets (max < first-arg << arg *)
.mets (min < first-arg << args *)
.syne
.desc
The
.code max
and
.code min
functions determine and return the highest or lowest
value from among their arguments.
If only
.meta first-arg
is given, that value is returned.
These functions are type generic, since they compare arguments
using the same semantics as the
.code less
function.
If two or more arguments are given, then
.code "(max a b)"
is equivalent to
.codn "(if (less a b) b a)" ,
and
.code "(min a b)"
is equivalent to
.codn "(if (less a b) a b)" .
If the operands do not
have the same type, then one of them is converted to the type of the other;
however, the original unconverted values are returned. For instance
.code "(max 4 3.0)"
yields the integer
.codn 4 ,
not
.codn 4.0 .
If three or more arguments are given,
.code max
and
.code min
reduce the arguments in a left-associative manner.
Thus
.code "(max a b c)"
means
.codn "(max (max a b) c)" .
.coNP Function @ clamp
.synb
.mets (clamp < low < high << val )
.syne
.desc
The
.code clamp
function clamps value
.meta val
into the range
.meta low
to
.metn high .
The
.code clamp
function returns
.meta low
if
.meta val
is less than
.metn low .
If
.meta val
is greater than or equal to
.metn low ,
but less than
.metn high ,
then it returns
.metn val .
Otherwise it returns
.metn high .
More precisely,
.code "(clamp a b c)"
is equivalent to
.codn "(max a (min b c))" .
.coNP Function @ bracket
.synb
.mets (bracket < value << level *)
.syne
.desc
The
.code bracket
function's arguments consist of one required
.meta value
followed by
.I n
.meta level
arguments.
The
.meta level
arguments are optional; in other words,
.I n
may be zero.
The
.code bracket
function calculates the
.I bracket
of the
.meta value
argument: a zero-based positional index of the value, in relation to the
.meta level
arguments.
Each of the
.meta level
arguments, of which there may be none, is associated with
an integer index, starting at zero, in left to right order. The
.meta level
arguments are examined in that order. When a
.meta level
argument is encountered which exceeds
.metn value ,
that
.meta level
argument's index is returned.
If
.meta value
exceeds all of the
.meta level
arguments, then
.I n
is returned.
Determining whether
.meta value
exceeds a
.meta level
is performed using the
.code less
function.
.TP* Examples:
.verb
(bracket 42) -> 0
(bracket 5 10) -> 0
(bracket 15 10) -> 1
(bracket 15 10 20) -> 1
(bracket 15 10 20 30) -> 1
(bracket 20 10 20 30) -> 2
(bracket 35 10 20 30) -> 3
(bracket "a" "aardvark" "zebra") -> 0
(bracket "ant" "aardvark" "zebra") -> 1
(bracket "zebu" "aardvark" "zebra") -> 2
.brev
.coNP Functions @, int-str @ flo-str and @ num-str
.synb
.mets (int-str < string <> [ radix ])
.mets (flo-str << string )
.mets (num-str << string )
.syne
.desc
These functions extract numeric values from character string
.metn string .
Leading whitespace in
.metn string ,
if any, is skipped. If no digits can be successfully extracted, then
.code nil
is returned. Trailing material which does not contribute to the number is
ignored.
The
.code int-str
function converts a string of digits in the specified
.meta radix
to an integer value. If
.meta radix
isn't specified, it defaults to 10.
Otherwise it must be an integer in the range 2 to 36, or else the character
.codn #\ec .
For radices above 10, letters of the alphabet
are used for digits:
.code A
represent a digit whose value is 10,
.code B
represents 11 and
so forth until
.codn Z .
Upper and lower case letters are recognized.
Any character which is not a digit of the specified radix is regarded
as the start of trailing junk at which the extraction of the digits stops.
When
.meta radix
is specified as the character object
.codn #\ec ,
this indicates that a C-language-style integer constant should be
recognized. If, after any optional sign, the remainder of
.meta string
begins with the character pair
.code 0x
then that pair is considered removed from the string, and it is treated
as base 16 (hexadecimal). If, after any optional sign, the remainder of
.meta string
begins with a leading zero not followed by
.codn x ,
then the radix is taken to be 8 (octal). In scanning these formats,
.code int-str
function is not otherwise constrained by C language representational
limitations. Specifically, the input values are taken to be the printed
representation of arbitrary-precision integers and treated accordingly.
The
.code flo-str
function converts a floating-point decimal notation to a nearby
floating point value. The material which contributes to the value
is the longest match for optional leading space, followed by a
mantissa which consists of an optional sign followed by a mixture of at least
one digit, and at most one decimal point, optionally followed by an exponent
part denoted by the letter
.code E
or
.codn e ,
an optional sign and one or more optional exponent digits.
If the value specified by
.meta string
is out of range of the floating-point representation, then
.code nil
is returned.
The
.code num-str
function converts a decimal notation to either an integer as if by
a radix 10 application of
.codn int-str ,
or to a floating point value as if by
.codn flo-str .
The floating point interpretation is chosen if the possibly empty
initial sequence of digits (following any whitespace and optional sign) is
followed by a period, or by
.code e
or
.codn E .
.coNP Functions @ int-flo and @ flo-int
.synb
.mets (int-flo << float )
.mets (flo-int << integer )
.syne
.desc
These functions perform numeric conversion between integer and floating point
type. The
.code int-flo
function returns an integer by truncating toward zero.
The
.code flo-int
function returns an exact floating point value corresponding to
.metn integer ,
if possible, otherwise an approximation using a nearby
floating point value.
.coNP Functions @ tofloat and @ toint
.synb
.mets (tofloat << value )
.mets (toint < value <> [ radix ])
.syne
.desc
These convenience functions convert
.meta value
to floating-point or integer, respectively.
If a floating-point value is passed into tofloat, or an integer value into
toint, then the value is simply returned.
If
.meta value
is a character, then it is treated as a string of length one
containing that character.
If
.meta value
is a string, then it is converted by
.code tofloat
as if by the function
.metn flo-str ,
, and by
.code toint
as if by the function
.codn int-str .
If
.meta value
is an integer, then it is converted by
.code tofloat
as if by the function
.codn flo-int .
If
.meta value
is a floating-point number, then it is converted by
.code toint
as if by the function
.codn int-flo .
.coNP Variables @ fixnum-min and @ fixnum-max
.desc
These variables hold, respectively, the most negative value of the
.code fixnum
integer type, and its most positive value. Integer values
from
.code fixnum-min
to
.code fixnum-max
are all of type
.codn fixnum .
Integers outside of this range are
.code bignum
integers.
.coNP Functions @ tofloatz and @ tointz
.synb
.mets (tofloatz << value )
.mets (tointz < value <> [ radix ])
.syne
.desc
These functions are closely related to, respectively,
.code tofloat
and
.codn toint .
They differ in that these functions return a floating-point
or integer zero, respectively, in some situations
in which those functions would return
.code nil
or throw an error.
Whereas those functions reject a
.meta value
argument of
.codn nil ,
for that same argument
.code tofloatz
function returns 0.0 and
.code tointz
returns 0.
Likewise, in cases when
.code value
contains a string or character which cannot be
converted to a number, and
.code tofloat
and
.code toint
would return
.codn nil ,
these functions return 0.0 and 0, respectively.
In other situations, these functions behave
exactly like
.code tofloat
and
.codn toint .
.coNP Variables @, flo-min @ flo-max and @ flo-epsilon
.desc
These variables hold, respectively: the smallest positive floating-point
value; the largest positive floating-point value; and the difference
between 1.0 and the smallest representable value greater than 1.0.
.code flo-min
and
.code flo-max
define the floating-point range, which consists
of three regions: values from
.code "(- flo-max)"
to
.codn "(- flo-min)" ;
the value 0.0, and values from
.code flo-min
to
.codn flo-max .
.coNP Variable @ flo-dig
.desc
This variable holds an integer representing the number of decimal digits
in a decimal floating-point number such that this number can be converted
to a \*(TX floating-point number, and back to decimal, without a change in any of
the digits. This holds regardless of the value of the number, provided that it
does not exceed the floating-point range.
.coNP Variable @ flo-max-dig
.desc
This variable holds an integer representing the maximum number of
decimal digits required to capture the value of a floating-point number
such that the resulting decimal form will convert back to the same
floating-point number. See also the
.code *print-flo-precision*
variable.
.coNP Variables @ %pi% and @ %e%
.desc
These variables hold an approximation of the mathematical constants \(*p and e.
To four digits of precision, \(*p is 3.142 and e is 2.718. The
.code %pi%
and
.code %e%
approximations are accurate to
.code flo-dig
decimal digits.
.coNP Function @ digits
.synb
.mets (digits < number <> [ radix ])
.syne
.desc
The
.code digits
function returns a list of the digits of
.meta number
represented in the base given by
.metn radix .
The
.meta number
argument must be a non-negative integer, and
.meta radix
must be an integer greater than one.
If
.meta radix
is omitted, it defaults to 10.
The return value is a list of the digits in descending order of significance:
most significant to least significant.
The digits are integers. For instance, if
.meta radix
is 42, then the digits are integer values in the range 0 to 41.
The returned list always contains at least one element, and
includes no leading zeros, except when
.meta number
is zero. In that case, a one-element list containing zero is returned.
.TP* Examples:
.verb
(digits 1234) -> (1 2 3 4)
(digits 1234567 1000) -> (1 234 567)
(digits 30 2) -> (1 1 1 1 0)
(digits 0) -> (0)
.brev
.coNP Function @ digpow
.synb
.mets (digpow < number <> [ radix ])
.syne
.desc
The
.code digpow
function decomposes the
.meta number
argument into a power series whose terms add up to
.metn number .
The
.meta number
argument must be a non-negative integer, and
.meta radix
must be an integer greater than one.
The returned power series consists of a list of nonnegative
integers. It is formed from the digits of
.meta number
in the given
.metn radix ,
which serve as coefficients which multiply successive
powers of the
.metn radix ,
starting at the zeroth power (one).
The terms are given in decreasing order of significance:
the term corresponding to the most significant digit of
.metn number ,
multiplying the highest power of
.metn radix ,
is listed first.
The returned list always contains at least one element, and
includes no leading zeros, except when
.meta number
is zero. In that case, a one-element list containing zero is returned.
.verb
(digpow 1234) -> (1000 200 30 4)
(digpow 1234567 1000) -> (1000000 234000 567)
(digpow 30 2) -> (16 8 4 2 0)
(digpow 0) -> (0)
.brev
.coNP Functions @ poly and @ rpoly
.synb
.mets (poly < arg << coeffs )
.mets (rpoly < arg << coeffs )
.syne
.desc
The
.code poly
and
.code rpoly
functions evaluate a polynomial, for the given numeric argument value
.meta arg
and the coefficients given by
.metn coeffs ,
a sequence of numbers.
If
.meta coeffs
is an empty sequence, it denotes the zero polynomial, whose value
is zero everywhere; the functions return zero in this case.
Otherwise, the
.code poly
function considers
.meta coeffs
to hold the coefficients in the conventional order, namely in order
of decreasing degree of polynomial term. The first element of
.meta coeffs
is the leading coefficient, and the constant term appears as the last element.
The
.code rpoly
function takes the coefficients in opposite order: the first element of
.meta coeffs
gives the constant term coefficient, and the last element gives the
leading coefficient.
Note: except in the case of
.code rpoly
operating on a list or list-like sequence of coefficients,
Horner's method of evaluation is
used: a single result accumulator is initialized with zero, and then for each
successive coefficient, in order of decreasing term degree, the accumulator is
multiplied by the argument, and the coefficient is added. When
.code rpoly
operates on a list or list-like sequence, it makes a single
pass through the coefficients in order, thus taking them in increasing
term degree. It maintains two accumulators: one for successive powers of
.meta arg
and one for the resulting value. For each coefficient, the power
accumulator is updated by a multiplication by
.meta arg
and then this value is multiplied by the coefficient, and
that value is then added to the result accumulator.
.TP* Examples:
.verb
;; 2
;; evaluate x + 2x + 3 for x = 10.
(poly 10 '(1 2 3)) -> 123
;; 2
;; evaluate 3x + 2x + 1 for x = 10.
(rpoly 10 '(1 2 3)) -> 321
.brev
.coNP Function @ bignum-len
.synb
.mets (bignum-len << arg )
.syne
.desc
The
.code bignum-len
function reports the machine-specific
.I "bignum order"
of the integer or character argument
.metn arg .
If
.meta arg
is a character or
.code fixnum
integer, the function returns zero.
Otherwise
.meta arg
is expected to be a
.code bignum
integer, and the function returns the number of "limbs" used for its
representation, a positive integer.
Note: the
.code bignum-len
function is intended to be of use in algorithms whose performance
benefits from ordering the operations on multiple integer operands
according to the magnitudes of those operands. The function provides an
estimate of magnitude which trades accuracy for efficiency.
.coNP Variables @, flo-near @, flo-down @ flo-up and @ flo-zero
.desc
These variables hold integer values suitable as arguments to the
.code flo-set-round-mode
function, which controls the rounding mode for the results of floating-point
operations. These variables are only defined on platforms which support
rounding control.
Their values have the following meanings:
.RS
.coIP flo-near
Round to nearest: the result of an operation is rounded to the nearest
representable value.
.coIP flo-down
Round down: the result of an operation is rounded to the nearest representable
value that lies in the direction of negative infinity.
.coIP flo-up
Round up: the result of an operation is rounded to the nearest representable
value that lies in the direction of positive infinity.
.coIP flo-zero
Round to zero: the result of an operation is rounded to the nearest
representable value that lies in the direction of zero.
.RE
.IP
.coNP Functions @ flo-get-round-mode and @ flo-set-round-mode
.synb
.mets (flo-get-round-mode)
.mets (flo-set-round-mode << mode )
.syne
.desc
Sometimes floating-point operations produce a result which
requires more bits of precision than the floating point representation
can provide. A representable floating-point value must be substituted
for the true result and yielded by the operation.
On platforms which support rounding control, these functions are provided for
selecting the decision procedure by which the floating-point representation
is taken.
The
.code flo-get-round-mode
returns the current rounding mode. The rounding mode is represented by
an integer value which is either equal to one of the four variables
.codn flo-near ,
.codn flo-down ,
.code flo-up
and
.codn flo-zero ,
or else some other value specific to the host environment. Initially,
the value is that of
.codn flo-near .
Otherwise, the value returned is that which was stored by the most
recent successful call to
.codn flo-set-round-mode .
The
.code flo-set-round-mode
function changes the rounding mode. The argument to its
.meta mode
parameter may be the value of one of the above four variables,
or else some other value supported by the host environment's
.code fesetround
C library function.
The
.code flo-set-round-mode
function returns
.code t
if it is successful, otherwise the return value is
.code nil
and the rounding mode is not changed.
If a value is is passed to
.code flo-set-round-mode
which is not the value of one of the above
four rounding mode variables, and the function succeeds anyway, then the
rounding behavior of floating-point operations depends on the host
environment's interpretation of that value.
.SS* Bit Operations
In \*(TL, similarly to Common Lisp, bit operations on integers are based
on a concept that might be called "infinite two's-complement".
Under infinite two's complement, a positive number is regarded as having
a binary representation prefixed by an infinite stream of zero digits (for
example
.code 1
is
.codn ...00001 ).
A negative number
in infinite two's complement is the bitwise negation of its positive counterpart,
plus one: it carries an infinite prefix of 1 digits. So for instance the number
.code -1
is represented by
.codn ...11111111 :
an infinite sequence of
1
bits. There
is no specific sign bit; any operation which produces such an infinite sequence
of 1 digits on the left gives rise to a negative number. For instance, consider the
operation of computing the bitwise complement of the number
.codn 1 .
Since the
number
.code 1
is represented as
.codn ...0000001 ,
its complement is
.codn ...11111110 .
Each one of the
.code 0
digits in the infinite sequence is replaced by
.codn 1 ,
And this leading sequence means that the number
is negative, in fact corresponding to the two's-complement representation of
the value
.codn -2 .
Hence, the infinite digit concept corresponds to an arithmetic
interpretation.
In fact \*(TL's bignum integers do not use a two's complement
representation internally. Numbers are represented as an array which holds a
pure binary number. A separate field indicates the sign: negative,
or non-negative. That negative numbers appear as two's-complement under the
bit operations is merely a carefully maintained illusion (which makes bit
operations on negative numbers more expensive).
The
.code logtrunc
function, as well as a feature of the
.code lognot
function, allow bit
manipulation code to be written which works with positive numbers only, even if
complements are required. The trade off is that the application has to manage a
limit on the number of bits.
.coNP Functions @, logand @ logior and @ logxor
.synb
.mets (logand << integer *)
.mets (logior << integer *)
.mets (logxor < int1 << int2 )
.syne
.desc
These operations perform the familiar bitwise and, inclusive or, and exclusive
or operations, respectively. Positive values inputs are treated as
pure binary numbers. Negative inputs are treated as infinite-bit
two's-complement.
For example
.code "(logand -2 7)"
produces
.codn 6 .
This is because
.code -2
is
.code ...111110
in infinite-bit two's-complement. And-ing this value with
.code 7
(or
.codn ...000111 )
produces
.codn 110 .
The
.code logand
and
.code logior
functions are variadic, and may be called with zero, one,
two, or more input values. If
.code logand
is called with no arguments, it produces
the value -1 (all bits 1). If
.code logior
is called with no arguments it produces
zero. In the one-argument case, the functions just return their argument value.
In the two-argument case, one of the operands may be a character, if the other
operand is a fixnum integer. The character operand is taken to be an integer
corresponding to the character value's Unicode code point value. The resulting
value is regarded as a Unicode code point and converted to a character value
accordingly.
When three or more arguments are specified, the operation's semantics is
that of a left-associative reduction through two-argument invocations,
so that the three-argument case
.code "(logand a b c)"
is equivalent to the expression
.codn "(logand (logand a b) c)" ,
which features two two-argument cases..
.coNP Function @ logtest
.synb
.mets (logtest < int1 << int2 )
.syne
.desc
The
.code logtest
function returns true if
.meta int1
and
.meta int2
have bits in
common. The following equivalence holds:
.verb
(logtest a b) <--> (not (zerop (logand a b)))
.brev
.coNP Functions @ lognot and @ logtrunc
.synb
.mets (lognot < value <> [ bits ])
.mets (logtrunc < value << bits )
.syne
.desc
The
.code lognot
function performs a bitwise complement of
.metn value .
When the one-argument form of lognot is used, then if
.meta value
is nonnegative,
then the result is negative, and
.IR "vice versa" ,
according to the infinite-bit
two's complement representation. For instance
.code "(lognot -2)"
is
.codn 1 ,
and
.code "(lognot 1)"
is
.codn -2 .
The two-argument form of
.code lognot
produces a truncated complement. Conceptually,
a bitwise complement is first calculated, and then the resulting number is
truncated to the number of bits given by
.metn bits ,
which must be a nonnegative integer. The following equivalence holds:
.verb
(lognot a b) <--> (logtrunc (lognot a) b)
.brev
The
.code logtrunc
function truncates the integer
.meta value
to the specified number
of bits. If
.meta value
is negative, then the two's-complement representation
is truncated. The return value of
.code logtrunc
is always a non-negative integer.
.coNP Function @ sign-extend
.synb
.mets (sign-extend < value << bits )
.syne
.desc
The
.code sign-extend
function first truncates the infinite-bit two's complement representation of
the integer
.meta value
to the specified number of bits, similarly to the
.code logtrunc
function. Then, this truncated value is regarded as a
.meta bits
wide two's complement integer. The value of this integer is
calculated and returned.
.TP* Examples:
.verb
(sign-extend 127 8) -> 127
(sign-extend 128 8) -> -128
(sign-extend 129 8) -> -127
(sign-extend 255 8) -> -1
(sign-extend 256 8) -> 0
(sign-extend -1 8) -> -1
(sign-extend -255 8) -> 0
.brev
.coNP Function @ ash
.synb
.mets (ash < value << bits )
.syne
.desc
The
.code ash
function shifts
.meta value
by the specified number of
.meta bits
producing a
new value. If
.meta bits
is positive, then a left shift takes place. If
.meta bits
is negative, then a right shift takes place. If
.meta bit
is zero, then
.meta value
is returned unaltered. For positive numbers, a left shift by n bits is
equivalent to a multiplication by two to the power of n, or
.codn "(expt 2 n)" .
A right shift by n bits of a positive integer is equivalent to integer
division by
.codn "(expt 2 n)" ,
with truncation toward zero.
For negative numbers, the bit shift is performed as if on the two's-complement
representation. Under the infinite two's-complement representation,
a right shift does not exhaust the infinite sequence of
.code 1
digits which
extends to the left. Thus if
.code -4
is shifted right it becomes
.code -2
because
the bitwise representations of these values are
.code ...111100
and
.codn ...11110 .
.coNP Function @ bit
.synb
.mets (bit < value << bit )
.syne
.desc
The
.code bit
function tests whether the integer or character
.meta value
has a 1 in bit position
.metn bit .
The
.meta bit
argument must be a non-negative integer. A value of zero of
.meta bit
indicates the least significant bit position of
.metn value .
The
.code bit
function has a Boolean result, returning the symbol
.code t
if bit
.meta bit
of
.meta value
is set, otherwise
.codn nil .
If
.meta value
is negative, it is treated as if it had an infinite-bit two's
complement representation. For instance, if value is
.codn -2 ,
then the bit
function returns
.code nil
for a
.meta bit
value of zero, and
.code t
for all other values,
since the infinite bit two's complement representation of
.code -2
is
.codn ...11110 .
.coNP Function @ mask
.synb
.mets (mask << integer *)
.syne
.desc
The
.code mask
function takes zero or more integer arguments, and produces an integer
value which corresponds a bitmask made up of the bit positions specified by the
integer values.
If
.code mask
is called with no arguments, then the return value is zero.
If
.code mask
is called with a single argument
.meta integer
then the return value is the same as
that of the expression
.codn "(ash 1 <integer>)" :
the value 1 shifted left by
.meta integer
bit positions. If
.meta integer
is zero, then the result is
.codn 1 ;
if
.meta integer
is
.codn 1 ,
the
result is
.code 2
and so forth. If
.meta value
is negative, then the result is zero.
If
.code mask
is called with two or more arguments, then the result is a bitwise or of
the masks individually computed for each of the values.
In other words, the following equivalences hold:
.verb
(mask) <--> 0
(mask a) <--> (ash 1 a)
(mask a b c ...) <--> (logior (mask a) (mask b) (mask c) ...)
.brev
.coNP Function @ bitset
.synb
.mets (bitset << integer )
.syne
.desc
The
.code bitset
function returns a list of the positions of bits which have a value of
1 in a positive
.meta integer
argument, or the positions of bits which have a value of zero in a negative
.meta integer
argument. The positions are ordered from least to greatest. The least
significant bit has position zero. If
.meta integer
is zero, the empty list
.code nil
is returned.
A negative integer is treated as an infinite bit two's complement
representation.
The argument may be a character.
If
.meta integer
.code x
is non-negative, the following equivalence holds:
.verb
x <--> [apply mask (bitset x)]
.brev
That is to say, the value of
.code x
may be reconstituted by applying the bit positions returned by
.code bitset
as arguments to the
.code mask
function.
The value of a negative
.code x
may be reconstituted from its
.code bitset
as follows:
.verb
x <--> (pred (- [apply mask (bitset x)]))
.brev
also, more trivially, thus:
.verb
x <--> (- [apply mask (bitset (- x))])
.brev
.coNP Function @ width
.synb
.mets (width << integer *)
.syne
.desc
A two's complement representation of an integer consists of a sign bit and a
mantissa field.
The
.code width
function computes the minimum number of bits required for the mantissa portion
of the two's complement representation of the
.meta integer
argument.
For a nonnegative argument, the width also corresponds to the number of bits
required for a natural binary representation of that value.
Two integer values have a width of zero, namely 0 and -1. This means that these
two values can be represented in a one-bit two's complement, consisting of only
a sign bit: the one-bit two's complement bitfield 1 denotes -1, and 0 denotes
0.
Similarly, two integer values have a width of 1: 1 and -2. The two-bit
two's complement bitfield 01 denotes 1, and 10 denotes -2.
The argument may be a character.
.coNP Function @ logcount
.synb
.mets (logcount << integer )
.syne
.desc
The
.code logcount
function considers
.meta integer
to have a two's complement representation. If the integer is positive,
it returns the count of bits in that representation whose value is 1.
If
.meta integer
is negative, it returns the count of zero bits instead. If
.meta integer
is zero, the value returned is zero.
The argument may be a character.
.SS* User-Defined Arithmetic Types
\*(TL makes it possible for the user application program to define structure
types which can participate in arithmetic operations as if they were numbers.
Under most arithmetic functions, a structure object may be used instead of a
number, if that structure object implements a specific method which is required
by that arithmetic function.
The following paragraphs give general remarks about the method conventions.
Not all arithmetic and bit manipulation functions have a corresponding
method, and a small number of functions do not follow these conventions.
In the simplest case of arithmetic functions which are unary, the method
takes no argument other than the object itself. Most unary arithmetic functions
expect a structure argument to have a method which has the same name as that
function. For instance, if
.code x
is a structure, then
.code "(cos x)"
will invoke
.codn "x.(cos)" .
If
.code x
has no
.code cos
method, then an
.code error
exception is thrown. A few unary methods are not named after the corresponding function.
The unary case of the
.code -
function excepts an object to have a method named
.codn neg ;
thus,
.code "(- x)"
invokes
.codn "x.(neg)" .
Unary division requires a method called
.codn recip ;
thus,
.codn "(/ x)" ,
invokes
.codn "x.(recip)" .
When a structure object is used as an argument in a two-argument (binary)
arithmetic function, there are several cases to consider. If the left argument
to a binary function is an object, then that object is expected to support a
binary method. That method is called with two arguments: the object itself, of
course, and the right argument of the arithmetic operation. In this case, the
method is named after the function. For instance, if
.code x
is an object, then
.code "(+ x 3)"
invokes
.codn "x.(+ 3)" .
If the right argument, and only the right argument, of a binary operation is an
object, then the situation falls into two cases depending on whether the operation
is commutative. If the operation is commutative, then the same method is used
as in the case when the object is the left argument. The arguments are merely reversed.
Thus
.code "(+ 3 x)"
also invokes
.codn "x.(+ 3)" .
If the operation is not commutative, then the object must supply an alternative
method. For most functions, that method is named by a symbol whose name begins
with a
.code r-
prefix. For instance
.code "(mod x 5)"
invokes
.code "x.(mod 5)"
whereas
.code "(mod 5 x)"
invokes
.codn "x.(r-mod 5)" .
Note: the "r" may be remembered as indicating that the object is the
.B right
argument
of the binary operation or that the arguments are
.BR reversed .
Two functions do not follow the
.code r-
convention. These are
.code -
and
.codn / .
For these, the methods used for the object as a right argument, respectively, are
.code --
and
.codn // .
Thus
.code "(/ 5 x)"
invokes
.code "x.(// 5)"
and
.code "(- 5 x)"
invokes
.codn "x.(-- 5)" .
Several binary functions do not support an object as the right argument. These are
.codn sign-extend ,
.code ash
and
.codn bit .
Variadic arithmetic functions, when given three or more arguments, are regarded
as performing a left-associative decimation of the arguments through a binary
function. Thus for instance
.code "(- 1 x 4)"
is understood as
.code "(- (- 1 x) 4)"
where
.code "x.(-- 1)"
is evaluated first. If that method yields an object
.code o
then
.code "o.(- 4)"
is invoked.
Certain variadic arithmetic functions, if invoked with one argument, just
return that argument: for instance,
.code +
and
.code *
are in this category. A special concession exists in these functions: if
their one and only argument is a structure, then that structure is returned
without any error checking, even if it implements no methods related
to arithmetic.
The following sections describe each of the methods that must be implemented
by an object for the associated arithmetic function to work with that object,
either at all, or in a specific argument position, as the case may be.
These methods are not provided by \*(TL; the application is required to provide
them.
.de bmc
. coNP Method @ \\$1
. synb
. mets << obj .(\\$1 << arg )
. syne
. desc
The
. code \\$1
method is invoked when a structure is used as an argument to the
. code \\$1
function.
If an object
. meta obj
is combined with an argument
. metn arg ,
either as
. mono
. meti (\\$1 < obj << arg )
. onom
or as
. mono
. meti (\\$1 < arg << obj )
. onom
then, effectively, the method call
. mono
. meti << obj .(\\$1 << arg )
. onom
takes place, and its return value is taken as the result
of the operation.
..
.de bmcv
. coNP Method @ \\$1
. synb
. mets << obj .(\\$1 << arg )
. syne
. desc
The
. code \\$1
method is invoked when a structure is used as an argument to the
. code \\$1
function together with at least one other operand.
If an object
. meta obj
is combined with an argument
. metn arg ,
either as
. mono
. meti (\\$1 < obj << arg )
. onom
or as
. mono
. meti (\\$1 < arg << obj )
. onom
then, effectively, the method call
. mono
. meti << obj .(\\$1 << arg )
. onom
takes place, and its return value is taken as the result
of the operation.
..
.de bmnl
. coNP Method @ \\$1
. synb
. mets << obj .(\\$1 << arg )
. syne
. desc
The
. code \\$1
method is invoked when the structure
. meta obj
is used as the left argument of the
. code \\$1
function.
If an object
. meta obj
is combined with an argument
. metn arg ,
as
. mono
. meti (\\$1 < obj << arg )
. onom
then, effectively, the method call
. mono
. meti << obj .(\\$1 << arg )
. onom
takes place, and its return value is taken as the result
of the operation.
..
.de bmnr
. coNP Method @ \\$1
. synb
. mets << obj .(\\$1 << arg )
. syne
. desc
The
. code \\$1
method is invoked when the structure
. meta obj
is used as the right argument of the
. code \\$2
function.
If an object
. meta obj
is combined with an argument
. metn arg ,
as
. mono
. meti (\\$2 < arg << obj )
. onom
then, effectively, the method call
. mono
. meti << obj .(\\$1 << arg )
. onom
takes place, and its return value is taken as the result
of the operation.
..
.de umv
. coNP Method @ \\$1
. synb
. mets << obj .(\\$1)
. syne
. desc
The
. code \\$1
method is invoked when the structure
. meta obj
is used as the sole argument to the
. code \\$2
function.
If an object
. meta obj
is passed to the function as
. mono
. meti (\\$2 << obj )
. onom
then, effectively, the method call
. mono
. meti << obj .(\\$1)
. onom
takes place, and its return value is taken as the result
of the operation.
..
.de bma
. coNP Method @ \\$1
. synb
. mets << obj .(\\$1 << arg )
. syne
. desc
The
. code \\$1
method is invoked when the
. code \\$1
function is invoked with two operands, and the structure
. meta obj
is the left operand.
The method is also invoked when the
. code \\$2
function is invoked with two operands, and
.meta obj
is the right operand.
If an object
. meta obj
is combined with an argument
. metn arg ,
either as
. mono
. meti (\\$1 < obj << arg )
. onom
or as
. mono
. meti (\\$2 < arg << obj )
. onom
then, effectively, the method call
. mono
. meti << obj .(\\$1 << arg )
. onom
takes place, and its return value is taken as the result
of the operation.
..
.de um
. coNP Method @ \\$1
. synb
. mets << obj .(\\$1)
. syne
. desc
The
. code \\$1
method is invoked when a structure is used as the argument to the
. code \\$1
function.
If an object
. meta obj
is passed to the function as
. mono
. meti (\\$1 << obj )
. onom
then, effectively, the method call
. mono
. meti << obj .(\\$1)
. onom
takes place, and its return value is taken as the result
of the operation.
..
.de tmnl
. coNP Method @ \\$1
. synb
. mets << obj .(\\$1 < arg1 << arg2 )
. syne
. desc
The
. code \\$1
method is invoked when the structure
. meta obj
is used as the left argument of the
. code \\$1
function.
If an object
. meta obj
is combined with arguments
. meta arg1
and
. metn arg2 ,
as
. mono
. meti (\\$1 < obj < arg1 << arg2 )
. onom
then, effectively, the method call
. mono
. meti << obj .(\\$1 < arg1 << arg2 )
. onom
takes place, and its return value is taken as the result
of the operation.
..
.bmcv +
.bmnl -
.bmnr -- -
.umv neg -
.bmcv *
.bmnl /
.bmnr // /
.umv recip /
.um abs
.um signum
.bmnl trunc
.bmnr r-trunc trunc
.umv trunc1 trunc
.bmnl mod
.bmnr r-mod mod
.bmnl expt
.bmnr r-expt expt
.tmnl exptmod
Note: the
.code exptmod
function doesn't support structure objects in the second and
third argument positions. The
.meta exponent
and
.meta base
arguments must be integers.
.um isqrt
.um square
.bma > <
.bma < >
.bma >= <=
.bma <= >=
.bmc =
.um zerop
.um plusp
.um minusp
.um evenp
.um oddp
.bmnl floor
.bmnr r-floor floor
.umv floor1 floor
.bmnl ceil
.bmnr r-ceil ceil
.umv ceil1 ceil
.bmnl round
.bmnr r-round round
.umv round1 round
.um sin
.um cos
.um tan
.um asin
.um acos
.um atan
.bmnl atan2
.bmnr r-atan2 atan2
.um sinh
.um cosh
.um tanh
.um asinh
.um acosh
.um atanh
.um log
.um log2
.um log10
.um exp
.um sqrt
.bmcv logand
.bmcv logior
.bmnl lognot
.bmnr r-lognot lognot
.umv lognot1 lognot
.bmnl logtrunc
.bmnr r-logtrunc logtrunc
.bmnl sign-extend
Note: the
.code sign-extend
function doesn't support a structure as the right argument,
.metn bits ,
which must be an integer.
.bmnl ash
Note: the
.code ash
function doesn't support a structure as the right argument,
.metn bits ,
which must be an integer.
.bmnl bit
Note: the
.code bit
function doesn't support a structure as the right argument,
.metn bit ,
which must be an integer.
.um width
.um logcount
.um bitset
.SS* Exception Handling
An
.I exception
in \*(TX is a special event in the execution of the program which
potentially results in a transfer of control. An exception is identified by a
symbol, known as the
.IR "exception type" ,
and it carries zero or more arguments, called the
.IR "exception arguments" .
When an exception is initiated, it is said to be
.IR thrown .
This action is initiated by the following functions:
.codn throw ,
.code throwf
and
.codn error ,
and possibly other functions which invoke these.
When an exception is thrown, \*(TX enters into exception processing
mode. Exception processing mode terminates in one of several ways:
.IP -
A
.I catch
is found which matches the exception, and control is transferred
to the catch by a non-local transfer which performs unwinding. Catches are
defined by the
.code catch
macro.
.IP -
A
.I handler
is found which matches the exception, and control is transferred to
the handler by invoking its function. The handler function accepts the
exception by performing a non-local transfer to a destination of its choice, or
else declines to accept the exception by returning.
Handlers are defined by the
.code handler-bind
operator or
.code handle
macro.
.IP -
If no catch or accepting handler is found for an exception derived from
.code error
and
.code *unhandled-hook*
is
.codn nil ,
then a built-in strategy for handling the exception is invoked,
consisting of unwinding, and then printing some informational messages and
terminating.
If the
.code *unhandled-hook*
variable contains a value that isn't
.codn nil ,
then control is transferred to the function stored in the
that variable first; only if that function returns is the above
built-in strategy invoked.
.IP -
If no catch or accepting handler is found for an exception derived from
.codn warning ,
then a warning diagnostic is issued on the
.code *stderr*
stream and a
.code continue
exception is thrown with no arguments. If no catch or handler is found
for that exception, then control returns normally to the site which
threw the warning exception.
.IP -
If no catch or accepting handler is found for an exception that is
neither derived from
.code error
nor from
.codn warning ,
then no control transfer takes place; control returns to the
.code throw
or
.code throwf
function which returns normally, with a return value of
.codn nil .
.PP
.NP* Catches and Handlers
There are two ways by which exceptions are handled: catches and handlers.
Catches and handlers are similar, but different.
A catch is an exit point associated with an active scope. When an exception is
handled by a catch, the form which threw the exception is abandoned, and unwinding
takes place to the catch site, which receives the exception type and arguments.
A handler is also associated with an active scope. However, it is a function,
and not a dynamic exit point. When an exception is passed to handler,
unwinding does not take place; rather, the function is called. The function then
either completes the exception handling by performing a non-local transfer,
or else declines the exception by performing an ordinary return.
Catches and handlers are identified by exception type symbols. A catch or
handler is eligible to process an exception if it handles a type which is
a supertype of the exception which is being processed. Handles and catches
are found by means of a combined search which proceeds from the innermost
nesting of dynamic scope to the outermost, without performing any unwinding.
When an eligible handler is encountered, its registered function is called, thereby suspending the
search. If the handler function returns, the search continues from that scope
to yet unvisited outer scopes. When an eligible catch is encountered rather
than a handler, the search terminates and a control transfer takes place to the
catch site. That control transfer then performs unwinding, which requires it to
make a second pass through the same nestings of dynamic scope that had just
been traversed in order to find that catch.
.NP* Handlers and Sandboxing
Because handlers execute in the dynamic context of the exception origin,
without any unwinding having taken place, they expose a potential route
of sandbox escape via the package system, unless special steps are taken.
The threat is that code at the handler site could take advantage of
the current value of the
.code *package*
and
.code *package-alist*
variables established at the exception throw site to gain inappropriate access
to symbols.
For this reason, when a handler is established, the current values of
.code *package*
and
.code *package-alist*
are recorded into the handler frame.
When that handler is later invoked, it executes in a dynamic environment
in which those variables are bound to the previously noted values.
The catch mechanism doesn't do any such thing because the unwinding
which is performed prior to the invocation of a catch implicitly
restores the values of
.B all
special variables to the values they had at the time the frame was
established.
.NP* Exception Type Hierarchy
Exception type symbols are arranged
in an inheritance hierarchy, at whose top the symbol
.code t
is is the supertype of every exception type, and the
.code nil
symbol is at the bottom, the subtype of every exception type.
Keyword symbols may be used as exception types.
Every symbol is its own supertype and subtype. Thus whenever X is known to be a
subtype of Y, it is possible that X is exactly Y.
The
.code defex
macro registers exception supertype/subtype relationships among symbols.
The following tree diagram shows the relationships among \*(TL's built-in
exception symbols. Not shown is the exception symbol
.codn nil ,
subtype of every exception type:
.verb
t ----+--- warning
|
+--- restart ---+--- continue
| |
| +--- retry
| |
| +--- skip
|
+--- error ---+--- type-error
|
+--- internal-error
|
+--- panic
|
+--- numeric-error
|
+--- range-error
|
+--- query-error
|
+--- file-error -------+--- path-not-found
| |
| +--- path-exists
| |
| +--- path-permission
|
+--- process-error
|
+--- socket-error
|
+--- system-error
|
+--- alloc-error
|
+--- timeout-error
|
+--- assert
|
+--- syntax-error
|
+--- eval-error
.brev
Program designers are encouraged to derive new error exceptions from the
.code error
type. The
.code restart
type is intended to be the root of a hierarchy of exception
types used for denoting restart points: designers are encouraged
to derive restarts from this type.
A catch for the
.code continue
exception should be established around constructs which can throw an
error from which it is possible to recover. That exception provides
the entry point into the recovery which resumes execution.
A catch for
.code retry
should be provided in situations when it is possible and makes sense for a failed
operation to be tried again.
A catch for
.code skip
should be provided in situations when it is possible and sensible to continue
with subsequent operations even though an operation has failed.
.NP* Dialect Notes
Exception handling in \*(TL provides capabilities similar to the condition
system in ANSI Common Lisp. The implementation and terminology differ.
Most obviously, ANSI CL uses the "condition" term, whereas \*(TL uses "exception".
In ANSI CL, a condition is "raised", whereas a \*(TL exception is "thrown".
In ANSI CL, when a condition is raised, a condition object is created. Condition
object are similar to class objects, but are not required to be in the Common Lisp
Object System. They are related by inheritance and can have properties. \*(TL
exceptions are unencapsulated: they consist of a symbol, plus zero or more
arguments. The symbols are related by inheritance.
When a condition is raised in ANSI CL, the dynamic scope is searched for a
handler, which is an ordinary function which receives the condition. No
unwinding or non-local transfer takes place. The handler can return, in which
case the search continues. Matching the condition to the handler is by
inheritance. Handler functions are bound to exception type names.
If a handler chooses to actually handle a condition (thereby terminating
the search) it must itself perform some kind of dynamic control transfer,
rather than return normally. ANSI CL provides a dynamic control mechanism
known as restarts which is usually used for this purpose. A condition handler
may invoke a particular restart handler. Restart handlers are similar to
exception handlers: they are functions associated with symbols in the
dynamic environment.
In \*(TL, the special behavior which occurs for exceptions derived from
.code error
and those from
.code warning
is built into the exception handling system, and tied to those types.
When an error or warning exception is unhandled, the exception handling system
itself reacts, so the special behaviors occur no matter how these exceptions
are raised. In ANSI CL, the special behavior for unhandled
.code error
conditions (of invoking the debugger) is implemented only in the
.code error
function;
.code error
conditions signalled other than via that function are not subject to
any special behavior. There is a parallel situation with regard to
warnings: the
ANSI CL
.code warn
function implements a special behavior for unhandled warnings (of emitting
a diagnostic) but warnings not signalled via that function are not
treated that way.
Thus in \*(TL, there is no way to raise an error or warning that is simply
ignored due to being unhandled.
In \*(TL exceptions are a unification of conditions and restarts. From an ANSI CL
perspective, \*(TL exceptions are a lot like CL restarts, except that the
symbols are arranged in an inheritance hierarchy. \*(TL exceptions are used
both as the equivalent of ANSI CL conditions and as restarts.
In \*(TL the terminology "catch" and "handle" is used in a specific way.
To handle an exception means to receive it without unwinding, with the possibility
of declining to handle it, so that the search continues for another handler.
To catch an exception means to match an exception to a catch handler, terminate
the search, unwind and pass control to the handler.
\*(TL provides an operator called
.code handler-bind
for specifying handlers. It has a different syntax from ANSI CL's
.codn handler-bind .
\*(TL provides a macro called
.code handle
which simplifies the use of
.codn handler-bind .
This macro superficially resembles ANSI CL's
.codn handler-case ,
but is semantically different. The most notable difference is that the bodies
of handlers established by
.code handler-bind
execute without any unwinding taking place and may return normally, thereby
declining to take the exception. In other words,
.code handle
has the same semantics as
.codn handler-bind ,
providing only convenient syntax.
\*(TL provides a macro called
.code catch
which has the same syntax as
.code handle
but specifies a catch point for exceptions. If, during an exception search, a
.code catch
clause matches an exception, a dynamic control transfer takes place
from the throw site to the catch site. Then the clause body is executed.
The
.code catch
macro resembles ANSI CL's
.code restart-case
or possibly
.codn handler-case ,
depending on point of view.
\*(TL provides unified introspection over handler and catch frames.
A program can programmatically discover what handler and catches are
available in a given dynamic scope. ANSI CL provides introspection
over restarts only; the standard doesn't specify any mechanism for
inquiring what condition handlers are bound at a given point in
the execution.
.TP* Example:
The following two examples express a similar approach implemented
using ANSI Common Lisp conditions and restarts, and then using \*(TL
exceptions.
.verb
;; Common Lisp
(define-condition foo-error (error)
((arg :initarg :arg :reader foo-error-arg)))
(defun raise-foo-error (arg)
(restart-case
(let ((c (make-condition 'foo-error :arg arg)))
(error c))
(recover (recover-arg)
(format t "recover, arg: ~s~%" recover-arg))))
(handler-bind ((foo-error
(lambda (cond)
(format t "handling foo-error, arg: ~s~%"
(foo-error-arg cond))
(invoke-restart 'recover 100))))
(raise-foo-error 200))
.brev
The output of the above is:
.verb
handling foo-error, arg: 200
recover, arg: 100
.brev
The following is possible \*(TL equivalent for the above Common Lisp example.
It produces identical output.
.verb
(defex foo-error error)
(defex recover restart) ;; recommended practice
(defun raise-foo-error (arg)
(catch
(throw 'foo-error arg)
(recover (recover-arg)
(format t "recover, arg: ~s\en" recover-arg))))
(handle
(raise-foo-error 200)
(foo-error (arg)
(format t "handling foo-error, arg: ~s\en" arg)
(throw 'recover 100)))
.brev
To summarize the differences: exceptions serve as both
conditions and restarts in \*(TX. The same
.code throw
function is used to initiate exception handling for
.code foo-error
and then to transfer control out of the handler
to the recovery code. The handler accepts one exception
by raising another.
When an exception symbol is used for restarting, it is
a recommended practice to insert it into the inheritance
hierarchy rooted at the
.code restart
symbol, either by inheriting directly from
.code restart
or from an exception subtype of that symbol.
.coNP Functions @, throw @ throwf and @ error
.synb
.mets (throw < symbol << arg *)
.mets (throwf < symbol < format-string << format-arg *)
.mets (error < format-string << format-arg *)
.syne
.desc
These functions generate an exception. The
.code throw
and
.code throwf
functions generate
an exception identified by
.metn symbol ,
whereas
.code error
throws an exception of
type
.codn error .
The call
.code "(error ...)"
can be regarded as a shorthand for
.codn "(throwf 'error ...)" .
The
.code throw
function takes zero or more additional arguments. These arguments
become the arguments of a
.code catch
handler which takes the exception. The
handler will have to be capable of accepting that number of arguments.
The
.code throwf
and
.code error
functions generate an exception which has a single
argument: a character string created by a formatted print to a string stream
using the
.code format
string and additional arguments.
Because
.code error
throws an error exception, it does not return. If an error exception
is not handled, \*(TX will issue diagnostic messages and terminate.
Likewise,
.code throw
or
.code throwf
are used to generate an error exception, they do not return.
If the
.code throw
and
.code throwf
functions are used to generate an exception not derived from
.codn error ,
and no handler is found which accepts the exception, they return normally, with
a value of
.codn nil .
.coNP Macros @, catch @ catch* and @ catch**
.synb
.mets (catch < try-expression
.mets \ \ >> {( symbol <> ( arg *) << body-form *)}*)
.mets (catch* < try-expression
.mets \ \ >> {( symbol >> ( type-arg << arg *) << body-form *)}*)
.mets (catch** < try-expression
.mets \ \ >> {( symbol < desc >> ( type-arg << arg *) << body-form *)}*)
.syne
.desc
The
.code catch
macro establishes an exception catching block around
the
.metn try-expression .
The
.meta try-expression
is followed by zero or more
catch clauses. Each catch clause consists of a symbol which denotes
an exception type, an argument list, and zero or more body forms.
If
.meta try-expression
terminates normally, then the catch clauses
are ignored. The catch itself terminates, and its return value is
that of the
.metn try-expression .
If
.meta try-expression
throws an exception which is a subtype of one or more of
the type symbols given in the exception clauses, then the first (leftmost) such
clause becomes the exit point where the exception is handled.
The exception is converted into arguments for the clause, and the clause
body is executed. When the clause body terminates, the catch terminates,
and the return value of the catch is that of the clause body.
If
.meta try-expression
throws an exception which is not a subtype of any of
the symbols given in the clauses, then the search for an exit point for
the exception continues through the enclosing forms. The catch clauses
are not involved in the handling of that exception.
When a clause catches an exception, the number of arguments in the catch must
match the number of elements in the exception. A catch argument list
resembles a function or lambda argument list, and may be dotted. For instance
the clause
.code "(foo (a . b))"
catches an exception subtyped from
.codn foo ,
with one or
more elements. The first element binds to parameter
.codn a ,
and the rest, if any,
bind to parameter
.codn b .
If there is only one element,
.code b
takes on the value
.codn nil .
The
.code catch*
macro is a variant of
.code catch
with the following difference: when
.code catch*
invokes a clause, it passes the exception symbol as the leftmost argument
.metn type-arg .
Then the exception arguments follow. In contrast,
only the exception arguments are passed to the clauses of
.codn catch .
The
.code catch**
macro is a further variant, which differs from
.code catch*
by requiring each catch clause to provide a description
.metn desc ,
an expression which evaluates to a character string.
The
.meta desc
expressions are evaluated in left-to-right order prior to the
evaluation of
.metn try-expression .
Also see: the
.code unwind-protect
operator, and the functions
.codn throw ,
.code throwf
and
.codn error ,
as well as the
.code handler-bind
operator and
.code handler
macro.
.coNP Operator @ unwind-protect
.synb
.mets (unwind-protect < protected-form << cleanup-form *)
.syne
.desc
The
.code unwind-protect
operator evaluates
.meta protected-form
in such a way that no matter how the execution of
.meta protected-form
terminates, the
.metn cleanup-form -s
will be executed.
The
.metn cleanup-form -s,
however, are not protected. If a
.meta cleanup-form
terminates via
some non-local jump, the subsequent
.metn cleanup-form -s
are not evaluated.
.metn cleanup-form -s
themselves can "hijack" a non-local control transfer such
as an exception. If a
.meta cleanup-form
is evaluated during the processing of
a dynamic control transfer such as an exception, and that
.meta cleanup-form
initiates its own dynamic control transfer, the original control transfer
is aborted and replaced with the new one.
The exit points for dynamic control transfers are removed as unwinding takes
place. That is to say, at the start of a dynamic control transfer, a search
takes place for the target exit point. That search might skip other exit points
which aren't targets of the control transfer. Those skipped exit points are left
undisturbed and are still visible during unwinding until their individual
binding forms are abandoned. Thus at the time of execution of an
.code unwind-protect
.metn cleanup-form ,
all of the exit points of dynamically surrounding forms are still visible, even
ones which are nearer than the targeted exit point.
.TP* Example:
.verb
(block foo
(unwind-protect
(progn (return-from foo 42)
(format t "not reached!\en"))
(format t "cleanup!\en")))
.brev
In this example, the protected
.code progn
form terminates by returning from
block
.codn foo .
Therefore the form does not complete and so the
output
.str not reached!
is not produced. However, the cleanup form
executes, producing the output
.strn cleanup! .
.coNP Macro @ ignerr
.synb
.mets (ignerr << form *)
.syne
.desc
The
.code ignerr
macro operator evaluates each
.meta form
similarly to the
.code progn
operator. If no forms are present, it returns
.codn nil .
Otherwise it evaluates each
.meta form
in turn, yielding the value of the last one.
If the evaluation of any
.meta form
is abandoned due to an exception of type
.codn error ,
the code generated by the
.code ignerr
macro catches this exception. In this situation,
the execution of the
.code ignerr
form terminates without evaluating the remaining
forms, and yields
.codn nil .
.coNP Macro @ ignwarn
.synb
.mets (ignwarn << form *)
.syne
.desc
The
.code ignwarn
macro resembles
.codn ignerr .
It arranges for the evaluation of each
.meta form
in left-to-right order. If all the forms are evaluated, then the
value of the last one is returned. If no forms are present, then
.code nil
is returned.
If any
.meta form
throws an exception of type
.code warning
then this exception is intercepted by a handler established by
.codn ignwarn .
This handler reacts by throwing an exception of type
.codn continue .
The effect is that the warning is ignored, since the handler
doesn't issue any diagnostic, and passes control to the warning's
continue point.
Note: all sites within \*(TX which throw a
.code warning
also provide a nearby catch for a
.code continue
exception, for resuming evaluation at the point where the warning
was issued.
.coNP Operator @ handler-bind
.synb
.mets (handler-bind < function-form < symbol-list << body-form *)
.syne
.desc
The
.code handler-bind
operator establishes a handler for one or more
exception types, and evaluates zero or more
.metn body-form -s
in a dynamic scope in which that handler is visible.
When the
.code handler-bind
form terminates normally, the handler is removed. The value of the
last
.meta body-form
is returned, or else
.code nil
if there are no forms.
The
.meta function-form
argument is an expression which must evaluate to a function. The function
must be capable of accepting the exception arguments. All exceptions functions
require at least one argument, since the leftmost argument in an exception handler
call is the exception type symbol.
The
.meta symbol-list
argument is a list of symbols, not evaluated. If it is empty, then the handler
isn't eligible for any exceptions. Otherwise it is eligible for any exception
whose exception type is a subtype of any of the symbols.
If the evaluation of any
.meta body-form
throws an exception which is not handled within that form, and the handler
is eligible for that exception, then the function is invoked. It receives
the exception's type symbol as the leftmost argument. If the exception has
arguments, they appear as additional arguments in the function call.
If the function returns normally, then the exception search continues.
The handler remains established until the exception is handled in such a way
that a dynamic control transfer abandons the
.code handler-bind
form.
Note: while a handler's function is executing, the handler is disabled.
If the function throws an exception for which the handler is eligible,
the handler will not receive that exception; it will be skipped by the
exception search as if it didn't exist. When the handler function terminates,
either via a normal return or a nonlocal control transfer, then the handler is
re-enabled.
.coNP Macros @ handle and @ handle*
.synb
.mets (handle < try-expression
.mets \ \ >> {( symbol <> ( arg *) << body-form *)}*)
.mets (handle* < try-expression
.mets \ \ >> {( symbol >> ( type-arg << arg *) << body-form *)}*)
.syne
.desc
The
.code handle
macro is a syntactic sugar for the
.code handler-bind
operator. Its syntax is exactly like that of
.codn catch .
The difference between
.code handle
and
.code catch
is that the clauses in
.code handle
are invoked without unwinding. That is to say,
.code handle
does not establish an exit point for an exception. When control passes to
a clause, it is by means of an ordinary function call and not a dynamic
control transfer. No evaluation frames are yet unwound when this takes place.
The
.code handle
macro establishes a handler, by
.code handler-bind
whose
.meta symbol-list
consists of every
.meta symbol
gathered from every clause.
The handler function established in the generated
.code handler-bind
is synthesized from of all of the clauses, together with dispatch logic which
which passes the exception and its arguments to the first
eligible clause.
The
.meta try-expression
is evaluated in the context of this handler.
The clause of the
.code handle
syntax can return normally, like a function, in which case the handler
is understood to have declined the exception, and exception processing
continues. To handle an exception, the clause of the
.code handle
macro must perform a dynamic control transfer, such returning from a block
via
.code return
or throwing an exception.
The
.code handle*
macro is a variant of
.code handle
with the following difference: when
.code handle*
invokes a clause, it passes the exception symbol as the leftmost argument
.metn type-arg .
Then the exception arguments follow. In contrast,
only the exception arguments are passed to the clauses of
.codn handle .
.coNP Macro @ with-resources
.synb
.mets (with-resources >> ({ sym >> [ init-form <> [ cleanup-form *])}*)
.mets \ \ << body-form *)
.syne
.desc
The
.code with-resources
macro provides a sequential binding construct similar to
.codn let* .
Every
.meta sym
is established as a variable which is visible to the
.metn init-form -s
of subsequent variables, to all subsequent
.metn cleanup-form -s
including that of the same variable,
and to the
.metn body-form -s.
If no
.meta init-form
is supplied, then
.meta sym
is bound to the value
.codn nil .
If an
.meta init-form
is supplied, but no
.metn cleanup-form -s,
then
.meta sym
is bound to the value of the
.metn init-form .
If one or more
.metn cleanup-form -s
are supplied in addition to
.metn init-form ,
they specifies forms to be executed upon the termination of the
.code with-resources
construct.
When an instance of
.code with-resources
terminates, either normally or by a non-local control transfer,
then for each
.meta sym
whose
.meta init-form
had executed, thus causing that
.code sym
to be bound to a value, the
.metn cleanup-form -s
corresponding to
.meta sym
are evaluated in the usual left-to-right order.
The
.metn sym -s
are cleaned up in reverse (right-to-left) order. The
.metn cleanup-form -s
of the most recently bound
.meta sym
are processed first; those of the least recently bound
.meta sym
are processed last.
When the
.code with-resources
form terminates normally, the value of the last
.meta body-form
is returned, or else
.code nil
if no
.metn body-form -s
are present.
.TP* "Example:"
The following expression opens a text file and reads a line from it,
returning that line, while ensuring that the stream is closed
immediately:
.verb
(with-resources ((f (open-file "/etc/motd") (close-stream f)))
(whilet ((l (get-line f)))
(put-line l)))
.brev
.coNP Special variable @ *unhandled-hook*
The
.code *unhandled-hook*
variable is initialized with
.code nil
by default.
It may instead be assigned a function which is capable of taking
three arguments.
When an exception occurs which has no handler, this function is called,
with the following arguments: the exception type symbol, the exception object,
and a third value which is either
.code nil
or else the form which was being evaluated when the exception was thrown.
The call occurs before any unwinding takes place.
If the variable is
.codn nil ,
or isn't a function, or the function returns after being called,
then unwinding takes place, after which some informational messages are printed
about the exception, and the process exits with a failed termination status.
In the case when the variable contains a object other than
.code nil
which isn't a function, a diagnostic message is printed on the
.code *stderr*
stream prior to unwinding.
Prior to the function being called, the
.code *unhandled-hook*
variable is reset to
.codn nil .
Note: the functions
.code source-loc
or
.code source-loc-str
may be applied to the third argument of the
.code *unhandled-hook*
function to obtain more information about the form.
.coNP Macro @ defex
.synb
.mets (defex <> { symbol }*)
.syne
.desc
The macro
.code defex
records hierarchical relationships among symbols, for the purposes
of the use of those symbols as exceptions. It is closely related to the
.code @(defex)
directive in the \*(TX pattern language, performing the same function.
All symbols are considered to be exception subtypes, and every symbol
is implicitly its own exception subtype. This macro does not introduce
symbols as exception types; it only introduces subtype-supertype
relationships.
If
.code defex
is invoked with no arguments, it has no effect.
If arguments are present, they must be symbols.
If
.code defex
is invoked with only one symbol as its argument, it has no effect.
At least two
symbols must be specified for a useful effect to take place. If exactly two
symbols are specified, then, subject to error checks,
.code defex
makes the left symbol an
.I exception subtype
of the right symbol.
This behavior generalizes to three or more arguments: if three or more symbols
are specified, then each symbol other than the last is registered as a subtype of
the symbol which follows.
If a
.code defex
has three or more arguments, they are processed from left to right.
If errors are encountered during the processing, the correct registrations
already made for prior arguments remain in place.
Every symbol is implicitly considered to be its own exception subtype,
therefore it is erroneous to explicitly register a symbol as its
own subtype.
The symbol
.code nil
is implicitly a subtype of every exception type. Therefore, it is erroneous
to attempt to specify it as a supertype in a registration.
Using
.code nil
as a subtype in a registration is silently permitted, but has no effect.
No explicit registration is recorded between
.code nil
and its successor in the argument list.
The symbol
.code t
is implicitly the supertype of every exception type. Therefore, it
is erroneous to attempt to register it as an exception subtype.
Using
.code t
as a supertype in a registration is also erroneous.
A symbol
.code a
may not be registered as a subtype of a symbol
.code b
if the reverse relationship already exists between those two symbols.
The foregoing rules allow redefinitions to take place, while forbidding cycles
from being created in the exception subtype inheritance graph.
Keyword symbols may be used as exception types.
.coNP Function @ register-exception-subtypes
.synb
.mets (register-exception-subtypes <> { symbol }*)
.syne
.desc
The
.code register-exception-subtypes
function constitutes the underlying implementation for the
.code defex
macro.
The following equivalence applies:
.verb
(defex a b ...) <--> (register-exception-subtypes 'a 'b ...)
.brev
That is, the
.code defex
macro works as if by generating a call to the function, with
the arguments quoted.
The semantics of the function is precisely that of the macro.
.coNP Function @ exception-subtype-p
.synb
.mets (exception-subtype-p < left-symbol << right-symbol )
.syne
.desc
The
.code exception-subtype-p
function tests whether two symbols are in a relationship as exception types,
such that
.meta left-symbol
is a direct or indirect exception subtype of
.metn right-symbol .
If that is the case, then
.code t
is returned, otherwise
.codn nil .
.coNP Function @ exception-subtype-map
.synb
.mets (exception-subtype-map)
.syne
.desc
The
.code exception-subtype-map
function returns a tree structure which captures information
about all registered exception types.
The map appears as an association list which contains an entry
for every exception symbol, paired with that type's supertype path.
The first element in the supertype path is the exception's immediate
supertype. The next element is that type's supertype and so on. The
last element in every path is the grand supertype
.codn t .
For instance, if only the types
.codn a ,
.code b
and
.code c
existed in the system, and were linked according to this inheritance graph:
.verb
t ----+--- b --- a
|
+--- c
.brev
such that the supertype of
.code b
and
.code c
is
.codn t ,
and
.code a
has
.code b
as supertype, then the function might return:
.verb
((a b t) (b t) (c t) (t))
.brev
or any other equivalent permutation.
The returned list may share substructure, so that the
.code "(t)"
sublist is shared among all four entries, and
.code "(b t)"
between the first two.
If the program alters the tree structure returned by
.codn exception-map-p ,
the consequences are unspecified; this structure may be the actual object which
represents the type hierarchy.
.coNP Structures @, frame @ catch-frame and @ handle-frame
.synb
.mets (defstruct frame nil)
.mets (defstruct catch-frame frame types desc jump)
.mets (defstruct handle-frame frame types fun)
.syne
.desc
The structure types
.codn frame ,
.code catch-frame
and
.code handle-frame
are used by the
.code get-frames
and
.code find-frame
functions to represent information about the currently established
exception catches (see the
.code catch
macro) and handlers
(see
.code handler-bind
and
.codn handler ).
The
.code frame
type serves as the common base for
.code catch-frame
and
.codn handle-frame .
Modifying any of the slots of these structures has no effect on the
actual frame from which they are derived; the frame structures are only
representation which provides information about frames. They are not
the actual frames themselves.
Both
.code catch-frame
and
.code handle-frame
have a
.code types
slot. This holds the list of exception type symbols which are matched
by the catch or handler.
The
.code desc
slot of a
.code catch-frame
holds a list of the descriptions produced by the
.code catch**
macro. If there are no descriptions, then this member is
.codn nil ,
otherwise it is a list whose elements are in correspondence
with the list in the
.code types
slot.
The
.code jump
slot of a
.code catch-frame
is an opaque
.code cptr
("C pointer")
object which is related to the stack address of the catch
frame. If it is altered, the catch frame object becomes invalid
for the purposes of
.codn invoke-catch .
The
.code fun
slot of a
.code handle-frame
is the registered handler function. Note that all the clauses of a
.code handler
macro are compiled to a single function, which is established via
.codn handler-bind ,
so an instance of the
.code handler
macro corresponds to a single
.codn handle-frame .
.coNP Function @ get-frames
.synb
.mets (get-frames)
.syne
.desc
The
.code get-frames
function inquires the current dynamic environment in order to retrieve
information about established exception catch and handler frames.
The function returns a list, ordered from the inner-most nesting
level to the outer-most nesting, of structure objects derived from the
.code frame
structure type. The list contains two kinds of objects: structures
of type
.code catch-frame
and of type
.codn handle-frame .
These objects are not the frames themselves, but only provide information
about frames. Modifying the slots in these structures has no effect on
the original frames. Also, these structures have their own lifetime and
can endure after the original frames have disappeared. This has implications
for the use of the
.code invoke-catch
function.
The
.code handle-frame
structures have a
.code fun
slot, which holds a function. It may be invoked directly.
A
.code catch-frame
structure may be passed as an argument to the
.code invoke-catch
function.
.coNP Functions @ find-frame and @ find-frames
.synb
.mets (find-frame >> [ exception-symbol <> [ frame-type ]])
.mets (find-frames >> [ exception-symbol <> [ frame-type ]])
.syne
.desc
The
.code find-frame
function locates the first (innermost) instance of a specific kind of
exception frame (a catch frame or a handler frame) which is eligible
for processing an exception of a specific type. If such a frame
is found, it is returned. The returned frame object is of the same kind as the
objects which comprise the list returned by the function
.codn get-frames .
If such a frame is not found,
.code nil
is returned.
The
.meta exception-symbol
argument specifies a match by exception type: the candidate frame
must specify in its list of matches at least one type which is an exception
supertype of
.metn exception-symbol .
If this argument is omitted, it defaults to
.code nil
which finds any handler that matches at least one type. There is no way to
search for handlers which match an empty set of types; the
.code find-frame
function skips such frames.
The
.meta frame-type
argument specifies which frame type to find. Useful values for this
argument are the structure type names
.code catch-frame
and
.code handle-frame
or the actual structure type objects which these type names denote.
If any other value is specified, the function returns
.codn nil .
If the argument is omitted, it defaults to the type of the
.code catch-frame
structure. That is to say, by default, the function looks for catch
frames.
Thus, if
.code find-frame
is called with no arguments at all it finds the innermost catch frame,
if any exists, or else returns
.codn nil .
The
.code find-frames
function is similar to
.code find-frame
except that it returns all matching frames, ordered from the inner-most nesting
level to the outer-most nesting. If called with no arguments, it returns a
list of the catch frames.
.coNP Function @ invoke-catch
.synb
.mets (invoke-catch < catch-frame < symbol << argument *)
.syne
.desc
The
.code invoke-catch
function abandons the current evaluation context to perform
a non-local control transfer directly to the catch
described by the
.meta catch-frame
argument, which must be a structure of type
.code catch-frame
obtained using any of the functions
.codn get-frames ,
.code find-frames
or
.codn find-frame .
The control transfer is possible only if the catch
frame represented by
.meta catch-frame
structure is still established, and if the structure
hasn't been tampered with.
If a given
.code catch-frame
structure is usable with
.codn invoke-catch ,
then a copy of that structure made with
.code copy-struct
is also usable, denoting the same catch frame.
The
.meta symbol
argument should be an exception symbol. It is passed to the
exception frame, as if it had appeared as the first argument of the
.code throw
function. Similarly, the
.metn argument -s
are passed to the catch frame as if they were the trailing arguments
of a
.codn throw .
The difference between
.code invoke-catch
and
.code throw
is that
.code invoke-catch
targets a specific catch frame as its exit point, rather than searching for a
matching catch or handler frame. That specific frame receives the control.
The frame receives control even if it it is not otherwise eligible for
catching the exception type denoted by
.metn symbol .
.coNP Macro @ assert
.synb
.mets (assert < expr >> [ format-string << format-arg *])
.syne
.desc
The
.code assert
macro evaluates
.metn expr .
If
.meta expr
yields any true value, then
.code assert
terminates normally, and that value is returned.
If instead
.meta expr
yields
.codn nil ,
then
.code assert
throws an exception of type
.codn assert .
The exception carries an informative character string that contains
a diagnostic detailing the expression which yielded
.codn nil ,
and the source location of that expression, if available.
If the
.meta format-string
and possibly additional format arguments are given to
.code assert
then those arguments are used to format additional text which is appended to
the diagnostic message after a separating character such as a colon.
.SS* Static Error Diagnosis
This section describes a number of features related to the diagnosis
of errors during the static processing of program code prior to evaluation.
The material is of interest to developers of macros intended for broad
reuse.
.NP* Error Exceptions
\*(TL uses exceptions of type
.code eval-error
to identify erroneous situations during both transformation of code
and its evaluation. These exceptions have one argument, which is a
character string. If not handled by program code,
.code eval-error
exceptions are specially recognized and treated by the built-in handling logic.
The message is incorporated into diagnostic output which includes
more information which is deduced.
.NP* Warning Exceptions
\*(TL uses exceptions of type
.code warning
to identify certain situations of interest. Ordinary non-deferrable
warnings have a structure identical to errors, except for the exception
symbol. \*(TX's provides built-in "auto continue" handling for warnings. If a warning
exception is not intercepted by a catch or an accepting handler, then a
diagnostic is issued on the
.code *stderr*
stream, after which a
.code continue
exception is thrown with no arguments. If that
.code continue
exception is not handled, then control returns normally to the point that
exception to resume the computation which generated the warning.
Callers which invoke code that may generate warning exceptions are therefore
not required to handle them. However, callers which do handle warning
exceptions expect to be able to throw a
.code continue
exception in order to resume the computation that triggered the warning,
without allowing other handlers to see the exception.
The generation of a warning should thus conform to the following pattern:
.verb
(catch
(throw 'warning "message")
(continue ()))
.brev
.NP* Deferrable Warnings
\*(TX supports a form of diagnostic known as a
.IR "deferrable warning" .
A deferrable warning is distinguished in two ways. Firstly, it is
either of the type
.code defr-warning
or subtyped from that type. The
.code defr-warning
type itself is a direct subtype of
.codn warning .
Secondly, a deferrable warning carries an additional tag argument after the
exception message. A deferrable exception is thrown according to
this pattern:
.verb
(catch
(throw 'defr-warning "message" . tag)
(continue ()))
.brev
\*(TX's built-in exception handling logic reacts specially to the
presence of the tag material in the exception. First, the global
.I "tentative definition list"
is searched for the presence of the tag, using
.code equal
equality. If the tag is found, then the warning is discarded.
If the tag is not found, then the exception argument list is added
to the global
.IR "deferred warning list" .
In either case,
the
.code continue
exception is thrown to resume the computation which threw the warning,
as in the case of an ordinary non-deferrable warning.
The purpose of this mechanism is to suppress warnings which
become superfluous when more of the program code is examined.
For instance, a warning about a call to an undefined function is
superfluous if a definition of that function is supplied later,
yet before that function call is executed.
Deferred warnings accumulate in the deferred warning list
from which they can be removed. The list is purged at various
times such as when a top-level load completes, and the
deferred warnings are released, as if by a call to the
.code release-deferred-warnings
function.
.coNP Functions @ compile-error and @ compile-warning
.synb
.mets (compile-error < context-obj < fmt-string << fmt-arg *)
.mets (compile-warning < context-obj < fmt-string << fmt-arg *)
.syne
.desc
The functions
.code compile-error
and
.code compile-warning
provide a convenient and uniform way for code transforming
functions such as macro-expanders to generate diagnostics.
The
.code compile-error
function throws an exception of type
.codn eval-error .
The
.code compile-warning
function throws an exception of type
.code warning
and internally provides a
.code catch
for the
.code continue
exception which allow a warning handler to resume execution
after the warning. If a handler throws a
.code continue
exception which is caught by
.codn compile-warning ,
then
.code compile-warning
returns
.codn nil .
Because
.code compile-warning
throws a non-error exception, it returns
.code nil
in the event that no catch is found for the exception, and no handler which
accepts it.
The argument conventions are the same for both functions.
The
.meta context-obj
is typically a compound form to which the diagnostic
applies.
The functions produce a diagnostic message which
incorporates the location information and symbol
obtained from
.meta context-obj
and the
.codn format -style
arguments
.meta fmt-string
and its
.metn fmt-arg -s.
.coNP Function @ compile-defr-warning
.synb
.mets (compile-defr-warning < context-obj < tag
.mets \ \ < fmt-string << fmt-arg *)
.syne
.desc
The
.code compile-defr-warning
function throws an exception of type
.code defr-warning
and internally provides a
.code catch
for the
.code continue
exception needed to resume after the warning.
The function produces a diagnostic message which
incorporates the location information and symbol
obtained from
.meta context-obj
and the
.codn format -style
arguments
.meta fmt-string
and its
.metn fmt-arg -s.
This diagnostic message constitutes the first
argument of the exception. The
.meta tag
argument is taken as the second argument.
If the exception isn't intercepted by a catch or by
an accepting handler,
.code compile-defr-warning
returns
.codn nil .
In also returns nil if it catches a
.code continue
exception.
.coNP Function @ purge-deferred-warning
.synb
.mets (purge-deferred-warning << tag )
.syne
.desc
The
.code purge-deferred-warning
removes all warnings marked with
.meta tag
from the deferred list. It also removes all tags
matching
.meta tag
from the tentative definition list.
Tags are compared using the
.code equal
function.
.coNP Function @ register-tentative-def
.synb
.mets (register-tentative-def << tag )
.syne
.desc
The
.code register-tentative-def
function adds
.meta tag
to the list of tentative definitions which are
used to suppress deferrable warnings.
The idea is that a definition of some construct has been seen,
but not yet executed. Thus the construct is not defined, but
it can reasonably be expected that it will be defined;
hence, warnings about its nonexistence can be suppressed.
For example, in the following code, when the expression
.code "(foo)"
is being expanded and transformed, the
.code foo
function does not exist:
.verb
(progn (defun foo ()) (foo))
.brev
The function won't be defined until the
.code progn
is evaluated. Thus a warning is generated that
.code "(foo)"
refers to an undefined function.
However, this warning is discarded, because the
expander for
.code defun
registers a tentative definition tag for
.codn foo .
When the definition of
.code foo
takes place, the
.code defun
operator will call
.code purge-deferred-warning
which will remove not only all accumulated warnings
related to the undefinedness of
.code foo
but also remove the tentative definition.
Note: this mechanism isn't perfect because it will
still suppresses the warning in situations like
.verb
(progn (if nil (defun foo ())) (foo))
.brev
.coNP Function @ tentative-def-exists
.synb
.mets (tentative-def-exists << tag )
.syne
.desc
The
.code tentative-def-exists
function checks whether
.meta tag
has been registered via
.code register-tentative-def
and not yet purged by
.codn purge-deferred-warning .
.coNP Function @ defer-warning
.synb
.mets (defer-warning << args )
.syne
.desc
The
.code defer-warning
function attempts to register a deferred warning. The
.meta args
argument corresponds to the arguments which are passed to the
.code throw
function in order to generate a warning exception, not including the exception
symbol.
Args is expected to have at least two elements, the second of which
is a deferred warning tag.
The
.code defer-warning
function returns
.codn nil .
Note: this function is intended for use in exception handlers. The
following example shows a handler which intercepts warnings. It defers
deferrable warnings, and prints ordinary warnings:
.verb
(handle
(some-form ..) ;; some code which might generate warnings
(defr-warning (msg tag) ;; catch deferrable and defer
(defer-warning (cons msg tag))
(throw 'continue)) ;; warning processed: resume execution
(warning (msg)
(put-line `warning: @msg`) ;; print non-deferrable
(throw 'continue))) ;; warning processed: resume execution
.brev
.coNP Function @ release-deferred-warnings
.synb
.mets (release-deferred-warnings)
.syne
.desc
The
.code release-deferred-warnings
removes all warnings from the deferred list.
Then, it issues each deferred warning as an ordinary warning.
Note: there is normally no need for user programs to use this
function since deferred warnings are issued automatically.
.coNP Function @ dump-deferred-warnings
.synb
.mets (dump-deferred-warning << stream )
.syne
.desc
The
.code dump-deferred-warnings
empties the list of deferred warnings, and converts each one
into a diagnostic message sent to
sent to
.metn stream .
After the diagnostics are printed, the list of pending warnings
is cleared.
Note: there is normally no need for user programs to use this
function since deferred warnings are issued automatically.
.SS* Delimited Continuations
\*(TL supports delimited continuations, which are integrated with the
.code block
feature. Any named or anonymous block, including the implicit blocks
created around function bodies, can be used as the delimiting
.I prompt
for the capture of a continuation.
A delimited continuation is section of a possible future of the
computation, up to a delimiting prompt,
.I reified
as a first class function.
.TP* Example:
.verb
(defun receive (cont)
(format t "cont returned ~a\en" (call cont 3)))
(defun function ()
(sys:capture-cont 'abcd (fun receive)))
(block abcd
(format t "function returned ~a\en" (function))
4)
Output:
function returned 3
cont returned 4
function returned t
.brev
.PP
Evaluation begins with the
.code block
form. This form calls
.code function
which uses
.code sys:capture-cont
to capture a continuation up to the
.code abcd
prompt. The continuation is passed to the
.code receive
function as an argument.
This captured object represents the continuation of computation
up to that prompt. It appears as a one-argument function which, when called,
resumes the captured computation. Its argument emerges out of the
.code sys:capture-cont
call as a return value. When the computation eventually returns all
the way to the delimiting prompt, the return value of that prompt
will then appear as the return value of the continuation function.
In this example, the function
.code receive
immediately invokes the continuation function which it receives, passing
it the argument value
.codn 3 .
And so,
evaluation now continues in the resumed future represented by the
continuation. Inside the continuation,
.code sys:capture-cont
appears to return, yielding the value
.codn 3 .
This bubbles up through
.code function
up to the
.code "block abcd"
where a message is printed:
.strn "function returned 3" .
The
.code block
terminates, yielding the value 4. Thereby, the continuation ends, since
it is delimited up to that block. Control now returns to the
.code receive
function which invoked the continuation, where the function call form
.code "(call cont)"
terminates, yielding the value
.code 4
that was returned by the continuation's delimiting
.code block
form. The message
.str "cont returned 4"
is printed. The
.code receive
function returns normally, returning the value
.code t
which emerged from the
.code format
call. Control is now back in
.code function
where the
.code sys:capture-cont
form terminates and returns the
.codn t .
This bubbles up to
.code block
which prints
.strn "function returned t" .
In summary, a continuation represents, as a function, the subsequent
computation that is to take place starting at some point, up to some
recently established, dynamically enclosing delimiting prompt. When
the continuation is captured, that future doesn't have to take place;
an alternative future can carry out in which that continuation is
available as a function. That alternative future can invoke the continuation at
will. Invocations (resumptions) of the continuation appear as additional
returns from the capture operator. A resumption of a continuation terminates
when the delimiting prompt terminates, and the continuation yields the
value which emerges from the prompt.
Delimited continuations are implemented by capturing a segment of the
evaluation stack between the prompt and the capture point. When
a continuation is resumed, this saved copy of a stack segment is inserted on
top of the current stack and the procedure context is resumed such
that evaluation appears to emerge from the capture operator.
As the continuation runs to completion, it simply pops these inserted
stack frames naturally. Eventually it pops out of the delimiting prompt,
at which point control ends up at the point which invoked the continuation
function.
The low-level operator for capturing a continuation is
.codn sys:capture-cont .
More expressive and convenient programming with continuations is
provided by the macros
.codn obtain ,
.codn obtain-block ,
.code yield-from
and
.codn yield ,
which create an abstraction which models the continuation as a suspended
procedure supporting two-way communication of data.
A
.code suspend
operator is provided, which is more general. It is identical to the
.code shift
operator described in various computer science literature about
delimited continuations, except that it refers to a specific delimiting
prompt by name.
Continuations raise the issue of what to do about unwinding.
The language Scheme provides the much criticized
.code dynamic-wind
operator which can execute initialization and clean-up code as
a continuation is entered and abandoned. \*(TX takes a simpler,
albeit risky approach. It provides a non-unwinding escape operator
.code sys:abscond-from
for use with continuations. Code which has captured a continuation
can use this operator to escape from the delimiting block without
triggering any unwinding among the frames between the capture point and the
delimiter. When the continuation is restarted, it will then do so
with all of the resources associated with it frames intact.
When the continuation executes normal returns within its context,
the unwinding takes place then. Thus tidy, "thread-like" use
of continuations is possible with a small measure of coding discipline.
Unfortunately, the absconding operator is dangerous: its use
breaks the language guarantee that clean-up associated with a form is done no
matter how a form terminates.
.NP* Comparison with Lexical Closures
Delimited continuations resemble lexical closures in some ways. Both
constructs provide a way to return to some context whose evaluation
has already been abandoned, and to access some aspects of that context.
However, lexical closures are statically scoped. Closures capture the lexically
apparent scope at a given point, and produce a function whose body has access
to that scope, as well as to some arbitrary arguments. Thus, a lexical scope
is reified as a first-class function. By contrast, a delimited continuation
is dynamic. It captures an an entire segment of a program activation chain,
up to the delimiting prompt. This segment includes scopes which are not
lexically visible at the capture point: the scopes of parent functions.
Moreover, the segment includes not only scopes, but also other aspects of
the evaluation context, such as the possibility of returning to callers,
and the (captured portion of) the original dynamic environment, such as
exception handlers. That is to say, a lexical closure's body cannot return to
the surrounding code or see any of its original dynamic environment; it can
only inspect the environment, and then return to its own caller. Whereas a
restarted delimited continuation can continue evaluation of the surrounding
code, return to surrounding forms and parent functions, and access the dynamic
environment. The continuation function returns to its caller when that entire
restarted context terminates, whereas a closure returns to its caller as soon
as the closure body terminates.
.NP* Differences in Compiled vs. Interpreted Behavior
Delimited continuations in \*(TX expose a behavioral difference between
compiled and interpreted code which mutates the values of lexical variables.
When a continuation is captured in compiled code, it captures not only the
bindings of lexical variables, but also potentially their current values
at the time of capture. What this means is that whenever the continuation
is resumed, those variables will appear to have the captured values,
regardless of any mutations that have taken place since. In other words,
the captured future includes those specific values. This is because in
compiled code, variables are allocated on the stack, which is copied as part of
creating a continuation. Those variables are effectively newly instantiated in
each resumption of the continuation, when the captured stack segment
is reinstated into the stack, and take on those original values.
In contrast, interpretation of code only maintains an
environment pointer on the stack; the lexical environment is a dynamically
allocated object whose contents aren't included in the continuation's
stack segment capture. If the captured variables are modified after the
capture, the continuation will see the updated values: all resumptions of the
continuation share the same instance of the captured environment among
themselves, and with the original context where the capture took place.
An additional complication is that when compiled code captures lexical
closures, captured variables are moved into dynamic storage and then
they become shared: the semantics of the mutation of those variables
is then similar to the situation in interpreted code. Therefore, the
above described non-sharing capture behavior of compiled code is not required
to hold.
In continuation-based code which relies on mutation of lexical variables
created with
.code let
or
.codn let* ,
the macros
.code hlet
and
.code hlet*
can be used instead. These macros create variable bindings whose storage is
always outside of the stack, and therefore the variables will exhibit
consistent
If the affected variables are other kinds of bindings such as
function parameters or variables created with specialized binding
constructs such as
.codn with-stream ,
additional coding changes may be required to get interpreted code
working under compilation.
.coNP Function @ sys:capture-cont
.synb
.mets (sys:capture-cont < name < receive-fun <> [ context-form ])
.syne
.desc
The
.code sys:capture-cont
function captures a continuation, and also serves as the resume point
for the resulting continuation. Which of these two situations is the
case (capture or resumption) is distinguished by the use of the
.meta receive-fun
argument, which must be a function capable of being called with one
argument.
A block named
.meta name
must be visible; the continuation is delimited by the closest
enclosing block of this name.
The optional
.meta context-form
argument should be a compound form. If
.code sys:capture-cont
reports an error, it reports it against this form,
and uses the form's operator symbol as the name of the function which
encountered the error. If the argument is omitted,
.code sys:capture-cont
uses its own name.
The
.code sys:capture-cont
function captures a continuation, represented as a function.
It immediately calls
.metn receive-fun ,
passing it it the continuation function as an argument.
If
.meta receive-fun
returns normally, then
.code sys:capture-cont
returns whatever value
.meta receive-fun
returns.
Resuming a continuation is done by invoking the continuation function.
When this happens, the entire continuation context is restored by re-creating
its captured evaluation frames on top of the current stack. Inside the
continuation, the
.code sys:capture-cont
function call which captured the continuation now appears to return,
and yields a value. That value is precisely the value which was just
passed to the continuation function moments ago.
The resumed continuation can terminate in one of three ways. Firstly, it can
simply keep executing until it discards all of its evaluation frames below the
delimiting block, and then allows that block to terminate naturally by
evaluating the last form contained in the block. Secondly, can use
.code return-from
against its delimiting block to explicitly abandon all evaluations in between
and terminate that block. Or it may perform
a non-local control transfer past the delimited block somewhere into the
evaluation frames of the caller. In the first two cases, the termination
of the block turns into an ordinary return from the continuation function, and
the result value of the terminated block becomes the return value of that
function call. In the last case, the call of the continuation function is
abandoned and unwinding continues through the caller.
If the symbol
.code sys:cont-poison
is passed to the continuation function, the continuation will be
resumed in a different manner: its context will be restored as in the
ordinary resume case, whereupon it will be immediately abandoned by
a nonlocal exit, causing unwinding to take place across all of the
continuation's evaluation frames. The function then returns
.codn nil .
If the symbol
.code sys:cont-free
is passed to the continuation function, the continuation isn't
be resumed at all; rather, the buffer which holds the saved context
of the continuation is released. Thereafter, an attempt to resume
the continuation results in an error exception being thrown.
After releasing the buffer, the function returns
.codn nil .
.TP* Notes:
The continuation function may be used any time after it is produced, and may be
called more than once, regardless of whether the originally captured dynamic
context is still executing. The continuation object may be communicated into
the resumed continuation, which can then use it to call itself, resulting
in multiple nested resumptions of the same continuation. A delimited
continuation is effectively a first class function.
The underlying continuation object produced by
.code sys:capture-cont
stores a copy of the captured dynamic context. Whenever the continuation
function is invoked, a copy of the captured is reinstated as if it were a new
context. Thus each apparent return from the
.code sys:capture-cont
inside a resumed continuation is not actually made in the original context, but
in a copy of that context. That context can be resumed multiple times
sequentially or recursively.
Just like lexical closures, continuations do not copy lexical environments;
they capture lexical environments by reference. If a continuation modifies
the values of captured lexical variables, those modifications are visible to
other resumptions of the same continuation, to other continuations which
capture the same environment, to lexical closures which capture the same
environment and to the original context which created that environment, if it
is still active.
Unlike lexical closures, continuations do capture the local bindings
of special variables. That is to say, if
.code *var*
is a special variable, then a lexical closure created inside a
.code "(let ((*var* 42)) ...)"
form will not capture the local re-binding of
.code *var*
which holds 42. When the closure is invoked and accesses
.codn *var* ,
it accesses whatever value of
.code *var*
is dynamically current, as dictated by the environment which calls the
closure, rather than the capturing environment.
With continuations, the behavior is different. If a continuation
is captured inside a
.code "(let ((*var* 42)) ...)"
form then it does capture the local binding. This is regardless whether
the delimited prompt of the capture is enclosed in this form, or
outside of the form.
The special variable has a binding in a dynamic environment. There is always a
reference to a current dynamic environment associated with every evaluation
context, and a continuation captures that reference. Because it is a
reference, it means that the binding is shared. That is to say, all
invocations of all continuations which capture the same dynamic environment in
which that
.code "(let ((*var* 42)) ...)"
binding was made share the same binding; if
.code *var*
is modified by assignment, the modification is visible to all those views.
Inside a resumed continuation, a form which binds a special variable such as
.code "(let ((*var* 42)) ...)"
may terminate. As expected, this causes the binding to be removed,
revealing either another local binding of
.code *var*
or the global binding. However, this unbinding only affects only that
that executing continuation; it has no effect inside other instances of the
same continuation or other continuations which capture the same variable.
Unbinding isn't a mutation of the dynamic environment, but may be understood
as merely the restoration of an earlier dynamic environment reference.
.TP* "Example:"
The following example shows an implementation of the
.code suspend
operator.
.verb
(defmacro suspend (:form form name var . body)
^(sys:capture-cont ',name (lambda (,var)
(sys:abscond-from ,name ,*body))
',form))
.brev
.coNP Operator @ sys:abscond-from
.synb
.mets (sys:abscond-from < name <> [ value ])
.syne
.desc
The
.code sys:abscond-from
operator closely resembles
.code return-from
and performs the same function: it causes an enclosing block
.meta name
to terminate with
.meta value
which defaults to
.codn nil .
However, unlike
.codn return-from ,
.code sys:abscond-from
does not perform any unwinding.
This operator should never be used for any purpose other than
implementing primitives for the use of delimited continuations.
It is used by the
.code yield-from
and
.code yield
operators to escape out of a block in which a continuation has
been captured. Neglecting to unwind is valid due to the expectation
that control will return into a restarted copy of that context.
.coNP Function @ sys:abscond*
.synb
.mets (sys:abscond* < name <> [ value ])
.syne
.desc
The
.code sys:abscond*
function is similar to the the
.code sys:abscond-from
operator, except that
.code name
is an ordinary function parameter, and so when
.code return*
is used, an argument expression must be specified which evaluates
to a symbol. Thus
.code sys:abscond*
allows the target block of a return to be dynamically computed.
The following equivalence holds between the operator and function:
.verb
(sys:abscond-from a b) <--> (sys:abscond* 'a b)
.brev
Expressions used as
.meta name
arguments to
.code abscond*
which do not simply quote a symbol have no equivalent in
.codn abscond-from .
.coNP Macros @ obtain and @ yield-from
.synb
.mets (obtain << forms *)
.mets (yield-from < name <> [ form ])
.syne
.desc
The
.code obtain
and
.code yield-from
macros closely inter-operate.
The
.code obtain
macro treats zero or more
.metn form -s
as a suspendable execution context called the
.IR "obtain block" .
It is expected that
.metn form -s
establish a block named
.meta name
and return its result value to
.codn obtain .
Without evaluating any of the forms in the obtain block,
.code obtain
returns a function, which takes one optional argument.
This argument, called the
.IR "resume value" ,
defaults to
.code nil
if it is omitted.
The function represents the suspended execution context.
The context is resumed whenever the function is called, and executes
until the next
.code yield-from
statement which references the block named
.metn name .
The function's reply argument is noted.
If the
.code yield-from
specifies a
.meta form
argument, then the execution context suspends, and the resume function
terminates and returns the value of that form. When the function is called
again to resume the context, the
.code yield-from
returns the previously noted resume value (and the new resume
value just passed is noted in its place).
If the
.code yield-from
specifies no
.meta form
argument, then it briefly suspends the execution context only
to retrieve the resume value, without producing an item. Since
no item is produced, the resume function does not return.
The execution context implicitly resumes.
When execution reaches the last form in the obtain block, the
resume value is discarded. The execution context terminates, and
the most recent call to the resume function returns the value of
that last form.
.TP* Notes:
The
.code obtain
macro registers a finalizer against the returned resume function.
The finalizer invokes the function, passing it the symbol
.codn sys:cont-poison ,
thereby triggering unwinding in the most recently captured
continuation. Thus, abandoned
.code obtain
blocks are subject to unwinding when they become garbage.
The
.code yield-from
macro works by capturing a continuation and performing a nonlocal
exit to the nearest block called
.metn name .
It passes a special yield object to that block. The
.code obtain
macro generates code which knows what to do with this special yield
object.
.TP* Examples:
The following example shows a function which recursively
traverses a
.code cons
cell structure, yielding all the
.cod2 non- nil
atoms it encounters. Finally, it returns the object
.codn nil .
The function is invoked on a list,
and the invocation is wrapped in an
.code obtain
block to convert it to a generating function.
The generating function is then called six times
to retrieve the five atoms from the list,
and the final
.code nil
value. These are collected into a list.
This example demonstrates the power of delimited
continuations to suspend and resume a recursive
procedure.
.verb
(defun yflatten (obj)
(labels ((flatten-rec (obj)
(cond
((null obj))
((atom obj) (yield-from yflatten obj))
(t (flatten-rec (car obj))
(flatten-rec (cdr obj))))))
(flatten-rec obj)
nil))
(let ((f (obtain (yflatten '(a (b (c . d)) e)))))
(list [f] [f] [f] [f] [f] [f]))
--> (a b c d e nil)
.brev
The following interactive session log exemplifies two-way communication between
the main code and a suspending function.
Here,
.code mappend
is invoked on a list of symbols representing fruit and vegetable names.
The objective is to return a list containing only fruits.
The
.code lambda
function suspends execution and yields a question out of the
.code map
block. It then classifies
the item as a fruit or not according to the reply it receives. The reply
emerges as a the result value of the
.code yield-from
call.
The
.code obtain
macro converts the block to a generating function. The first call to the
function is made with no argument, because the argument would be ignored
anyway. The function returns a question, asking whether the first item
in the list, the potato, is a fruit.
To answer negatively, the user calls the function again, passing in
.codn nil .
The function returns the next question, which is answered in the
same manner.
When the question for the last item is answered, the function
call yields the final item: the ordinary result of the block, which is the list
of fruit names.
.verb
1> (obtain
(block map
(mappend (lambda (item)
(if (yield-from map `is @item a fruit?`)
(list item)))
'(potato apple banana lettuce orange carrot))))
#<interpreted fun: lambda (: reply)>
2> (call *1)
"is potato a fruit?"
3> (call *1 nil)
"is apple a fruit?"
4> (call *1 t)
"is banana a fruit?"
5> (call *1 t)
"is lettuce a fruit?"
6> (call *1 nil)
"is orange a fruit?"
7> (call *1 t)
"is carrot a fruit?"
8> (call *1 nil)
(apple banana orange)
.brev
The following example demonstrates an accumulator. Values passed to the
resume function are added to a counter which is initially zero.
Each call to the function returns the updated value of the accumulator.
Note the use of
.code "(yield-from acc)"
with no arguments to receive the value passed to the first
call to the resume function, without yielding an item.
The first return value
.code 1
is produced by the
.code "(yield-from acc sum)"
form, not by
.codn "(yield-from acc)" .
The latter only obtains the initial value
.code 1
and uses it to establish the seed value of the accumulator. Without causing
the resume function to terminate and return, control passes into the loop,
which yields the first item, causing the resume function call
.code "(call *1 1)"
to return
.codn 1 :
.verb
1> (obtain
(block acc
(let ((sum (yield-from acc)))
(while t (inc sum (yield-from acc sum))))))
#<interpreted fun: lambda (: resume-val)>
2> (call *1 1)
1
3> (call *1 2)
3
4> (call *1 3)
6
5> (call *1 4)
10
.brev
.coNP Macro @ obtain-block
.synb
.mets (obtain-block < name << forms *)
.syne
.desc
The
.code obtain-block
macro combines
.code block
and
.code obtain
into a single expression.
The
.metn form -s
are evaluated in a block named
.codn name .
That is to say, the following equivalence holds:
.verb
(obtain-block n f ...) <--> (obtain (block n f ...))
.brev
.coNP Macro @ yield
.synb
.mets (yield <> [ form ])
.syne
.desc
The
.code yield
macro is to
.code yield-from
as
.code return
is to
.codn return-from :
it yields from an anonymous block.
It is equivalent to calling
.code yield-from
using
.code nil
as the block name.
In other words, the following equivalence holds:
.verb
(yield x) <--> (yield-from nil x)
.brev
.TP* Example:
.verb
;; Yield the integers 0 to 4 from a for loop, taking
;; advantage of its implicit anonymous block:
(defvarl f (obtain (for ((i 0)) ((< i 5)) ((inc i))
(yield i))))
[f] -> 0
[f] -> 1
[f] -> 2
[f] -> 3
[f] -> 4
[f] -> nil
[f] -> nil
.brev
.coNP Macros @ obtain* and @ obtain*-block
.synb
.mets (obtain* << forms *)
.mets (obtain*-block < name << forms *)
.syne
.desc
The
.code obtain*
and
.code obtain*-block
macros implement a useful variation of
.code obtain
and
.codn obtain-block .
The
.code obtain*
macro differs from
.code obtain
in exactly one regard: prior to returning the function, it invokes
it one time, with the argument value
.codn nil .
Thus, the following equivalence holds
.verb
(obtain* forms ...) <--> (let ((f (obtain forms ...)))
(call f)
f)
.brev
In other words, the suspended block is immediately resumed, so that it executes
either to completion (in which case its value is discarded), or to its first
.code yield
or
.code yield-from
call (in which case the yielded value is discarded).
Note: the
.code obtain*
macro is useful in creating suspensions which accept data rather than
produce data.
The
.code obtain*-block
macro combines
.code obtain*
and
.code block
in the same manner that
.code obtain-block
combines
.code obtain
and
.codn block .
.TP* Example:
.verb
;; Pass three values into suspended block,
;; which get accumulated into list.
(let ((f (obtain*-block nil
(list (yield nil) (yield nil) (yield nil)))))
(call f 1)
(call f 2)
(call f 3)) -> (1 2 3)
;; Under obtain, extra call is required:
(let ((f (obtain-block nil
(list (yield nil) (yield nil) (yield nil)))))
(call f nil) ;; execute block to first yield
(call f 1) ;; resume first yield with 1
(call f 2)
(call f 3)) -> (1 2 3)
.brev
.coNP Macro @ suspend
.synb
.mets (suspend < block-name < var-name << body-form *)
.syne
.desc
The
.code suspend
operator captures a continuation up to the prompt given by the
symbol
.meta block-name
and binds it to the variable name given by
.metn var-name ,
which must be a symbol suitable for binding variables with
.codn let .
Each
.meta body-form
is then evaluated in the scope of the variable
.metn var-name .
When the last
.meta body-form
is evaluated, a non-local exit takes place to the block
named by
.meta block-name
(using the
.code sys:abscond-from
operator, so that unwinding isn't performed).
When the continuation bound to
.meta var-name
is invoked, a copy of the entire block
.meta block-name
is re-started, and in that copy, the
.code suspend
call appears to return normally, yielding the value which had been
passed to the continuation.
.TP* Example
Define John McCarthy's
.code amb
function using
.code block
and
.codn suspend :
.verb
(defmacro amb-scope (. forms)
^(block amb-scope ,*forms))
(defun amb (. args)
(suspend amb-scope cont
(each ((a args))
(when (and a (call cont a))
(return-from amb a)))))
.brev
Use
.code amb
to bind the of
.code x
and
.code y
which satisfy the predicate
.mono
.meti (eql (* x y) 8)
.onom
non-deterministically:
.verb
(amb-scope
(let ((x (amb 1 2 3))
(y (amb 4 5 6)))
(amb (eql (* x y) 8))
(list x y)))
-> (2 4)
.brev
.coNP Macros @ hlet and @ hlet*
.synb
.mets (hlet >> ({ sym | >> ( sym << init-form )}*) << body-form *)
.mets (hlet* >> ({ sym | >> ( sym << init-form )}*) << body-form *)
.syne
.desc
The
.code hlet
and
.code hlet*
macros behave exactly like
.code let
and
.codn let* ,
respectively except that they guarantee that the variable bindings are
allocated in storage which isn't captured by delimited continuations.
The
.code h
in the names stands for "heap", serving as a mnemonic based on the
implementation concept of these bindings being "heap-allocated".
.SS* Regular Expression Library
\*(TX provides a "pure" regular expression implementation based on automata
theory, which equates regular expressions, finite automata and sets of strings.
A regular expression determines whether or not a string of input characters
belongs to a set. \*(TX regular expressions do not support features such
as as "anchoring" a match to the start or end of a string, or capture of
parenthesized sub-expression matches into registers. Parenthesis syntax
denotes only grouping, with no additional meaning.
The semantics of whether a regular expression is used for a substring
search, prefix match, suffix match, string splitting and so forth comes from
the functions which use regular expressions to perform these operations.
.NP* Regular Expressions as Functions
.synb
.mets >> [ regex >> [ start <> [ from-end ]] < string ]
.syne
.desc
A regular expression is callable as a function in \*(TL.
When used this way, it requires a string argument. It searches
the string for the leftmost match for itself, and returns
the matching substring, which could be empty. If no match is
found, it returns
.codn nil .
A regex takes one, two, or three arguments. The required
.meta string
is always the rightmost argument. This allows for convenient
partial application of the optional arguments using
macros in the
.code op
family, and macros in which the
.code op
syntax is implicit.
The optional arguments
.meta start
and
.meta from-end
are treated exactly as their like-named counterparts in the
.code search-regst
function.
.TP* Example:
Keep those elements from a list of strings which match
the regular expression
.codn #/a.*b/ :
.verb
(keep-if #/a.*b/ '#"abracadabra zebra hat adlib adobe deer")
--> ("abracadabra" "adlib" "adobe")
.brev
.coNP Functions @, search-regex @ range-regex and @ search-regst
.synb
.mets (search-regex < string < regex >> [ start <> [ from-end ]])
.mets (range-regex < string < regex >> [ start <> [ from-end ]])
.mets (search-regst < string < regex >> [ start <> [ from-end ]])
.syne
.desc
The
.code search-regex
function searches through
.meta string
starting
at position
.meta start
for a match for
.metn regex .
If
.meta start
is omitted, the search starts at position 0. If
.meta from-end
is specified and has a
.cod2 non- nil
value, the search
proceeds in reverse, from the position just beyond the last character of
.metn string ,
toward
.metn start .
if
.meta start
exceeds the length of the string, then
.code search-regex
returns
.codn nil .
If
.meta start
is negative then it indicates positions from the end of the string,
such that -1 is the last character, -2 the second last and so forth.
If the value is so negative that it refers beyond the start of
the string, then the starting position is deemed to be zero.
If
.meta start
is equal to the length of
.metn string ,
and thus refers to the position one character past its
length, then a match occurs at that position if
.meta regex
admits such a match.
The
.code search-regex
function returns
.code nil
if no match is found, otherwise it returns
a cons, whose
.code car
indicates the position of the match, and whose
.code cdr
indicates the length of the match.
If
.meta regex
is capable of matching empty strings, and no other kind of match
is found within
.metn string ,
then search regex reports a zero length match. If
.meta from-end
is false, then this match is reported at
.metn start ,
otherwise it is reported at the position one character beyond
the end of the string.
The
.code range-regex
function is similar to
.codn search-regex ,
except that when
a match is found, it returns a position range, rather than a position
and length. A range object is returned whose
.code from
field indicates the position
of the match, and whose
.code to
indicates the position one element past the
last character of the match. If the match is empty, the two integers
are equal.
Also see the
.code rr
function, which provides an alternative argument syntax for
the semantics of
.codn range-regex .
The
.code search-regst
differs from
.code search-regex
in the representation of the return value in the matching case.
Rather than returning the position and length of the match,
it returns the matching substring of
.metn string .
.coNP Functions @ match-regex and @ match-regst
.synb
.mets (match-regex < string < regex <> [ position ])
.mets (match-regst < string < regex <> [ position ])
.syne
.desc
The
.code match-regex
function tests whether
.meta regex
matches at
.meta position
in
.metn string .
If
.meta position
is not specified, it is taken to be zero. Negative values
of
.meta position
index from the right end of the string such that -1
refers to the last character. Excessively negative
values which index before the first character cause
.code nil
to be returned.
If the regex matches, then the length of the match is returned.
If it does not match, then
.code nil
is returned.
The
.code match-regst
differs from
.code match-regex
in the representation of the return value in the matching case.
Rather than returning the length of the match, it returns
matching substring of
.metn string .
.coNP Functions @ match-regex-right and @ match-regst-right
.synb
.mets (match-regex-right < string < regex <> [ end-position ])
.mets (match-regst-right < string < regex <> [ end-position ])
.syne
.desc
The
.code match-regex-right
function tests whether some substring of
.meta string
which terminates at the character position just before
.meta end-position
matches
.metn regex .
If
.meta end-position
is not specified, it defaults to the length of the string, and the function
performs a right-anchored regex match.
The
.meta end-position
argument can be a negative integer, in which case it denotes
positions from the end of the string, such that -1 refers
to the last character. If the value is excessively negative such
that the position immediately before it is before the start
of the string, then
.code nil
is returned.
If
.meta end-position
is a positive value beyond the length of
.metn string ,
then, likewise,
.code nil
is returned.
If a match is found, then the length of the match is returned.
A more precise way of articulating the role of
.meta end-position
is that for the purposes of matching,
.code string
is considered to terminate just before
.metn end-position :
in other words, that
.meta end-position
is the length of the string. The match is then anchored to the
end of this effective string.
The
.code match-regst-right
differs from
.code match-regst-right
in the representation of the return value in the matching case.
Rather than returning the length of the match, it returns
the matching substring of
.metn string .
.TP* Examples:
.verb
;; Return matching portion rather than length thereof.
(defun match-regex-right-substring (str reg : end-pos)
(set end-pos (or end-pos (length str)))
(let ((len (match-regex-right str reg end-pos)))
(if len
[str (- end-pos len)..end-pos]
nil)))
(match-regex-right-substring "abc" #/c/) -> ""
(match-regex-right-substring "acc" #/c*/) -> "cc"
;; Regex matches starting at multiple positions, but all
;; the matches extend past the limit.
(match-regex-right-substring "acc" #/c*/ 2) -> nil
;; If the above behavior is not wanted, then
;; we can extract the string up to the limiting
;; position and do the match on that.
(match-regex-right-substring ["acc" 0..2] #/c*/) -> "c"
;; Equivalent of above call
(match-regex-right-substring "ac" #/c*/) -> "c"
.brev
.coNP Function @ regex-prefix-match
.synb
.mets (regex-prefix-match < regex < string <> [ position ])
.syne
.desc
The
.code regex-prefix-match
determines whether the input string might
might be the prefix of a string which matches regular expression
.metn regex .
The result is true if the input string matches
.meta regex
exactly. However, it is also true in situations in which
the input string doesn't match
.metn regex ,
yet can be extended with one or more additional characters beyond the end such
that the extended string
.B does
match.
The
.meta string
argument must be a character string. The function takes the input string to be
the suffix of
.meta string
which starts at the character position indicated by the
.meta position
argument. If that argument is omitted, then
.meta string
is taken as the input in its entirety. Negative values index backwards from
the end of
.meta string
according to the usual conventions elsewhere in the library.
Note: this function is not to be confused for the semantics
of a regex matching a prefix of a string: that capability is
provided by the functions
.codn match-regex ,
.codn m^ ,
.codn r^ ,
.code f^
and
.codn fr^ .
.TP* Examples:
.verb
;; The empty string is not a viable prefix match for
;; a regex that matches no strings at all:
(regex-prefix-match #/~.*/ "") -> nil
(regex-prefix-match #/[]/ "") -> nil
;; The empty string is a viable prefix of any regex
;; which matches at least one string:
(regex-prefix-match #// "") -> t
(regex-prefix-match #/abc/ "") -> t
;; This string doesn't match the regex because
;; it doesn't end in b, but is a viable prefix:
(regex-prefix-match #/a*b/ "aa") -> t
(regex-prefix-match #/a*b/ "ab") -> t
(regex-prefix-match #/a*b/ "ac") -> nil
(regex-prefix-match #/a*b/ "abc") -> nil
.brev
.coNP Function @ regsub
.synb
.mets (regsub >> { regex | << function } < replacement << string )
.syne
.desc
The
.code regsub
function operates in two modes, depending on whether
the first argument is a regular expression,
or function.
If the first argument is a regular expression it searches
.meta string
for multiple occurrences of non-overlapping matches for that
.metn regex .
A new string is constructed
similar to
.meta string
but in which each matching region is replaced
with using
.meta replacement
as follows.
The
.meta replacement
object may be a character or a string, in which
case it is simply taken to be the replacement for each match
of the regular expression.
The
.meta replacement
object may be a function of one argument, in
which case for every match which is found, this function is invoked,
with the matching piece of text as an argument. The function's
return value is then taken to be the replacement text.
If the first argument is a function, then it is called, with
.meta string
as its argument. The return value must be either a range
object (see the
.code rcons
function) which indicates the extent of
.meta string
to be replaced, or else
.code nil
which indicates that no replacement is to take place.
.TP* Examples:
.verb
;; match every lower case e or o, and replace by filtering
;; through the upcase-str function:
[regsub #/[eo]/ upcase-str "Hello world!"] -> "HEllO wOrld!"
;; Replace Hello with Goodbye:
(regsub #/Hello/ "Goodbye" "Hello world!") -> "Goodbye world!"
;; Left-anchored replacement with r^ function:
(regsub (fr^ #/H/) "J" "Hello, hello!") -> "Jello, hello!"
.brev
.coNP Function @ regexp
.synb
.mets (regexp << obj )
.syne
.desc
The
.code regexp
function returns
.code t
if
.meta obj
is a compiled regular expression
object. For any other object type, it returns
.codn nil .
.coNP Functions @ trim-left and @ trim-right
.synb
.mets (trim-left >> { regex | << prefix } << string )
.mets (trim-right >> { regex | << suffix } << string )
.syne
.desc
The
.code trim-left
and
.code trim-right
functions return a new string, equivalent to
.meta string
with a leading or trailing portion removed.
If the first argument is a regular expression
.metn regex ,
then, respectively,
.code trim-left
and
.code trim-right
find a prefix or suffix of
.meta string
which matches the regular expression.
If there is no match, or if the match is empty, then
.meta string
is returned. Otherwise, a copy of
.meta string
is returned in which the matching characters are removed.
If
.meta regex
matches all of
.meta string
then the empty string is returned.
If the first argument is a character string, then it is treated
as if it were a regular expression match for that literal
sequence of characters. Thus,
.code trim-left
interprets that string as a
.meta prefix
to be removed, and
.code trim-right
as a
.metn suffix .
If
.meta string
starts with
.metn prefix ,
then
.code trim-left
returns a copy of
.meta string
with
.meta prefix
removed. Otherwise,
.meta string
is returned.
Likewise, if
.meta string
ends with
.metn suffix ,
then
.code trim-right
returns a copy of
.meta string
with
.meta suffix
removed. Otherwise,
.meta string
is returned.
.coNP Function @ regex-compile
.synb
.mets (regex-compile < form-or-string <> [ error-stream ])
.syne
.desc
The
.code regex-compile
function takes the source code of a regular expression,
expressed as a Lisp data structure representing an abstract syntax tree, or
else a regular expression specified as a character string, and compiles it to a
regular expression object.
If
.meta form-or-string
is a character string, it is parsed to an
abstract syntax tree first, if by the
.code regex-parse
function.
If the parse is successful (the result is not
.codn nil )
then
the resulting tree structure is compiled by a recursive call to
.codn regex-compile .
The optional
.meta error-stream
argument is passed down to
.code regex-parse
as well as in the recursive call to
.codn regex-compile ,
if that call takes place.
If
.meta error-stream
is specified, it must be a stream. Any error diagnostics are sent to that
stream.
.TP* Examples:
.verb
;; the equivalent of #/[a-zA-Z0-9_/
(regex-compile '(set (#\ea . #\ez) (#\eA . #\eZ)
(#\e0 . #\e9) #\e_))
;; the equivalent of #/.*/ and #/.+/
(regex-compile '(0+ wild))
(regex-compile '(1+ wild))
;; #/a|b|c/
(regex-compile '(or (or #\ea #\eb) #\ec))
;; string
(regex-compile "a|b|c")
.brev
.coNP Function @ regex-source
.synb
.mets (regex-source << regex )
.syne
.desc
The
.code regex-source
function returns the source code of compiled regular expression
.metn regex .
The source code isn't the textual notation, but the Lisp
data structure representing the abstract syntax tree: the
same representation as what is returned by
.codn regex-parse .
.coNP Function @ regex-parse
.synb
.mets (regex-parse < string <> [ error-stream ])
.syne
.desc
The
.code regex-parse
function parses a character string which contains a regular expression and
turns it into a Lisp data structure (the abstract syntax tree representation of
the regular expression).
The regular expression syntax
.code #/RE/
produces the same structure, but as a
literal which is processed at the time \*(TX source code is read; the
.code regex-parse
function performs this parsing at run-time.
If there are parse errors, the function returns
.codn nil .
The optional
.meta error-stream
argument specifies a stream to which error messages
are sent from the parser. By default, diagnostic output goes to the
.code *stdnull*
stream, which discards it. If
.meta error-stream
is specified as
.codn t ,
then the diagnostic output goes to the
.code *stdout*
stream.
If
.code regex-parse
returns a
.cod2 non- nil
value, that structure is then something
which is suitable as input to
.codn regex-compile .
There is a small difference in the syntax accepted by
.code regex-parse
and the syntax of regular expression literals. Any
.code /
(slash) characters occurring in any position within
.meta string
are treated as ordinary characters, not as regular expression delimiters.
The call
.mono
(regex-parse "/a/")
.onom
matches three characters: a slash, followed by the letter "a", followed
by another slash. Note that the slashes are not escaped.
Note: if a
.code regex-parse
call is written using a string literal as the
.meta string
argument, then note that any backslashes which are to be processed
by the regular expression must be doubled up, otherwise they belong
to the string literal:
.verb
(regex-parse "\e*") ;; error, invalid string literal escape
(regex-parse "\e\e*") ;; correct: the \e* literal match for *
.brev
The double backslash in the string literal produces a single backslash
in the resulting string object that is processed by
.codn regex-parse .
.coNP Function @ read-until-match
.synb
.mets (read-until-match < regex >> [ stream <> [ include-match ]])
.syne
.desc
The
.code read-until-match
function reads characters from
.metn stream ,
accumulating them into a string, which is returned.
If an argument is not specified for
.metn stream ,
then the
.code *stdin*
stream is used.
The
.meta include-match
argument is Boolean, indicating whether the delimiting text
matched by
.meta regex
is included in the returned string. It defaults to
.codn nil .
The accumulation of characters is terminated by a match on
.metn regex ,
the end of the stream, or an error.
This means that characters are read from the stream and accumulated while the
stream has more characters available, and while its prefix does not match
.metn regex .
If
.meta regex
matches the stream before any characters are accumulated,
then an empty string is returned.
If the stream ends or an non-exception-throwing error occurs before any
characters are accumulated, the function returns
.codn nil .
When the accumulation of characters terminates by a match on
.metn regex ,
the longest possible matching sequence of characters is
removed from the stream. If
.meta include-match
is true, that matching text is included in
the returned string. Otherwise, it is discarded.
The next available character in the stream is the first
non-matching character following the matched text.
However, the next available character, as well as some number of
subsequent characters, may originate from the stream's push-back buffer,
rather than from the underlying operating system object,
due to this function's internal use of the
.code unget-char
function. Therefore, the stream position, as would be reported by
.codn seek-stream ,
is unspecified.
.coNP Functions @ scan-until-match and @ count-until-match
.synb
.mets (scan-until-match < regex <> [ stream ])
.mets (count-until-match < regex <> [ stream ])
.syne
.desc
The functions
.code scan-until-match
and
.code count-until-match
read characters from
.meta stream
until a match occurs in the stream for regular expression
.metn regex ,
the stream runs out of characters, or an error occurs.
If the stream runs out of characters, or a non-exception-throwing error
occurs, before a match for
.meta regex
is identified, these functions return
.codn nil .
If a match for
.meta regex
occurs in
.metn stream ,
then
.code count-until-match
returns the number of characters that were read and discarded prior to
encountering the first matching character.
In the same situation, the
.code scan-until-match
function returns a
.code cons
cell whose
.code car
holds the count of discarded characters, that being the same value as what
would be returned by
.codn count-until-match ,
and whose
.code cdr
holds a character string that comprises the text matched by
.metn regex .
The text matched by
.meta regex
is as long as possible, and is removed from the stream.
The next available character in the stream is the first
non-matching character following the matched text.
However, the next available character, as well as some number of
subsequent characters, may originate from the stream's push-back buffer,
rather than from the underlying operating system object,
due to these functions' internal use of the
.code unget-char
function. Therefore, the stream position, as would be reported by
.codn seek-stream ,
is unspecified.
.coNP Functions @, m^$ @ m^ and @ m$
.synb
.mets (m^$ < regex <> [ position ] << string )
.mets (m^ < regex <> [ position ] << string )
.mets (m$ < regex <> [ end-position ] << string )
.syne
.desc
These functions provide functionality similar to the
.meta match-regst
and
.meta match-regst-right
functions, but under alternative interfaces which are more
convenient.
The
.code ^
and
.code $
notation used in their names are an allusion to the
regular expression search anchoring operators found in
familiar POSIX utilities such as
.codn grep .
The
.meta position
argument, if omitted,
defaults to zero, so that the
entire
.meta string
is operated upon.
The
.meta end-position
argument defaults to the length of
.metn string ,
so that the end position coincides with the end of the
string.
If the
.meta position
or
.meta end-position
arguments are negative, they index backwards
from the length of
.meta string
so that -1 denotes the last character.
A value in either parameter which is excessively
negative or positive, such that it indexes before
the start of the string or exceeds its length
results in a failed match and consequently
.code nil
being returned.
The
.code m^$
function tests whether the entire portion of
.meta string
starting at
.meta position
through to the end of the string is in the set of strings
matched by
.metn regex .
If this is true, then that portion of the string is
returned. Otherwise
.code nil
is returned.
The
.code m^
function tests whether the portion of the
.meta string
starting at
.meta position
has a prefix which matches
.metn regex .
If so, then this matching prefix is returned.
Otherwise
.code nil
is returned.
The
.code m$
function tests whether the portion of
.meta string
ending just before
.meta end-position
has a suffix which matches
.metn regex .
If so, then this matching suffix is returned.
Otherwise
.code nil
is returned.
.coNP Functions @, r^$ @, r^ @ r$ and @ rr
.synb
.mets (r^$ < regex <> [ position ] << string )
.mets (r^ < regex <> [ position ] << string )
.mets (r$ < regex <> [ end-position ] << string )
.mets (rr < regex >> [ position <> [ from-end ]] << string )
.syne
.desc
The first three of these functions perform the same operations as,
respectively,
.codn m^$ ,
.code m^
and
.codn m$ ,
with the same argument conventions. They differ
in return value. When a match is found, they
return a range value indicating the extent of
the matching substring within
.meta string
rather than the matching substring itself.
The
.code rr
function performs the same operation as
.code range-regex
with different conventions with regard to argument
order, harmonizing with those of the other three functions above.
The
.meta position
argument, if omitted,
defaults to zero, so that the
entire
.meta string
is operated upon.
The
.meta end-position
argument defaults to the length of
.metn string ,
so that the end position coincides with the end of the
string.
With one exception, a value in either parameter which is excessively negative
or positive, such that it indexes before the start of the string or exceeds its
length results in a failed match and consequently
.code nil
being returned. The exception is that the
.code rr
function permits a negative
.meta position
value which refers before the start of the string; this is effectively
treated as zero.
The
.meta from-end
argument defaults to
.codn nil .
The
.code r^$
function tests whether the entire portion of
.meta string
starting at
.meta position
through to the end of the string is in the set of strings
matched by
.metn regex .
If this is true, then the matching range is returned,
as a range object.
The
.code r^
function tests whether the portion of the
.meta string
starting at
.meta position
has a prefix which matches
.metn regex .
If so, then the matching range is returned, as a range object.
Otherwise
.code nil
is returned.
The
.code r$
function tests whether the portion of
.meta string
ending just before
.meta end-position
has a suffix which matches
.metn regex .
If so, then the matching range is returned.
Otherwise
.code nil
is returned.
The
.code rr
function searches
.meta string
starting at
.meta position
for a match for
.codn regex .
If
.meta from-end
is specified and true, the rightmost
match is reported.
If a match is found, it is reported
as a range.
A regular expression which matches empty
strings matches at the start position,
and every other position, including
the position just after the last
character, coinciding with the length of
.metn string .
Except for the different argument order such that
.meta string
is always the rightmost argument, the
.code rr
function is equivalent to the
.code range-regex
function, such that correspondingly named
arguments have the same semantics.
.coNP Function @ rra
.synb
.mets (rra < regex >> [ start <> [ end ]] << string )
.syne
.desc
The
.code rra
function searches
.meta string
between the
.meta start
and
.meta end
position for matches for the regular expression
.metn regex .
The matches are returned as a list of range objects.
The
.meta start
argument defaults to zero, and
.meta end
defaults to the length of the string (the position one
past the last character).
Negative values of
.meta start
and
.meta end
indicate positions from the end of the string, such that -1
denotes the last character, -2 the second-to-last and so forth.
If
.meta start
is so negative that it refers before the start of
.metn string ,
it is treated as zero. If this situation is true of the
.meta end
argument, then the function returns
.codn nil .
If
.meta start
refers to a character position beyond the length of
.meta string
(two characters or more beyond the end of the string),
then the function returns
.codn nil .
If this situation is true of
.metn end ,
then
.meta end
is is curtailed to the the string length.
The
.code rra
function returns all non-overlapping matches, including
zero length matches. Zero length matches may occur before
the first character of the string, or after the last
character. If so, these are included.
.coNP Functions @, f^$ @ f^ and @ f$
.synb
.mets (f^$ < regex <> [ position ])
.mets (f^ < regex <> [ position ])
.mets (f$ < regex <> [ end-position ])
.syne
.desc
These regular expression functions do not directly
perform regex operations. Rather, they each return
a function of one argument which performs a regex
operation.
The returned functions perform the same operations as,
respectively,
.codn m^$ ,
.code m^
and
.codn m$ .
The following equivalences nearly hold, except that the functions
on the right side produced by
.code op
can accept two arguments when only
.code r
is curried, whereas the functions on the left take only
one argument:
.verb
[f^$ r] <--> (op m^$ r)
[f^$ r p] <--> (op m^$ r p)
[f^ r] <--> (op m^ r)
[f^ r p] <--> (op m^ r p)
[f$ r] <--> (op m$ r)
[f$ r p] <--> (op m$ r p)
.brev
That is to say,
.code f^$
returns a function which binds
.meta regex
and possibly the optional
.metn position .
When this function is invoked, it must be given an argument
which is a string. It performs the same operation as
.code m^$
being called on
.meta regex
and possibly
.metn position .
The same holds between
.code f^
and
.codn m^ ,
and between
.code f$
and
.codn m$ .
.TP* Examples:
.verb
;; produce list which contains only strings
;; beginning with "cat":
(keep-if (f^ #/cat/) '#"dog catalog cat fox catapult")
--> ("catalog" "cat" "catapult")
;; map all strings in a list to just their trailing
;; digits.
(mapcar (f$ #/\ed*/) '#"a123 4 z bc465")
--> ("123" "4" "" "465")
;; check that all strings consist of digits after
;; the third position.
(all '#"ABC123 DFE45 12379" (f^$ #/\ed*/ 3))
--> "79" ; i.e. true
(all '#"ABC123 DFE45 12379A" (f^$ #/\ed*/ 3))
--> nil
.brev
.coNP Functions @, fr^$ @, fr^ @ fr$ and @ frr
.synb
.mets (fr^$ < regex <> [ position ])
.mets (fr^ < regex <> [ position ])
.mets (fr$ < regex <> [ end-position ])
.mets (frr < regex <> [[ start-position ] << from-end ])
.syne
.desc
These regular expression functions do not directly
perform regex operations. Rather, they each return
a function of one argument which performs a regex
operation.
The returned functions perform the same operations as,
respectively,
.codn r^$ ,
.codn r^ ,
.code r$
and
.codn rr .
The following equivalences nearly hold, except that some of the
functions on the right side produced by op
.code op
can accept additional arguments after the input string,
whereas the functions on the left produced by
.code f^$
.I "et al."
accept only one parameter: the input string.
.verb
[fr^$ r] <--> (op m^$ r)
[fr^$ r p] <--> (op m^$ r p)
[fr^ r] <--> (op m^ r)
[fr^ r p] <--> (op m^ r p)
[fr$ r] <--> (op m$ r)
[fr$ r p] <--> (op m$ r p)
[frr r] <--> (op m$ r)
[frr r s] <--> (op m$ r s)
[frr r s fe] <--> (op m$ r s fe)
.brev
That is to say,
.code fr^$
returns a function which binds
.meta regex
and possibly the optional
.metn position .
When this function is invoked, it must be given an argument
which is a string. It performs the same operation as
.code r^$
being called on
.meta regex
and possibly
.metn position ,
and the string.
The same holds between
.code fr^
and
.codn r^ ,
between
.code fr$
and
.codn r$ ,
and between
.code frr
and
.codn rr .
.TP* Examples:
.verb
;; Remove leading digits from "123A456",
;; other than first digit:
(regsub (fr^ #/\ed+/ 1) "" "123A456")
--> "1A456"
.brev
.SS* Hashing Library
A hash table is an object which retains an association between pairs of
objects. Each pair consists of a key and value. Given an object which is
similar to a key in the hash table, it is possible to retrieve the
corresponding value. Entries in a hash table are not ordered in any way, and
lookup is facilitated by hashing: quickly mapping a key object to a numeric
value which is then used to index into one of many buckets where the matching
key will be found (if such a key is present in the hash table).
In addition to keys and values, a hash table contains a storage location
which allows it to be associated with user data.
Important to the operation of a hash table is the criterion by which keys are
considered same. By default, this similarity follows the eql function. A hash
table will search for a stored key which is
.code eql
to the given search key.
A hash table constructed with the
.codn equal -based
property compares keys using
the
.code equal
function instead.
In addition to storing key-value pairs, a hash table can have a piece of
information associated with it, called the user data.
\*(TX hash tables contain a seed value which permutes the hashing operation,
at least for keys of certain types. This feature, if the seed is randomized,
helps to prevent software from being susceptible to hash collision
denial-of-service attacks. However, by default, the seed is not randomized.
Newly created hash tables for which a seed value is not specified take their
seed value from the
.code *hash-seed*
special variable, which is initialized to zero. That includes hash tables
created by parsing hash literal syntax.
Security-sensitive programs
requiring protection against collision attacks may use
.code gen-hash-seed
to create a randomized hash seed, and, depending on their specific need, either
store that value in
.codn *hash-seed* ,
or pass the value to hash table constructors like
.codn make-hash ,
or both.
Note: randomization of hash seeding isn't a default behavior because it affects
program reproducibility. The seed value affects the order in which keys are
traversed, which can change the output of programs whose inputs have not
changed, and whose logic is is otherwise deterministic.
A hash table can be traversed to visit all of the keys and data. The order of
traversal bears no relation to the order of insertion, or to any properties of
the key type.
During an open traversal, new keys can be inserted into a hash table or deleted
from it while a a traversal is in progress. Insertion of a new key during
traversal will not cause any existing key to be visited twice or to be skipped;
however, it is not specified whether the new key will be traversed. Similarly,
if a key is deleted during traversal, and that key has not yet been visited, it
is not specified whether it will be visited during the remainder of the
traversal. These remarks apply not only to deletion via
.code remhash
or the
.code del
operator, but also to wholesale deletion of all keys via
.codn clearhash .
The garbage collection of hash tables supports weak keys and weak values.
If a hash table has weak keys, this means that from the point of view
of garbage collection, that table holds only weak references to the keys
stored in it. Similarly, if a hash table has weak values, it means that it
holds a weak reference to each value stored. A weak reference is one
which does not prevent the reclamation of an object by the garbage
collector. That is to say, when the garbage collector discovers that the only
references to some object are weak references, then that object is considered
garbage, just as if it had no references to it. The object is reclaimed, and
the weak references "lapse" in some way, which depends on what kind they are.
Hash table weak references lapse by entry removal. When an object used
as a key in in one or more weak-key hash tables becomes unreachable, those hash
entries disappear. This happens even if the values are themselves reachable.
That is what it means that.
.IR "Vice versa" ,
when an object appearing as a value in
one or more hash table entries in weak-value hash tables becomes unreachable,
those entries disappear, even if the keys are reachable. When a hash table has
both weak keys and weak values, then its entries are removed when either keys
or values become unreachable. In other words, both the key and value must be
reachable in order to retain the entry.
An open traversal of a hash table is performed by the
.code maphash
function and the
.code dohash
operator. The traversal is open because code supplied by the program
is evaluated for each entry.
The functions
.codn hash-keys ,
.codn hash-values ,
.codn hash-pairs ,
and
.code hash-alist
also perform an open traversal, because they return
lazy lists. The traversal isn't complete until the returned lazy list
is fully instantiated. In the meanwhile, the
\*(TX program can mutate the hash table from which the lazy list
is being generated.
Certain hash operations expose access to the internal key-value association
entries of a hash table, which are represented as ordinary
.code cons
cells. Modifying the
.code car
field of such a cell potentially violates the integrity of the hash table;
the behavior of subsequent lookup and insertion operations becomes unspecified.
Similarly, if an object is used as a key in an
.codn equal -based
hash table, and that object is mutated in such a way that its equality to
other objects under the
.code equal
function is affected or its hash value under
.code hash-equal
is altered, the behavior of subsequent lookup and insertion operations on the
becomes unspecified.
.coNP Functions @ make-hash and @ hash
.synb
.mets (make-hash < weak-keys < weak-vals
.mets \ \ \ \ \ \ \ \ \ \ < equal-based <> [ hash-seed ])
.mets (hash {:weak-keys | :weak-vals |
.mets \ \ \ \ \ \ :eql-based | :equal-based |
.mets \ \ \ \ \ \ :eq-based | :userdata << obj }*)
.syne
.desc
These functions construct a new hash table.
.code make-hash
takes three mandatory Boolean arguments. The
.meta weak-keys
argument specifies whether the hash table shall have weak keys. The
.meta weak-vals
argument specifies whether it shall have weak values, and
.meta equal-based
specifies whether it is
.codn equal -based.
The hash function defaults
all three of these properties to false, and allows them to be overridden to
true by the presence of keyword arguments.
The optional
.meta hash-seed
parameter must be an integer, if specified. Its value perturbs the hashing
function of the hash table, which affects
.code :equal-based
hash tables, when character strings and buffers are used as keys.
If
.meta hash-seed
is omitted, then the value of the
.code *hash-seed*
variable is used as the seed.
It is an error to attempt to construct an
.codn equal -based
hash table which has weak keys.
The
.code hash
function provides an alternative interface. It accepts optional
keyword arguments. The supported keyword symbols are:
.codn :weak-keys ,
.codn :weak-vals ,
.codn :equal-based ,
.code :eql-based
.code :eq-based
and
.code :userdata
which can be specified in any order to turn on the corresponding properties in
the newly constructed hash table.
Only one of
.codn :equal-based ,
.code :eql-based
and
.code :eq-based
may be specified. If specified, then the hash table uses
.codn equal ,
.code eql
or
.code eq
equality, respectively, for considering two keys to be the same key.
If none of these is specified, the
.code hash
function produces an
.code :equal-based
hash table by default.
If
.code :weak-keys
is specified, then
.code :equal-based
may not be specified.
If
.code :userdata
is present, it must be followed by an argument value; that value
specifies the user data for the hash table, which can be retrieved using the
.code hash-userdata
function.
Note: there doesn't exist a keyword for specifying the seed.
This omission is deliberate. These hash construction keywords may appear in the
hash literal
.code #H
syntax. A seed keyword would allow literals to specify their own seed, which
would allow malicious hash literals to be crafted that perpetrate a hash
collision attack against the parser.
.coNP Functions @, hash-construct @ hash-from-pairs and @ hash-from-alist
.synb
.mets (hash-construct < hash-args << key-val-pairs )
.mets (hash-from-pairs < key-val-pairs << hash-arg *)
.mets (hash-from-alist < alist << hash-arg *)
.syne
.desc
The
.code hash-construct
function constructs a populated hash in one step. The
.meta hash-args
argument specifies a list suitable as an argument list in a call to the hash
function. The
.meta key-val-pairs
is a sequence of pairs, which are two-element
lists representing key-value pairs.
A hash is constructed as if by a call to
.mono
.meti (apply hash << hash-args ),
.onom
then populated
with the specified pairs, and returned.
The
.code hash-from-pairs
function is an alternative interface to the same semantics. The
.meta key-val-pairs
argument is first, and the
.meta hash-args
are passed as trailing variadic arguments, rather than a single list argument.
The
.code hash-from-alist
function is similar to
.codn hash-from-pairs ,
except that the
.meta alist
argument specifies they keys and values as an association list.
The elements of the list are
.code cons
cells, each of whose
.code car
is a key, and whose
.code cdr
is the value.
.coNP Function @ hash-list
.synb
.mets (hash-list < key-list << hash-arg *)
.syne
.desc
The
.code hash-list
function constructs a hash as if by a call to
.mono
.meti [apply hash << hash-args ],
.onom
where
.meta hash-args
is a list of the individual
.meta hash-arg
variadic arguments.
The hash is then populated with keys taken from
.meta key-list
and returned.
The value associated with each key is that key itself.
.coNP Function @ hash-zip
.synb
.mets (hash-zip < key-seq < value-seq << hash-arg *)
.syne
.desc
The
.code hash-zip
function constructs a hash as if by a call to
.mono
.meti (apply hash << hash-args ),
.onom
where
.meta hash-args
is a list of the individual
.meta hash-arg
variadic arguments.
The hash is then populated with keys taken from
.meta key-seq
which are paired with values taken from from
.metn value-seq ,
and returned.
If
.meta key-seq
is longer than
.metn value-seq ,
then the excess keys are ignored, and
.IR "vice versa" .
.coNP Function @ hash-update
.synb
.mets (hash-update < hash << function )
.syne
.desc
The
.code hash-update
function replaces each value in
.metn hash ,
with the value of
.meta function
applied to that value.
The return value is
.metn hash .
.coNP Function @ hash-update-1
.synb
.mets (hash-update-1 < hash < key < function <> [ init ])
.syne
.desc
The
.code hash-update-1
function operates on a single entry in the hash table.
If
.meta key
exists in the hash table, then its corresponding value is passed
into
.metn function ,
and the return value of
.meta function
is then installed
in place of the key's value. The value is then returned.
If
.meta key
does not exist in the hash table, and no
.meta init
argument is given,
then
.code hash-update-1
does nothing and returns
.codn nil .
If
.meta key
does not exist in the hash table, and an
.meta init
argument is given,
then
.meta function
is applied to
.metn init ,
and then
.meta key
is inserted into
.meta hash
with the value returned by
.meta function
as the datum. This value
is also returned.
.coNP Function @ group-by
.synb
.mets (group-by < func < sequence << option *)
.syne
.desc
The
.code group-by
function produces a hash table from
.metn sequence ,
which is a
list or vector. Entries of the hash table are not elements of
.metn sequence ,
but lists of elements of
.metn sequence .
The function
.meta func
is applied to
each element of
.meta sequence
to compute a key. That key is used to determine
which list the item is added to in the hash table.
The trailing arguments
.mono
.meti << option *
.onom
if any, consist of the same keywords
that are understood by the hash function, and determine the properties
of the hash.
.TP* Example:
Group the integers from 0 to 10 into three buckets keyed on 0, 1 and 2
according to the modulo 3 congruence:
.verb
(group-by (op mod @1 3) (range 0 10)))
-> #H(() (0 (0 3 6 9)) (1 (1 4 7 10)) (2 (2 5 8)))
.brev
.coNP Function @ group-reduce
.synb
.mets (group-reduce < hash < classify-fun < binary-fun < seq
.mets \ \ >> [ init-value <> [ filter-fun ]])
.syne
.desc
The
.code group-reduce
updates hash table
.meta hash
by grouping and reducing sequence
.metn seq .
The function regards the hash table as being populated with
keys denoting accumulator values. Missing accumulators which
need to be created in the hash table are initialized with
.meta init-value
which defaults to
.codn nil .
The function iterates over
.meta seq
and treats each element according to the following steps:
.RS
.IP 1.
Each element is mapped to a hash key through
.metn classify-fun .
.IP 2.
The value associated with the hash key (the accumulator for that
key) is retrieved. If it doesn't exist,
.meta init-value
is used.
.IP 3.
The function
.meta binary-fun
is invoked with two arguments: the accumulator from step 2, and the
original element from
.metn seq .
.IP 4.
The resulting value from step 3 is stored back into the hash table under the
key from step 2.
.RE
.IP
After the above processing, one more step is performed if the
.meta filter-fun
argument is present. In this case, the hash table is destructively mapped through
.meta filter-fun
before being returned. That is to say, every value in the hash table is
projected through
.meta filter-fun
and stored back in the table under the same key, as if by an invocation the
.mono
.meti (hash-update < hash << filter-fun )
.onom
expression.
.IP
If
.code group-reduce
is invoked on an empty hash table, its net result closely resembles a
.code group-by
operation followed by separately performing a
.code reduce-left
on each value in the hash.
.TP* Examples:
Frequency histogram:
.verb
[group-reduce (hash) identity (do inc @1)
"fourscoreandsevenyearsago" 0]
--> #H(() (#\ea 3) (#\ec 1) (#\ed 1) (#\ee 4) (#\ef 1)
(#\eg 1) (#\en 2) (#\eo 3) (#\er 3) (#\es 3)
(#\eu 1) (#\ev 1) (#\ey 1))
.brev
Separate the integers 1-10 into even and odd, and sum these groups:
.verb
[group-reduce (hash) evenp + (range 1 10) 0]
-> #H(() (t 30) (nil 25))
.brev
.coNP Functions @ make-similar-hash and @ copy-hash
.synb
.mets (make-similar-hash << hash )
.mets (copy-hash << hash )
.syne
.desc
The
.code make-similar-hash
and copy-hash functions create a new hash object based on
the existing
.meta hash
object.
.code make-similar-hash
produces an empty hash table which inherits all of the
attributes of
.metn hash .
It uses the same kind of key equality, the
same configuration of weak keys and values, and has the same user data (see
the
.code set-hash-userdata
function).
The
.code copy-hash
function is like
.codn make-similar-hash ,
except that instead of
producing an empty hash table, it produces one which has all the same elements
as
.metn hash :
it contains the same key and value objects.
.coNP Function @ inhash
.synb
.mets (inhash < hash < key <> [ init ])
.syne
.desc
The
.code inhash
function searches hash table
.meta hash
for
.metn key .
If
.meta key
is found, then it return the hash table's cons cell which
represents the association between
.meta hash
and
.metn key .
Otherwise, it returns
.codn nil .
If argument
.meta init
is specified, then the function will create
an entry for
.meta key
in
.meta hash
whose value is that of
.metn init .
The cons cell representing that association is returned.
Note: for as long as the
.meta key
continues to exist inside
.metn hash .
modifying the
.code car
field of the returned cons has ramifications for the logical integrity of
the hash; doing so results in unspecified behavior for subsequent
insertion and lookup operations.
Modifying the
.code cdr
field has the effect of updating the association with a new value.
.coNP Accessor @ gethash
.synb
.mets (gethash < hash < key <> [ alt ])
.mets (set (gethash < hash < key <> [ alt ]) << new-value )
.syne
.desc
The
.code gethash
function searches hash table
.meta hash
for key
.metn key .
If the
key is found then the associated value is returned. Otherwise, if
the
.meta alt
argument was specified, it is returned. If the
.meta alt
argument
was not specified,
.code nil
is returned.
A valid
.code gethash
form serves as a place. It denotes either an existing value in a hash
table or a value that would be created by the evaluation of the form.
The
.meta alt
argument is meaningful when
.code gethash
is used as a place, and, if present, is always evaluated whenever the place is
evaluated.
In place update operations, it provides the initial value, which defaults
to
.code nil
if the argument is not specified. For example
.code "(inc (gethash h k d))"
will increment the value stored under key
.code k
in hash table
.code h
by one. If the key does not exist in the hash table, then
the value
.code "(+ 1 d)"
is inserted into the table under that key.
The expression
.code d
is always evaluated, whether or not its value is needed.
If a
.code gethash
place is subject to a deletion, but doesn't exist, it is not an error.
The operation does nothing, and
.code nil
is considered the prior value of the place yielded
by the deletion.
.coNP Function @ sethash
.synb
.mets (sethash < hash < key << value )
.syne
.desc
The
.code sethash
function places a value into
.meta hash
table under the given
.metn key .
If a similar key already exists in the hash table, then that key's
value is replaced by
.metn value .
Otherwise, the
.meta key
and
.meta value
pair is
newly inserted into
.metn hash .
The
.code sethash
function returns the
.meta value
argument.
.coNP Function @ pushhash
.synb
.mets (pushhash < hash < key << element )
.syne
.desc
The
.code pushhash
function is useful when the values stored in a hash table
are lists. If the given
.meta key
does not already exist in
.metn hash ,
then a list of
length one is made which contains
.metn element ,
and stored in
.meta hash
table under
.metn key .
If the
.meta key
already exists in the hash table, then the corresponding
value must be a list. The
.meta element
value is added to the front of that list,
and the extended list then becomes the new value under
.metn key .
The return value is Boolean. If true, indicates that the hash table entry was
newly created. If false, it indicates that the push took place on an existing
entry.
.coNP Function @ remhash
.synb
.mets (remhash < hash << key )
.syne
.desc
The
.code remhash
function searches
.meta hash
for a key similar to the
.metn key .
If that key is found, then that key and its corresponding value are
removed from the hash table.
If the key is found and removal takes place, then the associated value
is returned. Otherwise
.code nil
is returned.
.coNP Function @ clearhash
.synb
.mets (clearhash << hash )
.syne
.desc
The
.code clearhash
function removes all keys-value pairs from
.metn hash ,
causing it to be empty.
If
.meta hash
is already empty prior to the operation, then
.codn nil ,
is returned.
Otherwise an integer is returned indicating the number of entries
that were purged from
.metn hash .
.coNP Function @ hash-count
.synb
.mets (hash-count << hash )
.syne
.desc
The
.code hash-count
function returns an integer representing the number of
key-value pairs stored in
.metn hash .
.coNP Accessor @ hash-userdata
.synb
.mets (hash-userdata << hash )
.mets (set (hash-userdata << hash ) << new-value )
.syne
.desc
The
.code hash-userdata
function retrieves the user data object associated with
.metn hash .
A hash table can be created with user data using the
.code :userdata
keyword in a hash table literal or in a call to the
.code hash
function, directly, or via other hash-constructing functions which take the
hash construction keywords, such as
.codn group-by .
If a hash table is created without user data, its user
data is initialized to
.codn nil .
Because
.code hash-userdata
is an accessor, a
.code hash-userdata
form can be used as a place. Assigning a value to this place
causes the user data of
.meta hash
to be replaced with that value.
.coNP Function @ get-hash-userdata
.synb
.mets (get-hash-userdata << hash )
.syne
.desc
The
.code get-hash-userdata
function is a deprecated synonym for
.codn hash-userdata .
.coNP Function @ set-hash-userdata
.synb
.mets (set-hash-userdata < hash << object )
.syne
.desc
The
.code set-hash-userdata
replaces, with the
.metn object ,
the user data object
associated with
.metn hash .
.coNP Function @ hashp
.synb
.mets (hashp << object )
.syne
.desc
The
.code hashp
function returns
.code t
if the
.meta object
is a hash table,
otherwise it returns
.codn nil .
.coNP Function @ maphash
.synb
.mets (maphash < hash << binary-function )
.syne
.desc
The
.code maphash
function successively invokes
.meta binary-function
for each entry stored in
.metn hash .
Each entry's key and value are passed as arguments
to
.codn binary-function .
The function returns
.codn nil .
.coNP Function @ hash-revget
.synb
.mets (hash-revget < hash < value >> [ testfun <> [ keyfun ]])
.syne
.desc
The
.code hash-revget
function performs a reverse lookup on
.metn hash .
It searches through the entries stored in
.meta hash
for an entry whose value matches
.metn value .
If such an entry is found, that entry's key is returned.
Otherwise
.code nil
is returned.
If multiple matching entries exist, it is not specified which entry's
key is returned.
The
.meta keyfun
function is applied to each value in
.meta hash
and the resulting value is compared with
.metn value .
The default
.meta keyfun
is the
.code identity
function.
The comparison is performed using
.metn testfun .
The default
.meta testfun
is the
.code eql
function.
.coNP Function @ hash-invert
.synb
.mets (hash-invert < hash >> [ joinfun >> [ unitfun << hash-arg *]])
.syne
.desc
The
.code hash-invert
function calculates and returns an inversion of hash table
.metn hash .
The values in
.meta hash
become keys in the returned hash table. Conversely, the values
in the returned hash table are derived from the keys.
The optional
.meta joinfun
and
.meta unitfun
arguments must be functions, if they are given.
These functions determine the behavior of
.code hash-invert
with regard to duplicate values in
.meta hash
which turn into duplicate keys.
The
.meta joinfun
function must be callable with two arguments, and
.meta joinfun
must accept one argument.
If
.meta joinfun
is omitted, it defaults to the
.code identity*
function;
.meta unitfun
defaults to
.codn identity .
The
.code hash-invert
function constructs a hash table as if by a call to the
.code hash
function, passing the
.meta hash-arg
arguments which determine the properties of the newly created hash.
The new hash table is then populated by iterating over the key-value pairs of
.meta hash
and inserting them as follows:
The key from
.meta hash
is turned into a value
.meta v1
by invoking the
.meta unitfun
function on it, and taking the return value.
The value from
.meta hash
is used as a key to perform a lookup in the new hash table.
If no entry exists, then a new entry is created, whose value is
.metn v1 .
Otherwise if the entry already exists, then the value
.meta v0
of that entry is combined with
.meta v1
by calling the
.meta joinfun
on the arguments
.meta v0
and
.metn v1 .
The entry is updated with the resulting value.
The new hash table is then returned.
.TP* Examples:
.verb
;; Invert simple 1 to 1 table:
(hash-invert #H(() (a 1) (b 2) (c 3)))
--> #H(() (1 a) (2 b) (3 c))
;; Invert table such that the keys of duplicate values
;; are accumulated into lists:
[hash-invert #H(() (1 a) (2 a) (3 c) (5 c) (7 d)) append list]
--> #H(() (d (7)) (c (3 5)) (a (1 2)))
;; Invert table such that keys of duplicate values are summed:
[hash-invert #H(() (1 a) (2 a) (3 c) (5 c) (7 d)) +]
--> #H(() (d 7) (c 8) (a 3))
.brev
.coNP Functions @ hash-eql and @ hash-equal
.synb
.mets (hash-eql << object )
.mets (hash-equal < object <> [ hash-seed ])
.syne
.desc
These functions each compute an integer hash value from the internal
representation of
.metn object ,
which satisfies the following properties.
If two objects
.code A
and
.code B
are the same under the
.code eql
function, then
.code "(hash-eql A)"
and
.code "(hash-eql B)"
produce the same integer hash value. Similarly,
if two objects
.code A
and
.code B
are the same under the
.code equal
function, then
.code "(hash-equal A)"
and
.code "(hash-equal B)"
each produce the same integer hash value. In all other
circumstances, the hash values of two distinct objects are unrelated, and
may or may not be the same.
Object of struct type may support custom hashing by way of defining
an equality substitution via an
.code equal
method. See the Equality Substitution section under Structures.
The optional
.meta hash-seed
value perturbs the hashing function used by
.code hash-equal
for strings and buffer objects. This seed value must be a non-negative integer
no wider than 32 bits: that is, in the range 0 to 4294967295.
If the value isn't specified, it defaults to zero.
Effectively, each possible value of the seed specifies a different hashing
function. If two objects
.code A
and
.code B
are the same under the
.code equal
function, then
.code "(hash-equal A S)"
and
.code "(hash-equal B S)"
each produce the same integer hash value for any valid seed value
.codn S .
.coNP Functions @, hash_keys @, hash_values @ hash_pairs and @ hash_alist
.synb
.mets (hash-keys << hash )
.mets (hash-values << hash )
.mets (hash-pairs << hash )
.mets (hash-alist << hash )
.syne
.desc
These functions retrieve the bulk key-value data of hash table
.meta hash
in various ways.
.code hash-keys
retrieves a list of the keys.
.code hash-values
retrieves a list of the values.
.code hash-pairs
retrieves a list of pairs,
which are two-element lists consisting of the key, followed by the value.
Finally,
.code hash-alist
retrieves the key-value pairs as a Lisp association list:
a list of cons cells whose
.code car
fields are keys, and whose
.code cdr
fields are the values. Note that
.code hash-alist
returns the actual entries from the hash table, which are
conses. Modifying the
.code cdr
fields of these conses constitutes modifying the hash values
in the original hash table. Modifying the
.code car
fields interferes with the integrity of the hash table,
resulting in unspecified behavior for subsequent hash insertion
and lookup operations.
These functions all retrieve the keys and values in the
same order. For example, if the keys are retrieved with
.codn hash-keys ,
and the values with
.codn hash-values ,
then the corresponding entries from
each list pairwise correspond to the pairs in
.metn hash .
The list returned by each of these functions is lazy, and hence constitutes
an open traversal of the hash table.
.coNP Operator @ dohash
.synb
.mets (dohash >> ( key-var < value-var < hash-form <> [ result-form ])
.mets \ \ << body-form *)
.syne
.desc
The
.code dohash
operator iterates over a hash table. The
.meta hash-form
expression must
evaluate to an object of hash table type. The
.meta key-var
and
.meta value-var
arguments must be symbols suitable for use as variable names.
Bindings are established for these variables over the scope of the
.metn body-form -s
and the optional
.metn result-form .
For each element in the hash table, the
.meta key-var
and
.meta value-var
variables are set to the key and value of that entry, respectively,
and each
.metn body-form ,
if there are any, is evaluated.
When all of the entries of the table are thus processed, the
.meta result-form
is evaluated, and its return value becomes the return value of the dohash form.
If there is no
.metn result-form ,
the return value is
.codn nil .
The
.meta result-form
and
.metn body-form -s
are in the scope of an implicit anonymous
block, which means that it is possible to terminate the execution of
dohash early using
.mono
.meti (return << value )
.onom
or
.codn (return) .
.coNP Functions @, hash-uni @, hash-diff @ hash-symdiff and @ hash-isec
.synb
.mets (hash-uni < hash1 < hash2 >> [ joinfun >> [ map1fun <> [ map2fun ]]])
.mets (hash-diff < hash1 << hash2 )
.mets (hash-symdiff < hash1 << hash2 )
.mets (hash-isec < hash1 < hash2 <> [ joinfun ])
.syne
.desc
These functions perform basic set operations on hash tables in a nondestructive
way, returning a new hash table without altering the inputs. The arguments
.meta hash1
and
.meta hash2
must be compatible hash tables. This means that their keys
must use the same kind of equality.
The resulting hash table inherits attributes from
.metn hash1 ,
as if created by the
.code make-similar-hash
function. If
.meta hash1
has userdata, the resulting hash table
has the same userdata. If
.meta hash1
has weak keys, the resulting table has weak
keys, and so forth.
The
.code hash-uni
function performs a set union. The resulting hash contains all of
the keys from
.meta hash1
and all of the keys from
.metn hash2 ,
and their corresponding
values. If a key occurs both in
.meta hash1
and
.metn hash2 ,
then it occurs only once
in the resulting hash. In this case, if the
.meta joinfun
argument is not given,
the value associated with this key is the one from
.metn hash1 .
If
.meta joinfun
is specified then it is called with two arguments: the respective
data items from
.meta hash1
and
.metn hash2 .
The return value of this function is used
as the value in the union hash.
If
.meta map1fun
is specified it must be a function that can be called with one
argument. All values from
.meta hash1
are projected through this function: the function is applied
to each value, and the function's return value is used
in place of the original value.
Similarly, if
.meta map2fun
is present, specifies a function through which values from
.meta hash2
are projected.
The
.code hash-diff
function performs a set difference. First, a copy of
.meta hash1
is made as if by the
.code copy-hash
function. Then from this copy, all keys which occur
in
.code hash2
are deleted.
The
.code hash-symdiff
function performs a symmetric difference. A new hash is returned which
contains all of the keys from
.meta hash1
that are not in
.meta hash2
and
.IR "vice versa" :
all of the keys from
.meta hash2
that are not in
.metn hash1 .
The keys carry their corresponding values from
.meta hash1
and
.metn hash2 ,
respectively.
The
.code hash-isec
function performs a set intersection. The resulting hash contains
only those keys which occur both in
.meta hash1
and
.metn hash2 .
If
.meta joinfun
is not
specified, the values selected for these common keys are those from
.metn hash1 .
If
.meta joinfun
is specified, then for each key which occurs in both
.meta hash1
and
.metn hash2 ,
it is called with two arguments: the respective data items. The return
value is then used as the data item in the intersection hash.
.coNP Functions @ hash-subset and @ hash-proper-subset
.synb
.mets (hash-subset < hash1 << hash2 )
.mets (hash-proper-subset < hash1 << hash2 )
.syne
.desc
The
.code hash-subset
function returns
.code t
if the keys in
.meta hash1
are a subset of the keys in
.metn hash2 .
The
.code hash-proper-subset
function returns
.code t
if the keys in
.meta hash1
are a proper subset of the keys in
.metn hash2 .
This means that
.meta hash2
has all the keys which are in
.meta hash1
and at least one which isn't.
Note: the return value may not be mathematically meaningful if
.meta hash1
and
.meta hash2
use different equality. In any case, the actual behavior
may be understood as follows. The implementation of
.code hash-subset
tests whether each of the keys in
.meta hash1
occurs in
.meta hash2
using their respective equalities.
The implementation of
.code hash-proper-subset
applies
.code hash-subset
first, as above. If that is true, and the two hashes have the same number of
elements, the result is falsified.
.coNP Functions @, hash-begin @, hash-reset @ hash-next and @ hash-peek
.synb
.mets (hash-begin << hash )
.mets (hash-reset < hash-iter << hash )
.mets (hash-next << hash-iter )
.mets (hash-peek << hash-iter )
.syne
.desc
The
.code hash-begin
function returns a an iterator object capable of retrieving the
entries in stored in
.meta hash
one by one.
The
.code hash-reset
function changes the state of an existing iterator, such that it
becomes prepared to retrieve the entries stored in the newly given
.metn hash ,
which may be the same one as the previously associated hash.
In addition,
.code hash-reset
may be given a
.meta hash
argument of
.codn nil ,
which dissociates it from its hash table.
The
.code hash-next
function's
.meta hash-iter
argument is a hash iterator returned by
.codn hash-begin .
If unvisited entries remain in
.metn hash ,
then
.code hash-next
returns the next one as a cons cell whose
.code car
holds the key and whose
.code cdr
holds the value. That entry is then considered visited by the iterator.
If no more entries remain to be visited,
.code hash-next
returns
.codn nil .
The
.code hash-next
function also returns
.code nil
if the iterator has been dissociated from a hash table by
.codn hash-reset .
The
.code hash-peek
function returns the same value that a subsequent call to
.code hash-next
will return for the same
.metn hash-iter ,
without changing the state of
.metn hash-iter .
That is to say, if a cell representing a hash entry is returned, that entry
remains unvisited by the iterator.
.coNP Macro @ with-hash-iter
.synb
.mets (with-hash-iter >> ( isym < hash-form >> [ ksym <> [ vsym ]])
.mets \ \ << body-form *)
.syne
.desc
The
.code with-hash-iter
macro evaluates
.metn body-form -s
in an environment in which a lexically scoped function is visible.
The function is named by
.meta isym
which must be a symbol suitable for naming functions with
.codn flet .
The
.meta hash-form
argument must be a form which evaluates to a hash table object.
Invocations of the function retrieve successive entries of the hash table
as cons cell pairs of keys and values. The function returns
.code nil
to indicate no more entries remain.
If either of the
.meta ksym
or
.meta vsym
arguments are present, they must be symbols suitable as variable names. They
are bound as variables visible to
.metn body-form -s,
initialized to the value
.codn nil .
If
.meta ksym
is specified, then whenever the function
.meta isym
macro is invoked and retrieves a hash table entry, the
.meta ksym
variable is set to the key. If the function returns
.code nil
then the value of
.meta ksym
is set to
.codn nil .
Similarly, if
.meta vsym
is specified, then the function stores the retrieved
hash value in that variable, or else sets the variable
to
.code nil
if there is no next value.
.coNP Special variable @ *hash-seed*
.desc
The
.code *hash-seed*
special variable is initialized with a value of zero. Whenever a new
hash table is explicitly or implicitly created, it takes its seed from
the value of the
.code *hash-seed*
variable in the current dynamic environment.
The only situation in which
.code *hash-seed*
is not used when creating a new hash table is when
.code make-hash
is called with an argument given for the optional
.meta hash-seed
argument.
Only
.codn equal -based
hash tables make use of their seed, and only for keys which are strings and
buffers. The purpose of the seed is to scramble the hashing function, to make
a hash table resistant to a type of denial-of-service attack, whereby a
malicious input causes a hash table to be populated with a large number of keys
which all map to the same hash table chain, causing the performance to severely
degrade.
The value of
.code *hash-seed*
must be a non-negative integer, no wider than 32 bits.
.coNP Function @ gen-hash-seed
.synb
.mets (gen-hash-seed)
.syne
.desc
The
.code gen-hash-seed
function returns an integer value suitable for the
.code *hash-seed*
variable, or as the
.code hash-seed
argument of the
.code make-hash
and
.code hash-equal
functions.
The value is derived from the host environment, from information such
as the process ID and time of day.
.SS* Search Tree Library
\*(TL provides binary search trees, which are objects of type
.codn tree .
Trees have a printed notation denoted by the
.code #T
prefix. A tree may be constructed by invoking the
.code tree
function.
Binary search trees differ from hashes in that they maintain items in
order. They also differ from hashes in that they store only elements,
not key-value pairs. Every tree is associated with three
.IR "key abstraction functions" :
It has a
.I "key function"
which is applied to the elements to map each one to a key.
It also has a
.I "less function"
and
.I "equal function"
for comparing keys.
If these three functions are not specified, they respectively default to
.codn identity ,
.code less
and
.codn equal ,
which means that the tree uses its elements as keys directly, and
that they are compared using
.code less
and
.codn equal .
Note: these default functions work for simple elements such as character
strings or numbers, and also structures implementing
.IR "equality substitution" .
The elements are stored inside a tree using tree nodes, which are objects
of type
.codn tnode ,
whose printed notation is introduced by the
.code #N
prefix.
Several tree-related functions take
.code tnode
objects as arguments or return
.code tnode
objects.
.coNP Function @ tnode
.synb
.mets (tnode < key < left << right)
.syne
.desc
The
.code tnode
function allocates, initializes and returns a single tree node.
A tree node has three fields
.metn key ,
.meta left
and
.metn right ,
which are accessed using the functions
.codn key ,
.code left
and
.codn right .
.coNP Function @ tnodep
.synb
.mets (tnodep << value )
.syne
.desc
The
.code tnodep
function returns
.code t
if
.meta value
is a tree node. Otherwise, it returns
.codn nil .
.coNP Accessors @, key @ left and @ right
.synb
.mets (key << node )
.mets (left << node )
.mets (right << node )
.mets (set (car << object ) << new-value )
.mets (set (key << node ) << new-key )
.mets (set (left << node ) << new-left )
.mets (set (right << node ) << new-right )
.syne
.desc
The
.codn key ,
.code left
and
.code right
functions retrieve the corresponding fields of the
.meta node
object, which must be of type
.codn tnode .
Forms based on the
.codn key ,
.code left
and
.code right
symbol are defined as syntactic places.
Assigning a value
.code v
to
.code "(key n)"
using the
.code set
operator, as in
.codn "(set (key n) v)" ,
is equivalent to
.code "(set-key n v)"
except that the value of the expression is
.code v
rather than
.codn n .
Similar statements hold true for
.code left
and
.code right
in relation to
.code set-left
and
.codn set-right .
.coNP Functions @, set-key @ set-left and @ set-right
.synb
.mets (set-key < node << new-key )
.mets (set-left < node << new-left )
.mets (set-right < node << new-right )
.syne
.desc
The
.codn set-key ,
.code set-left
and
.code set-right
functions replace the corresponding fields of
.meta node
with new values.
The
.meta node
argument must be of type
.codn tnode .
These functions all return
.metn node .
.coNP Function @ copy-tnode
.synb
.mets (copy-tnode << node )
.syne
.desc
The
.code copy-tnode
function creates a new
.code tnode
objects, whose
.codn key ,
.code left
and
.code right
fields are copied from
.codn node .
.coNP Function @ tree
.synb
.mets (tree >> [ elems >> [ keyfun >> [ lessfun <> [ equalfun ]]]])
.syne
.desc
The
.code tree
function constructs and returns a new tree object. All arguments are optional.
The
.meta elems
argument specifies a sequence of the elements to be stored in the tree.
If the argument is absent or the sequence is empty, then an empty
tree is created.
The
.meta keyfun
argument specifies the function which is applied to every element
to produce a key. If omitted, the the tree object shall behave as if the
.code identity
function were used, taking the elements themselves to be keys.
The
.meta lessfun
argument specifies the function by which two keys are compared for
inequality. If omitted, the
.code less
function is used. A function used as
.meta lessfun
should take two arguments, produce a Boolean result, and have ordering
properties similar to the
.code less
function.
The
.meta equalfun
argument specifies the function by which two keys are compared for
equality. The default value is the
.code equal
function. A function used as
.meta equalfun
should take two arguments, produce a Boolean result, and have the
properties of an equivalence relation.
These three functions are collectively referred to as the tree's
.IR "key abstraction functions" .
.coNP Function @ treep
.synb
.mets (treep << value )
.syne
.desc
The
.code treep
function returns
.code t
if
.meta value
is a tree. Otherwise, it returns
.codn nil .
.coNP Function @ tree-insert-node
.synb
.mets (tree-insert-node < tree << node )
.syne
.desc
The
.code tree-insert-node
function inserts an existing
.meta node
object into a search tree.
The
.meta tree
object must be of type
.codn tree ,
and
.meta node
must be of type
.codn tnode .
The
.code key
field of the
.meta node
object holds the element that is being inserted. The actual search key
which is associated with this element is determined by applying
.metn tree 's
.meta keyfun
to the the
.metn node 's
.code key
value.
The
.meta node
object must not currently be inserted into any existing tree.
The values stored in the
.code left
and
.code right
fields of
.meta node
are overwritten as required by the semantics of the insertion operation.
Their original values are ignored.
If
.meta tree
already contains node with with a matching key, then
.meta node
replaces that node; that node is deleted from the tree.
The
.code tree-insert-node
function returns the
.meta node
argument.
.coNP Function @ tree-insert-node
.synb
.mets (tree-insert < tree << elem )
.syne
.desc
The
.code tree-insert
function inserts
.meta elem
into
.metn tree .
The
.meta tree
argument must be an object of type
.codn tree .
The
.meta elem
value may be of any type which is semantically compatible with
.metn tree 's
key abstraction functions.
The
.code tree-insert
function allocates a new
.code tnode
as if by invoking
.mono
.meti (tnode < elem nil nil)
.onom
function, and inserts that
.code tnode
as if by using the
.code tree-insert-node
function.
The
.code tree-insert
function returns the newly inserted
.code tnode
object.
.coNP Function @ tree-lookup-node
.synb
.mets (tree-lookup-node < tree << key )
.syne
.desc
The
.code tree-lookup-node
searches
.meta tree
for an element which matches
.metn key .
The
.meta tree
argument must be an object of type
.codn tree .
The
.meta key
argument may be a value of any type.
An element inside
.meta tree
matches
.meta key
if the tree's
.meta keyfun
applied to that element produces a key value which is equal to
.meta key
under the tree's
.meta equalfun
function.
If such an element is found, then
.code tree-lookup-node
returns the tree node which contains that element as its
.meta key
field.
If no such element is found, then
.code tree-lookup-node
returns
.codn nil .
.coNP Function @ tree-lookup
.synb
.mets (tree-lookup < tree << key )
.syne
.desc
The
.code tree-lookup
function finds an element inside
.meta tree
which matches the given
.metn key .
If the element is found, it is returned. Otherwise,
.code nil
is returned.
Note: the semantics of the
.code tree-lookup
function can be understood in terms of
.codn tree-lookup-node .
A possible implementation is this:
.verb
(defun tree-lookup (tree key)
(iflet ((node (tree-lookup-node tree key)))
(key node)))
.brev
.coNP Function @ tree-delete-node
.synb
.mets (tree-delete-node < tree << key )
.syne
.desc
The
.code tree-delete-node
function searches
.meta tree
for an element which matches
.metn key .
The
.meta tree
argument must be an object of type
.codn tree .
The
.meta key
argument may be a value of any type which is semantically compatible with
.metn tree 's
key abstraction functions.
If the matching element is found, then its node is removed from
the tree, and returned.
Otherwise, if a matching element is not found, then
.code nil
is returned.
.coNP Function @ tree-delete
.synb
.mets (tree-delete < tree << key )
.syne
.desc
The
.code tree-delete
function tries to removes from
.meta tree
the element which matches
.metn key .
If successful, it returns that element, otherwise it returns
.codn nil .
Note: the semantics of the
.code tree-delete
function can be understood in terms of
.codn tree-delete-node .
A possible implementation is this:
.verb
(defun tree-delete (tree key)
(iflet ((node (tree-delete-node tree key)))
(key node)))
.brev
.coNP Function @ tree-root
.synb
.mets (tree-root < tree )
.syne
.desc
The
.code tree-root
function returns the root node of
.metn tree ,
which must be a
.code tree
object.
If
.meta tree
is empty, then
.code nil
is returned.
.coNP Function @ tree-clear
.synb
.mets (tree-root < tree )
.syne
.desc
The
.code tree-clear
function deletes all elements from
.metn tree ,
which must be a
.code tree
object.
If
.meta tree
is already empty, then the function returns
.codn nil ,
otherwise it returns an integer which gives the count of the number
of deleted nodes.
.coNP Function @ copy-search-tree
.synb
.mets (copy-search-tree << tree )
.syne
.desc
The
.code copy-search-tree
returns a new tree object which is a copy of
.metn tree .
The
.meta tree
argument must be an object of type
.codn tree .
The returned object has the same key abstraction functions as
.meta tree
and contains the same elements.
The nodes held inside the new tree are freshly allocated,
but their key objects are shared with the original tree.
.coNP Function @ tree-begin
.synb
.mets (tree-begin < tree )
.syne
.desc
The
.code tree-begin
function returns a new object of type
.code tree-iter
which provides in-order traversal of the elements stored in the tree.
The
.meta tree
argument must be an object of type
.codn tree .
Note: the elements are traversed by applying the
.code tree-next
function to the
.code tree-iter
object.
.coNP Function @ tree-next
.synb
.mets (tree-next < iter )
.syne
.desc
The
.code tree-next
function returns the next node in sequence from the tree iterator
.metn iter ,
which must be an object of type
.codn tree-iter .
Note: the
.code tree-begin
function returns such a
.code tree-iter
object.
If there are no more nodes to be visited, the function returns
.codn nil .
If, during the traversal of a tree, nodes are inserted or deleted,
the behavior of
.code tree-next
on
.code tree-iter
object that were obtained prior to the insertion or deletion is
not specified. An attempt to complete the iteration may not successfully
visit all keys that should be visited.
.coNP Special variable @ *tree-fun-whitelist*
.desc
The
.code *tree-fun-whitelist*
variable holds a list of function names
that may be used in the
.code #T
tree literal syntax as the
.metn keyfun ,
.meta lessfun
or
.meta equalfun
operations of a tree. The initial value of this variable is a list which
holds at least the following three symbols:
.codn identity ,
.code less
and
.codn equal .
The application may change the value of this variable, or dynamically
bind it, in order to allow
.code #T
literals to be processed which specify functions other than these three.
.SS* Partial Evaluation and Combinators
.coNP Macros @ op and @ do
.synb
.mets (op << form +)
.mets (do < oper << form *)
.syne
.desc
Like the
.code lambda
operator, the
.code op
macro denotes an anonymous function.
Unlike
.codn lambda ,
the arguments of the function are implicit, or
optionally specified within the expression, rather than as a formal
parameter list which precedes a body.
The
.meta form
arguments of
.code op
are implicitly turned into a DWIM expression,
which means that argument evaluation follows Lisp-1 rules. (See the
.code dwim
operator).
The argument forms of
.code op
are arbitrary expressions, within which special
conventions is permitted regarding the use of certain implicit variables:
.RS
.meIP >> @ num
A number preceded by a
.code @
is, syntactically, a metanumber. If it appears inside
.code op
as an expression, it behaves as a positional argument, whose
existence it implies. For instance
.code @2
means that the function shall have at least two arguments,
the second argument of which is be substituted in place of the
.codn @2 .
.code op
generates a function which has a number of required arguments equal to the
highest value of
.meta num
appearing in a
.mono
.meti >> @ num
.onom
construct in the body. For instance
.code "(op car @3)"
generates a three-argument function (which passes its third
argument to
.codn car ,
returning the result, and ignores its first two arguments).
There is no way to use
.code op
to generate functions which have optional arguments. The positional
arguments are mutable; they may be assigned.
.meIP < @rest
If the meta-symbol
.meta @rest
appears in the
.code op
syntax as an expression, it explicitly denotes and evaluates to the list of
trailing arguments. Like the metanumber positional arguments, it
may be assigned.
.meIP < @rec
If the meta-symbol
.meta @rec
appears in the
.code op
syntax as an expression, it denotes a mutable variable which is bound to the
function itself which is generated by that
.code op
expression.
.meIP >> @( rec ...)
If this syntax appears inside
.codn op ,
it specifies a recursive call the function.
.RE
.IP
Functions generated by
.code op
are always variadic; they always take additional arguments after
any required ones, whether or not the
.meta @rest
syntax is used.
If the body does not contain
any
.meta @num
or
.meta @rest
syntax, then
.code @rest
is implicitly inserted. What this means is that, for example, since
the form
.code "(op foo)"
does not contain any implicit positional arguments like
.codn @1 ,
and does not contain
.codn @rest ,
it is actually a shorthand for
.codn "(op foo . @rest)" :
a function which applies all of its arguments to
.codn foo .
If the body does contain at least one
.meta @num
or
.metn @rest ,
then
.meta @rest
isn't implicitly inserted. The notation
.code "(op foo @1)"
denotes a function which takes any number of arguments, and ignores
all but the first one, which is passed to
.codn foo .
The
.code do
operator is similar to
.code op
op, with the following three differences:
.RS
.IP 1.
The first argument of
.codn do ,
namely
.metn oper ,
is an operator. This argument is not processed for the presence of
implicit variables. Thus for instance
.code "(do @1 ...)"
is invalid. By contrast,
.code "(op @1 ...)"
is possible and make sense under the right circumstances.
The
.meta oper
argument may be the name of a macro or special operator, whereas
.code op
doesn't support the invocation of macros or special operators.
For instance
.code "(do let ((x @1)) (+ x 1))"
is possible.
.IP 2.
The
.meta form
arguments of
.code do
are not implicitly treated as DWIM expressions,
but as ordinary expressions.
.IP 3.
When
.code do
syntax doesn't contain any references to implicit variables (metanumbers or
.codn @rest )
then a variadic function is generated which requires one argument.
That argument is added to the form. Thus for instance
.code "(do set x)"
effectively serves as a shorthand for
.codn "(do set x @1)" .
The corresponding defaulting behavior in
.code op
is that a variadic function is generated which requires no arguments.
All of the available arguments are applied. Thus
.code "(op f x)"
is effectively a shorthand for
.codn "(op f x . @rest)" .
.RE
.IP
Because it accepts operators,
.code do
can be used with imperative constructs
which are not functions, like set: like set: for instance
.code "(do set x)"
produces an anonymous function which, if called with one argument, stores that
argument into
.codn x .
The actions of
.code op
and
.code do
be understood by these examples, which convey how the syntax is
is rewritten to lambda. However, note that the real translator
uses generated symbols for the arguments, which are not equal to any
symbols in the program.
.verb
(op) -> invalid
(op +) -> (lambda rest [+ . rest])
(op + foo) -> (lambda rest [+ foo . rest])
(op @1 @2) -> (lambda (arg1 arg2 . rest) [arg1 arg2])
(op @1 . @rest) -> (lambda (arg1 . rest) [arg1 . @rest])
(op @1 @rest) -> (lambda (arg1 . rest) [arg1 @rest])
(op @1 @2) -> (lambda (arg1 arg2 . rest) [arg1 arg2])
(op foo @1 (@2) (bar @3)) -> (lambda (arg1 arg2 arg3 . rest)
[foo arg1 (arg2) (bar arg3)])
(op foo @rest @1) -> (lambda (arg1 . rest) [foo rest arg1])
(do + foo) -> (lambda (arg1 . rest) (+ foo arg1))
(do @1 @2) -> (lambda (arg1 arg2 . rest) (@1 arg2)) ;; invalid!
(do foo @rest @1) -> (lambda (arg1 . rest) (foo rest arg1))
.brev
Note that if argument
.meta @n
appears in the syntax, it is not necessary
for arguments
.meta @1
through
.meta @n-1
to appear. The function will have
.code n
arguments:
.verb
(op @3) -> (lambda (arg1 arg2 arg3 . rest) [arg3])
.brev
The
.code op
and
.code do
operators can be nested, in any combination. This raises the
question: if an expression like
.codn @1 ,
.code @rest
or
.code @rec
occurs in an
.code op
that is nested
within an
.codn op ,
what is the meaning?
An expression with a single
.code @
always belongs with the inner-most op or do
operator. So for instance
.code "(op (op @1))"
means that an
.code "(op @1)"
expression is nested
within an outer
.code op
expression that contains no references to its implicit variables.
The
.code @1
belongs to the inner op.
There is a way for an inner
.code op
to refer to the implicit variables of an outer one. This is
expressed by adding an extra
.code @
prefix for every level of escape. For example in
.code "(op (op @@1))"
the
.code @@1
belongs to the outer
.codn op :
it is the same as
.code @1
appearing in the outer
.codn op .
That is to say,
in the expression
.codn "(op @1 (op @@1))" ,
the
.code @1
and
.code @@1
are the same thing:
both are parameter 1 of the lambda function generated by the outer
.codn op .
By contrast, in the expression
.code "(op @1 (op @1))"
there are two different parameters:
the first
.code @1
is argument of the outer function, and the second
.code @1
is the first argument of the inner function. If there
are three levels of nesting, then three
.code @
meta-prefixes are needed to insert
a parameter from the outermost
.code op
into the innermost
.codn op .
Note that the implicit variables belonging to an
.code op
can be used in the dot position of a function call, such as:
.verb
[(op list 1 . @1) 2] -> (1 . 2)
.brev
This is a consequence of the special transformations described
in the paragraph
.B "Dot Position in Function Calls"
in the subsection
.B "Additional Syntax"
of the
.BR "TXR Lisp"
section.
The
.code op
syntax works in conjunction with quasiliterals which are nested within it.
The metanumber notation as well as
.code @rest
are recognized without requiring an additional
.code @
escape, which is effectively optional:
.verb
(apply (op list `@1-@rest`) '(1 2 3)) -> "1-2 3"
(apply (op list `@@1-@@rest`) '(1 2 3)) -> "1-2 3"
.brev
Though they produce the same result, the above two examples differ in that
.code @rest
embeds a metasymbol into the quasiliteral structure, whereas
.code @@rest
embeds the Lisp expression
.code @rest
into the quasiliteral. Either way, in the scope of
.codn op ,
.code @rest
undergoes the macro-expansion which renames it to the machine-generated
function argument symbol of the implicit function denoted by the
.code op
macro form.
This convenient omission of the
.code @
character isn't supported for reaching the arguments of an outer
.code op
from a quasiliteral within a nested
.codn op :
.verb
;; To reach @@1, @@@1 must be written.
;; @@1 Lisp expression introduced by @.
(op ... (op ... `@@@1`))
.brev
.TP* Examples:
.verb
(let ((c 0))
(mapcar (op cons (inc c)) '(a b c)))
--> ((1 . a) (2 . b) (3 . c))
(reduce-left (op + (* 10 @1) @2) '(1 2 3)) --> 123
.brev
.coNP Macro @ lop
.synb
.mets (lop << form +)
.syne
.desc
The
.code lop
macro is variant of
.code op
with special semantics.
The
.meta form
arguments support the same notation as those of the
.code op
operator.
If only one
.meta form
is given then
.code lop
is equivalent to
.codn op .
If two or more
.meta form
arguments are present, then
.code lop
generates a variadic function which inserts all of its trailing
arguments between the first and second
.metn form -s.
That is to say, trailing arguments coming into the anonymous function
become the left arguments of the function or function-like object
denoted by the first
.meta form
and the remaining
.metn form -s
give additional arguments. Hence the name
.codn lop ,
which stands for \(dqleft-inserting
.codn op \(dq.
This left insertion of the trailing arguments takes place regardless of whether
.code @rest
occurs in any
.metn form .
The
.meta form
syntax determines the number of required arguments of the
generated function, according to the highest-valued meta-number. The trailing
arguments which are inserted into the left position are any arguments in excess
of the required arguments.
The
.code lop
macro's expansion can be understood via the following equivalences,
except that in the real implementation, the symbols
.code rest
and
.code arg1
through
.code arg3
are replaced with hygienic, unique symbols.
.verb
(lop f) <--> (op f) <--> (lambda (. rest) [f . rest])
(lop f x y) <--> (lambda (. rest)
[apply f (append rest [list x y])])
(lop f x @3 y) <--> (lambda (arg1 arg2 arg3 . rest)
[apply f
(append rest
[list x arg3 y])])
.brev
.TP* Examples:
.verb
(mapcar (lop list 3) '(a b c)) --> ((a 3) (b 3) (c 3))
(mapcar (lop list @1) '(a b c)) --> ((a) (b) (c))
(mapcar (lop list @1) '(a b c) '(d e f))
--> ((d a) (e b) (f c))
.brev
.coNP Macro @ ldo
.synb
.mets (ldo < oper << form *)
.syne
.desc
The
.code ldo
macro provides a shorthand notation for uses of the
.code do
macro which inserts the first argument of the anonymous function
as the leftmost argument of the specified operator.
The
.code ldo
syntax can be understood in terms of these equivalences:
.verb
(ldo f) <--> (do f @1)
(ldo f x) <--> (do f @1 x)
(ldo f x y) <--> (do f @1 x y)
(ldo f x @2 y) <--> (do f @1 x @2 y)
.brev
The implicit argument
.code @1
is always inserted as the leftmost argument of the operator
specified by the first form.
.TP* Example:
.verb
;; push elements of l1 onto l2.
(let ((l1 '(a b c)) l2)
(mapdo (ldo push l2) l1)
l2)
--> (c b a)
.brev
.coNP Macros @, ap @, ip @ ado and @ ido.
.synb
.mets (ap << form +)
.mets (ip << form +)
.mets (ado << form +)
.mets (ido << form +)
.syne
.desc
The
.code ap
macro is based on the
.code op
macro and has identical argument
conventions.
The
.code ap
macro analyzes its arguments and produces a function
.metn f ,
in exactly the same same way as the
.code op
macro. However, instead of returning
.metn f ,
directly, it returns a different function
.metn g ,
which is a one-argument function which accepts a list,
and then applies the list as arguments to
.metn f .
In other words, the following equivalence holds:
.verb
(ap form ...) <--> (apf (op form ...))
.brev
The
.code ap
macro nests properly with
.code op
and
.codn do ,
in any combination, in regard to the
.meta ...@@n
notation.
The
.code ip
macro is similar to the
.code ap
macro, except that it is based
on the semantics of the function
.code iapply
rather than
.codn apply ,
according
to the following equivalence:
.verb
(ip form ...) <--> (ipf (op form ...))
.brev
The
.code ado
and
.code ido
macros are related to do macro in the same way that
.code ap
and
.code ip
are related to
.codn op .
They produce a one-argument function which works
as if by applying its arguments to the function generated by do,
according to the following equivalence:
.verb
(ado form ...) <--> (apf (do form ...))
(ido form ...) <--> (ipf (do form ...))
.brev
See also: the
.code apf
and
.code ipf
functions.
.TP* Example:
.verb
;; Take a list of pairs and produce a list in which those pairs
;; are reversed.
(mapcar (ap list @2 @1) '((1 2) (a b))) -> ((2 1) (b a))
.brev
.coNP Macros @ opip and @ oand
.synb
.mets (opip << clause *)
.mets (oand << clause *)
.syne
.desc
The
.code opip
and
.code oand
operators make it possible to chain together functions which are expressed
using the
.code op
syntax. (See the
.code op
operator for more information).
Both macros perform the same transformation except that
.code opip
translates its arguments to a call to the
.code chain
function, whereas
.code oand
translates its arguments in the same way to a call to the
.code chand
function.
More precisely, these macros perform the following rewrites:
.verb
(opip arg1 arg2 ... argn) -> [chain {arg1} {arg2} ... {argn}]
(oand arg1 arg2 ... argn) -> [chand {arg1} {arg2} ... {argn}]
.brev
where the above
.code {arg}
notation denotes the following transformation applied to each argument:
.verb
(function ...) -> (op function ...)
(operator ...) -> (do operator ...)
(macro ...) -> (do macro ...)
(dwim ...) -> (dwim ...)
[...] -> [...]
(qref ...) -> (qref ...)
(uref ...) -> (uref ...)
.slot -> .slot
.(method ...) -> .(method ...)
atom -> atom
.brev
In other words, compound forms whose leftmost symbol is a macro or operator
are translated to the
.code do
notation. Compound forms denoting function calls are translated to the
.code op
notation. Compound forms which are
.code dwim
invocations, either explicit or via the DWIM brackets notation, are
used without transformation. Used without transformation also are forms
denoting struct slot access, either explicitly using
.code uref
or
.code qref
or the respective dot notations, as well as any atom forms.
Note: the
.code opip
and
.code oand
macros use their macro environment in determining whether a form is a
macro call, thereby respecting lexical scoping.
.TP* Example:
Take each element from the list
.code "(1 2 3 4)"
and multiply it by three, then add 1.
If the result is odd, collect that into the resulting list:
.mono
(mappend (opip (* 3)
(+ 1)
[iff oddp list])
(range 1 4))
.onom
The above is equivalent to:
.mono
(mappend (chain (op * 3)
(op + 1)
[iff oddp list])
(range 1 4))
.onom
The
.code "(* 3)"
and
.code "(+ 1)"
terms are rewritten to
.code "(op * 3)"
and
.codn "(op + 1)" ,
respectively, whereas
.code "[iff oddp list]"
is passed through untransformed.
.coNP Macro @ ret
.synb
.mets (ret << form )
.syne
.desc
The
.code ret
macro's
.meta form
argument is treated similarly to the second and subsequent arguments of the
.code op
operator.
The
.code ret
macro produces a function which takes any number of arguments,
and returns the value specified by
.metn form .
.meta form
can contain
.code op
meta syntax like
.code @n
and
.codn @rest .
The following equivalence holds:
.verb
(ret x) <--> (op identity x))
.brev
Thus the expression
.code "(ret @2)"
returns a function similar to
.codn "(lambda (x y . z) y)" ,
and the expression
.code "(ret 42)"
returns a function similar to
.codn "(lambda (. rest) 42)" .
.coNP Macro @ aret
.synb
.mets (aret << form )
.syne
.desc
The
.code aret
macro's
.meta form
argument is treated similarly to the second and subsequent arguments of the
.code op
operator.
The
.code aret
macro produces a function which takes any number of arguments,
and returns the value specified by
.metn form .
.meta form
can contain
.code ap
meta syntax like
.meta @n
and
.codn @rest .
The following equivalence holds:
.verb
(aret x) <--> (ap identity x))
.brev
Thus the expression
.code "(aret @2)"
returns a function similar to
.codn "(lambda (. rest) (second rest))" ,
and the expression
.code "(aret 42)"
returns a function similar to
.codn "(lambda (. rest) 42)" .
.coNP Function @ dup
.synb
.mets (dup << func )
.syne
.desc
The
.code dup
function returns a one-argument function which calls the two-argument
function
.meta func
by duplicating its argument.
.TP* Example:
.verb
;; square the elements of a list
(mapcar [dup *] '(1 2 3)) -> (1 4 9)
.brev
.coNP Function @ flipargs
.synb
.mets (flipargs << func )
.syne
.desc
The
.code flipargs
function returns a two-argument function which calls the two-argument
function
.meta func
with reversed arguments.
.coNP Functions @ chain and @ chand
.synb
.mets (chain << func *)
.mets (chand << func *)
.syne
.desc
The
.code chain
function accepts zero or more functions as arguments, and returns
a single function, called the chained function, which represents the chained
application of those functions, in left to right order.
If
.code chain
is given no arguments, then it returns a variadic function which
ignores all of its arguments and returns
.codn nil .
Otherwise, the first function may accept any number of arguments. The second
and subsequent functions, if any, must accept one argument.
The chained function can be called with an argument list which is acceptable
to the first function. Those arguments are in fact passed to the first
function. The return value of that call is then passed to the second
function, and the return value of that call is passed to the third function
and so on. The final return value is returned to the caller.
The
.code chand
function is similar, except that it combines the functionality of
.code andf
into chaining. The difference between
.code chain
and
.code chand
is that
.code chand
immediately terminates and returns
.code nil
whenever any of the functions returns
.codn nil ,
without calling the remaining functions.
.TP* Example:
.verb
(call [chain + (op * 2)] 3 4) -> 14
.brev
In this example, a two-element chain is formed from the
.code +
function
and the function produced by
.code "(op * 2)"
which is a one-argument
function that returns the value of its argument multiplied by two.
(See the definition of the
.code op
operator).
The chained function is invoked using the
.code call
function, with the arguments
.code 3
and
.codn 4 .
The chained evaluation begins by passing
.code 3
and
.code 4
to
.codn + ,
which yields
.codn 7 .
This
.code 7
is then passed to the
.code "(op * 2)"
doubling function, resulting in
.codn 14 .
A way to write the above example without the use of the DWIM brackets and the
op operator is this:
.verb
(call (chain (fun +) (lambda (x) (* 2 x))) 3 4)
.brev
.coNP Function @ juxt
.synb
.mets (juxt << func *)
.syne
.desc
The
.code juxt
function accepts a variable number of arguments which are functions. It
combines these into a single function which, when invoked, passes its arguments
to each of these functions, and collects the results into a list.
Note: the juxt function can be understood in terms of the following reference
implementation:
.verb
(defun juxt (funcs)
(lambda (. args)
(mapcar (lambda (fun)
(apply fun args))
funcs)))
.brev
The
.code callf
function generalizes
.code juxt
by allowing the combining function to be specified.
.TP* Example:
.verb
;; separate list (1 2 3 4 5 6) into lists of evens and odds,
;; which end up juxtaposed in the output list:
[(op [juxt keep-if remove-if] evenp)
'(1 2 3 4 5 6)] -> ((2 4 6) (1 3 5))
;; call several functions on 1, collecting their results:
[[juxt (op + 1) (op - 1) evenp sin cos] 1]'
-> (2 0 nil 0.841470984807897 0.54030230586814)
.brev
.coNP Functions @ andf and @ orf
.synb
.mets (andf << func *)
.mets (orf << func *)
.syne
.desc
The
.code andf
and
.code orf
functions are the functional equivalent of the
.code and
and
.code or
operators. These functions accept multiple functions and return a new function
which represents the logical combination of those functions.
The input functions should have the same arity. Failing that, there should
exist some common argument arity with which each of these can be invoked. The
resulting combined function is then callable with that many arguments.
The
.code andf
function returns a function which combines the input functions with
a short-circuiting logical conjunction. The resulting function passes its
arguments to the functions successively, in left to right order. As soon as any
of the functions returns
.codn nil ,
then nil is returned immediately, and the
remaining functions are not called. Otherwise, if none of the functions return
.codn nil ,
then the value returned by the last function is returned. If the list of
functions is empty, then
.code t
is returned. That is,
.code (andf)
returns a function
which accepts any arguments, and returns
.codn t .
The
.code orf
function combines the input functions with a short-circuiting logical
disjunction. The function produced by
.code orf
passes its arguments down to the
functions successively, in left to right order. As soon as any function
returns a
.cod2 non- nil
value, that value is returned and the remaining functions are
not called. If all functions return
.codn nil ,
then
.code nil
is returned. The expression
.code (orf)
returns a function which accepts any arguments and returns
.codn nil .
.coNP Function @ notf
.synb
.mets (notf << function )
.syne
.desc
The
.code notf
function returns a function which is the Boolean negation
of
.metn function .
The returned function takes a variable number of arguments. When
invoked, it passes all of these arguments to
.meta function
and then inverts the result as if by application of the
.codn not .
.coNP Functions @ iff and @ iffi
.synb
.mets (iff < condfun >> [ thenfun <> [ elsefun ]])
.mets (iffi < condfun < thenfun <> [ elsefun ])
.syne
.desc
The
.code iff
function is the functional equivalent of the
.code if
operator. It accepts
functional arguments and returns a function.
The resulting function takes its arguments, if any, and applies them to
.metn condfun .
If
.meta condfun
yields true, then the arguments are passed to
.meta thenfun
and the
resulting value is returned. Otherwise the arguments are passed to
.meta elsefun
and the resulting value is returned.
If
.meta thenfun
is omitted then
.code identity
is used as default. This omission is not permitted by
.codn iffi ,
only
.codn iff .
If
.meta elsefun
needs to be called, but is omitted, then
.code nil
is returned.
The
.code iffi
function differs from
.code iff
only in the defaulting behavior with respect
to the
.meta elsefun
argument. If
.meta elsefun
is omitted in a call to
.code iffi
then the default function is
.codn identity .
This is useful in situations when one value is to be
replaced with another one when the condition is true, otherwise
preserved.
The following equivalences hold between
.code iffi
and
.codn iff :
.verb
(iffi a b c) <--> (iff a b c)
(iffi a b) <--> (iff a b identity)
[iffi a b nilf] <--> [iff a b]
[iffi a identity nilf] <--> [iff a]
.brev
The following equivalences illustrate
.code iff
with both optional arguments omitted:
.verb
[iff a] <---> [iff a identity nilf] <---> a
.brev
.coNP Functions @ tf and @ nilf
.synb
.mets (tf << arg *)
.mets (nilf << arg *)
.syne
.desc
The
.code tf
and
.code nilf
functions take zero or more arguments, and ignore them.
The
.code tf
function returns
.codn t ,
and the
.code nilf
function returns
.codn nil .
Note: the following equivalences hold between these functions and the
.code ret
operator, and
.code retf
function.
.verb
(fun tf) <--> (ret t) <--> (retf t)
(fun nilf) <--> (ret nil) <--> (ret) <--> (retf nil)
.brev
In Lisp-1-style code,
.code tf
and
.code nilf
behave like constants which can replace uses of
.code "(ret t)"
and
.codn "(ret nil)" :
.verb
[mapcar (ret nil) list] <--> [mapcar nilf list]
.brev
.TP* Example:
.verb
;; tf and nilf are useful when functions are chained together.
;; test whether (trunc n 2) is odd.
(defun trunc-n-2-odd (n)
[[chain (op trunc @1 2) [iff oddp tf nilf]] n])
.brev
In this example, two functions are chained together, and
.code n
is passed
through the chain such that it is first divided by two via the
function denoted by
.code "(op trunc @1 2)"
and then the result is passed into the
function denoted by
.codn "[iff oddp tf nilf]" .
The
.code iff
function passes its argument into
.codn oddp ,
and if
.code oddp
yields true, it passes the same argument to
.codn tf .
Here
.code tf
proves its utility by ignoring that value and returning
.codn t .
If the argument (the divided value) passed into
.code iff
is even, then iff passes it into the
.code nilf
function, which ignores the value and returns
.codn nil .
.coNP Function @ retf
.synb
.mets (retf << value )
.syne
.desc
The
.code retf
function returns a function. That function can take zero or
more arguments. When called, it ignores its arguments and returns
.metn value .
See also: the
.code ret
macro.
.TP* Example:
.verb
;; the function returned by (retf 42)
;; ignores 1 2 3 and returns 42.
(call (retf 42) 1 2 3) -> 42
.brev
.coNP Functions @ apf and @ ipf
.synb
.mets (apf < function << arg *)
.mets (ipf < function << arg *)
.syne
.desc
The
.code apf
function returns a one-argument function whose argument conventions
are similar to those of the
.code apply
function: it accepts one or more arguments, the last of which should
be a list. When that function is called, it applies these arguments to
.meta function
as if by
.codn apply .
It then returns whatever
.meta function
returns.
If one or more additional
.metn arg -s
are passed to
.codn apf ,
then these are stored in the function which is returned.
When the function is invoked, it prepends all of these stored
arguments to those that it is being given, and the resulting combined
arguments are applied. Thus the
.metn arg -s
become the leftmost arguments of
.metn function .
The
.code ipf
function is similar to
.codn apf ,
except that the argument conventions of the function returned by
.code ipf
are based on
.codn iapply ,
and that function applies arguments as if by
.code iapply
rather than
.codn apply .
See also: the
.code ap
macro.
.TP* Example:
.verb
;; Function returned by [apf +] accepts the
;; (1 2 3) list and applies it to +, as
;; if (+ 1 2 3) were called.
(call [apf +] '(1 2 3)) -> 6
.brev
.coNP Function @ callf
.synb
.mets (callf < main-function << arg-function *)
.syne
.desc
The
.code callf
function returns a function which applies its arguments to each
.metn arg-function ,
juxtaposing the return values of these calls to form arguments
which are then passed to
.metn main-function .
The return value of
.meta main-function
is returned.
The following equivalence holds, except for the order of evaluation of
arguments:
.verb
(callf fm f0 f1 f2 ...) <--> (chain (juxt f0 f1 f2 ...)
(apf fm))
.brev
.TP* Example:
.verb
;; Keep those pairs which are two of a kind
(keep-if [callf eql first second] '((1 1) (2 3) (4 4) (5 6)))
-> ((1 1) (4 4))
.brev
The following equivalence holds between
.code juxt
and
.codn callf :
.verb
[juxt f0 f1 f2 ...] <--> [callf list f0 f1 f2 ...]:w
.brev
Thus,
.code juxt
may be regarded as a specialization of
.code callf
in which the main function is implicitly
.codn list .
.coNP Function @ mapf
.synb
.mets (mapf < main-function << arg-function *)
.syne
.desc
The
.code mapf
function returns a function which distributes its arguments
into the
.metn arg-function -s.
That is to say, each successive argument of the returned
function is associated with a successive
.metn arg-function .
Each
.meta arg-function
is called, passed the corresponding argument. The return
values of these functions are then passed as arguments
to
.meta main-function
and the resulting value is returned.
If the returned function is called with fewer arguments than there
are
.metn arg-function -s,
then only that many functions are used. Conversely, if the function is
called with more arguments than there are
.metn arg-function -s,
then those arguments are ignored.
The following equivalence holds:
.verb
(mapf fm f0 f1 ...) <--> (lambda (. rest)
[apply fm [mapcar call
(list f0 f1 ...)
rest]])
.brev
.TP* Example:
.verb
;; Add the squares of 2 and 3
[[mapf + [dup *] [dup *]] 2 3] -> 13
.brev
.SS* Input and Output (Streams)
\*(TL supports input and output streams of various kinds, with
generic operations that work across the stream types.
In general, I/O errors are usually turned into exceptions. When the description
of error reporting is omitted from the description of a function, it can be
assumed that it throws an error.
.coNP Special variables @, *stdout* @, *stddebug* @, *stdin* @ *stderr* and @ *stdnull*
.desc
These variables hold predefined stream objects. The
.codn *stdin* ,
.code *stdout*
and
.code *stderr*
streams closely correspond to the underlying operating system streams.
Various I/O functions require stream objects as arguments.
The
.code *stddebug*
stream goes to the same destination as
.codn *stdout* ,
but is a separate object which can be redirected independently, allowing
debugging output to be separated from normal output.
The
.code *stdnull*
stream is a special kind of stream called a null stream.
This stream is not connected to any device or file. It is similar to
the
.code /dev/null
device on Unix, but does not involve the operating system.
.coNP Special variables @ *print-flo-format* and @ *pprint-flo-format*
.desc
The
.code *print-flo-format*
variable determines the conversion format which is applied when
a floating-point value is converted to decimal text by the
functions
.codn print ,
.codn prinl ,
and
.codn tostring .
The default value is
.codn "~s" .
The related variable
.code *pprint-flo-format*
similarly determines the conversion format applied to floating-point
values by the functions
.codn pprint ,
.codn pprinl ,
and
.codn tostringp .
The default value is
.codn "~a" .
The format string in either variable must specify the consumption of
exactly one
.code format
argument.
The conversion string may use embedded width and precision values:
for instance,
.code "~3,4f"
is a valid value for
.code *print-flo-format*
or
.codn *pprint-flo-format* .
.coNP Special variable @ *print-flo-precision*
.desc
The
.code *print-flo-precision*
special variable specifies the default floating-point printing
precision which is used when the
.code ~a
or
.code ~s
conversion specifier of the
.code format
function is used for printing a floating-point value, and no precision
is specified.
Note that since the default value of the variable
.code *print-flo-format*
is the string
.codn "~s" ,
the
.code *printf-flo-precision*
variable, by default, also determines the precision which applies when
floating-point values are converted to decimal text by the functions
.codn print ,
.codn pprint ,
.codn prinl ,
.codn pprinl ,
.code tostring
and
.codn tostringp .
The default value of
.code *print-flo-precision*
is that of the
.code flo-dig
variable.
Note: to print floating-point values in such a way that their values
can be precisely recovered from the printed representation, it is
recommended to override
.code *print-flo-precision*
to the value of the
.code flo-max-dig
variable.
.coNP Special variable @ *print-flo-digits*
.desc
The
.code *print-flo-precision*
special variable specifies the default floating-point printing
precision which is used when the
.code ~f
or
.code ~e
conversion specifier of the
.code format
function is used for printing a floating-point value, and no precision
is specified.
Its default value is
.codn 3 .
.coNP Special variable @ *print-base*
.desc
The
.code *print-base*
variable controls the base (radix) used for printing integer values.
It applies when the functions
.codn print ,
.codn pprint ,
.codn prinl ,
.codn pprinl ,
.code tostring
and
.code tostringp
process an integer value.
It also applies when the
.code ~a
and
.code ~s
conversion specifiers of the
.code format
function are used for printing an integer value.
The default value of the variable is
.codn 10 .
Meaningful values are:
.codn 2 ,
.codn 8 ,
.code 10
and
.codn 16 .
When base 16 is selected, hexadecimal digits are printed as upper-case
characters.
.coNP Special variable @ *print-circle*
.desc
The
.code *print-circle*
variable is a Boolean which controls whether the circle notation is
in effect for printing aggregate objects: conses, ranges, vectors, hash tables
and structs. The initial value of this variable is
.codn nil :
circle notation printing is disabled.
The circle notation works for structs also, including structs which have
user-defined
.code print
methods. When a
.code print
method calls functions which print objects, such as
.codn print ,
.code pprinl
or
.code format
on the same stream, the detection of circularity and substructure sharing
continues in these recursive invocations.
However, there are limitations in the degree of support for circle notation
printing across
.code print
methods. Namely, a
.code print
method of a struct
.meta S
must not procure and submit for printing objects which are not part of the
ordinary structure that is reachable from the (static or instance) slots of
.metn S ,
if those objects have already been printed prior to invoking the
.code print
method, and have been printed without a
.code #=
circle notation label. The "ordinary structure that is reachable from the
slots" denotes structure that is directly reachable by traversing conses,
ranges, vectors, hashes and struct slots: all printable aggregate objects.
.coNP Function @ format
.synb
.mets (format < stream-designator < format-string << format-arg *)
.syne
.desc
The
.code format
function performs output to a stream given by
.metn stream-designator ,
by interpreting the actions implicit in a
.metn format-string ,
incorporating material pulled from additional arguments given by
.mono
.meti << format-arg *.
.onom
Though the function is simple to invoke, there is complexity in format string
language, which is documented below.
The
.meta stream-designator
argument can be a stream object, or one of the values
.code t
or
.codn nil .
The value
.code t
serves as a shorthand for
.codn *stdout* .
The value
.code nil
means that the function will send output into a newly instantiated string
output stream, and then return the resulting string.
.TP* "Format string syntax:"
Within
.metn format-string ,
most characters represent themselves. Those
characters are simply output. The character
.code ~
(tilde) introduces formatting
directives, which are denoted by a single character, usually a letter.
The special sequence
.code ~~
(tilde-tilde) encodes a single tilde. Nothing is
permitted between the two tildes.
The syntax of a directive is generally as follows:
.mono
.mets <> ~[ width ] <> [, precision ] < letter
.onom
In other words, the
.code ~
(tilde) character, followed by a
.meta width
specifier, a
.meta precision
specifier introduced by a comma,
and a
.metn letter ,
such that
.meta width
and
.meta precision
are independently optional: either or both may be omitted.
No whitespace is allowed between these elements.
The
.meta letter
is a single alphabetic character which determines the
general action of the directive. The optional width and precision
are specified as follows:
.RS
.meIP < width
The width specifier consists of an optional
.code <
(left angle bracket) character or
.code ^
(caret)
character followed by an optional width specification.
If the leading
.code <
character is present, then the printing will be left-adjusted within
this field. If the
.code ^
character is present, the printing will be centered within the field.
Otherwise it will be right-adjusted by default.
The width can be specified as a decimal integer with an optional leading
minus sign, or as the character
.codn * .
The
.code *
notation means that instead of digits, the value of the next argument is
consumed, and expected to be an integer which specifies the width. If the
width, specified either way, is negative, then the field will be left-adjusted.
If the value is positive, but either the
.code <
or
.code ^
prefix character is present in the width
specifier, then the field is adjusted according to that character.
The padding calculations for alignment and centering take into account
character display width, as defined by the
.code display-width
function. For instance, a character string containing four Chinese
characters (kanji) has a display width of 8, not 4.
The width specification does not restrict the printed portion of a datum.
Rather, for some kinds of conversions, it is the precision specification that
performs such truncation. A datum's display width (or that of its printed
portion, after such truncation is applied) can equal or exceed the specified
field width. In this situation it overflows the field: the printed portion is
rendered in its entirety without any padding applied on either side for
alignment or centering.
.meIP < precision
The precision specifier is introduced by a leading comma. If this comma appears
immediately after the directive's
.code ~
character, then it means that
.meta width
is being omitted; there is only a precision field.
The precision specifier may begin with these optional characters:
.RS
.coIP 0
(the "leading zero flag"),
.coIP +
(print a sign for positive values")
.IP space
(print a space in place of a positive sign).
.RE
The precision specifier itself is either a decimal integer that does not
begin with a zero digit, or the
.code *
character.
The precision field's components have a meaning which depends on the type of
object printed and the conversion specifier.
For integer arguments, the precision value specifies the minimum number of digits
to print. If the precision field has a leading zero flag, then the integer is
padded with zeros to the required number of digits, otherwise the number is
padded with spaces instead of zeros. If zero or space padding is present, and
a leading positive or negative sign must be printed, then it is placed before
leading zeros, or after leading spaces, as the case may be.
For floating-point values, the meaning of the precision value depends on which
specific conversion specifier
.cod1 ( f ,
.codn e ,
.code a
or
.codn s )
is used. The details are
documented in the description of each of these, below. The leading zero flag is
also taken into account for floating-point values, and treated uniformly by
these directives. If the flag is present, then the printed value's integer
part will be padded with leading zeros up to the width of the field such that
one character of unused space remains in the field, in case a positive or
negative sign needs also to be rendered.
For integer or floating-point arguments, if the precision specifier has a
.code +
sign
among the special characters, then a
.code +
sign is printed for positive numbers. If
the precision specifier has a leading space instead of a
.code +
sign, then the
.code +
sign is rendered as a space for positive numbers. If there is no leading space
or
.codn + ,
then a sign character is omitted for positive numbers. Negative
numbers are unconditionally prefixed with a
.code -
sign.
For all other objects, the precision specifies the maximum number of
print positions to occupy, taking into account the display width of each
character of the printed representation of the object, as according
to the
.code display-width
function. The object's printed representation is truncated, if necessary, to
the maximum number of characters which will not exceed the specified number of
print positions.
.RE
.TP* "Format directives:"
.RS
Format directives are case sensitive, so that for example
.code ~x
and
.code ~X
have a
different effect, and
.code ~A
doesn't exist whereas
.code ~a
does. They are:
.coIP a
Prints any object in an aesthetic way, as if by the
.code pprint
function.
The aesthetic notation violates read-print consistency: this notation
is not necessarily readable if it is implanted in \*(TX source code.
The field width specifier is honored, including the left-right adjustment
semantics.
When this specifier is used for floating-point values, the precision specifies
the maximum number of total significant figures, which do not include any
digits in the exponent, if one is printed. Numbers are printed in exponential
notation if their magnitude is small, or else if their exponent exceeds their
precision. If the precision is not specified, then it is obtained from
the
.code *print-flo-precision*
special variable, whose default value is the same as that of the
.code flo-dig
variable.
Floating point values which are integers are
printed without a trailing
.code .0
(point zero).
The
.code +
flag in the precision is honored for rendering an explicit
.code +
sign on non-negative values.
If a leading zero is specified in the precision, and a nonzero width is
specified, then the printed value's integer part will be padded with leading
zeros up to one less than the field width. These zeros are placed before the
sign.
.coIP s
Prints any object in a standard way, as if by the
.code print
function. Objects for
which read-print consistency is possible are printed in a way such that
if their notation is implanted in \*(TX source, they are readable.
The field width specifier is honored, including the left-right adjustment
semantics. The precision field is treated similarly to the
.code ~a
format directive, except that non-exponentiated floating point numbers that
would be mistaken for integers include a trailing
.code .0
for the sake of read-print
consistency. Objects truncated by precision may not have read-print
consistency. For instance, if a string object is truncated, it loses its
trailing closing quote, so that the resulting representation is no longer
a properly formed string object. For integer objects, the
.code *print-base*
variable is honored. Effectively, an integer is printed by the
.code s
directive as if by the
.codn b ,
.codn o ,
.codn d ,
or
.code x
directive, depending on the value of the variable.
.coIP d
Requires an argument of integer or character type type. The integer
value or character code is printed in decimal.
.coIP x
Requires an argument of character or integer type. The integer value or
character code is printed in hexadecimal, using lower-case letters
for the digits
.code a
through
.codn f .
Width and precision semantics
are as described for the
.code a
format directive, for integers.
.coIP X
Like the
.code x
directive, but the hexadecimal digits
.code a
through
.code f
are rendered in upper case.
.coIP o
Like the
.code x
directive, but octal is used instead of hexadecimal.
.coIP b
Like the
.code x
directive, but binary is used instead of hexadecimal.
.coIP f
The
.code f
directive prints numbers in a fixed point decimal notation, with
a fixed number of digits after the decimal point. It requires a numeric
argument. (Unlike
.codn x ,
.code X
and
.codn o ,
it does not allow an argument of character type).
The precision specifier gives the number of digits past the decimal point.
The number is rounded off to the specified precision, if necessary.
Furthermore, that many digits are always printed, regardless of the actual
precision of the number or its type. If it is omitted, then the value
is obtained from the special variable
.codn *print-flo-digits* ,
whose default value is three: three digits past the decimal point. A precision
of zero means no digits pas the decimal point, and in this case the decimal
point is suppressed (regardless of whether the numeric argument is
floating-point or integer).
.coIP e
The
.code e
directive prints numbers in exponential notation. It requires
a numeric argument. (Unlike
.codn x ,
.code X
and
.codn o ,
it does not allow an argument of character type).
The precision specifier gives the number of digits past the decimal point
printed in the exponential notation, not counting the digits in the exponent.
Exactly that many digits are printed, regardless of the precision of the
number. If the precision is omitted, then the number of digits after the
decimal point is obtained from the value of the special variable
.codn *print-flo-digits* ,
whose default value is three. If the precision is zero, then a decimal portion
is truncated off entirely, including the decimal point.
.coIP p
The
.code p
directive prints a numeric representation in hexadecimal of the bit pattern
of the object, which is meaningful to someone familiar with the internals
of \*(TX. If the object is a pointer to heaped data, that value
has a correspondence to its address.
.coIP !
The
.code !
directive establishes hanging indentation, and turns on the stream's
indentation mode. Subsequent lines printed within the execution of the
same
.code format
call will be automatically indented. If no width is specified, then
the directive sets the hanging indentation to the current printing
column position. If a width is specified, then it represents an offset
(positive or negative). If the
.code <
prefix character is present, the hanging indentation is set to the
specified offset relative to the current printing column.
If the
.code <
prefix is present on the width field, then the offset is applied
relative to the indentation which was saved on entry into the
.code format
function.
The indentation mode and indentation column are automatically restored to their
previous values when
.code format
function terminates, naturally or via an exception or non-local jump.
The effect of a precision field (even if zero) combined with the
.code !
directive is currently not specified, and reserved for future extension.
The precision field is processed syntactically, and no error occurs, however.
.RE
.coNP Function @ fmt
.synb
.mets (fmt < format-string << format-arg *)
.syne
.desc
The
.code fmt
function provides a shorthand for formatting to a string, according
to the following equivalence which holds between
.code fmt
and
.codn format :
.verb
(fmt s arg ...) <--> (format nil s arg ...)
.brev
.coNP Functions @, print @, pprint @, prinl @, pprinl @ tostring and @ tostringp
.synb
.mets (print < obj >> [ stream <> [ pretty-p ]])
.mets (pprint < obj <> [ stream ])
.mets (prinl < obj <> [ stream ])
.mets (pprinl < obj <> [ stream ])
.mets (tostring << obj )
.mets (tostringp << obj )
.syne
.desc
The
.code print
and
.code pprint
functions render a printed character representation of the
.meta obj
argument into
.metn stream .
If the
.meta stream
argument is not supplied, then
the destination is the stream currently stored in the
.code *stdout*
variable.
If Boolean argument
.meta pretty-p
is not supplied or is explicitly specified as
.codn nil ,
then the
.code print
function renders in a way which strives for read-print
consistency: an object is printed in a notation which is recognized as
a similar object of the same kind when it appears in \*(TX source code.
Floating-point objects are printed as if using the
.code format
function, with formatting controlled by the
.code *print-flo-format*
variable.
If
.meta pretty-p
is true, then
.code print
does not strive for read-print consistency.
Strings are printed by sending their characters to the output
stream, as if by the
.code put-string
function, rather than being rendered in the string literal notation
consisting of double quotes, and escape sequences for control
characters. Likewise, character objects are printed via
.code put-char
rather than the
.code #\e
notation. Buffer objects are printed by sending their bytes to the
output stream using
.code put-byte
rather than being rendered in the
.code #b
notation.
Symbols are printed without their package prefix, except that
symbols from the keyword package are still printed with the leading colon.
Floating-point objects are printed as if using the
.code format
function, with formatting controlled by the
.code *pprint-flo-format*
variable.
When aggregate objects like conses, ranges and vectors are printed,
the notations of these objects themselves are unaffected by the
.code pretty-p
flag; however, that flag is distributed to the elements.
The
.code print
function returns
.metn obj .
The
.code pprint
("pretty print") function is equivalent to
.codn print ,
with the
.meta pretty-p
argument hard-coded true.
The
.code prinl
function ("print and new line") behaves like a call to
.code print
with
.meta pretty-p
defaulting to
.codn nil ,
followed by issuing a newline characters to the stream.
The
.code pprinl
function ("pretty print and new line") behaves like
.code pprint
followed by issuing a newline to the stream.
The
.code tostring
and
.code tostringp
functions are like
.code print
and
.codn pprint ,
but they do not accept a stream argument. Instead they print to a freshly
instantiated string stream, and return the resulting string.
The following equivalences hold between calls to the
.code format
function and calls to the above functions:
.verb
(format stream "~s" obj) <--> (print obj stream)
(format t "~s" obj) <--> (print obj)
(format t "~s\en" obj) <--> (prinl obj)
(format nil "~s" obj) <--> (tostring obj)
.brev
For
.codn pprint ,
.code tostringp
and
.codn pprinl ,
the equivalence is produced by using
.code ~a
in format rather than
.codn ~s .
.TP* Notes:
For floating-point numbers, the above description of the behavior in
terms of the format specifiers
.code ~s
and
.code ~a
only applies with respect to the default values of the variables
.code *print-flo-format*
and
.codn *pprint-flo-format* .
For characters, the print function behaves as follows: most control
characters in the Unicode
.code C0
and
.code C1
range are rendered using the
.code #\ex
notation,
using two hex digits. Codes in the range
.code D800
to
.codn DFFF ,
and the codes
.code FFFE
and
.code FFFF
are printed in the
.code #\exNNNN
with four hexadecimal digits, and
character above this range are printed using the same notation, but with six
hexadecimal digits. Certain characters in the
.code C0
range are printed using
their names such as
.code #\enul
and
.codn #\ereturn ,
which are documented
in the Character Literals section.
The
.code DC00
character is printed as
.codn #\epnul .
All other characters are printed as
.mono
.meti >> #\e char
.onom
where
.meta char
is the actual character.
Caution: read-print consistency is affected by trailing material. If additional
digits are printed immediately after a number without intervening whitespace,
they extend that number. If hex digits are printed after the character
.codn x ,
which is rendered as
.codn #\ex ,
they look like a hex character code.
.coNP Function @ tprint
.synb
.mets (tprint < obj <> [ stream ])
.syne
.desc
The
.code tprint
function prints a representation of
.meta obj
on
.metn stream .
If the stream argument is not supplied, then
the destination is the stream currently stored in the
.code *stdout*
variable.
For all object types except lists and vectors,
.code tprint
behaves like
.codn pprinl .
If
.code obj
is a list or vector, then
.code tprint
recurses: the
.code tprint
function is applied to each element. An empty list or vector
results in no output at all. This effectively means that an arbitrarily nested
structure of lists and vectors is printed flattened, with one element on each
line.
.coNP Function @ display-width
.synb
.mets (display-width << char )
.mets (display-width << string )
.syne
.desc
The
.code display-width
function calculates the number of places occupied by the printed representation
of
.meta char
or
.meta string
on a monospace display which renders certain characters, such as the East Asian
kanji and other characters, using two places.
For a
.meta string
argument, this value is the sum of the individual display width of the
string's constituent characters. The display width of an empty string is zero.
Control characters are assigned a display width of zero, regardless of
their display control semantics, if any.
Characters marked by Unicode as being wide or full width, have a display
width of two. Other characters have a display width of one.
.coNP Function @ streamp
.synb
.mets (streamp << obj )
.syne
.desc
The
.code streamp
function returns
.code t
if
.meta obj
is any type of stream. Otherwise it returns
.codn nil .
.coNP Function @ real-time-stream-p
.synb
.mets (real-time-stream-p << obj )
.syne
.desc
The
.code real-time-streamp-p
function returns
.code t
if
.meta obj
is a stream marked as
"real-time". If
.meta obj
is not a stream, or not a stream marked as "real-time",
then it returns
.codn nil .
Only certain kinds of streams accept the real-time attribute: file streams and
tail streams. This attribute controls the semantics of the application of
.code lazy-stream-cons
to the stream. For a real-time stream,
.code lazy-stream-cons
returns a stream with "naive" semantics which returns data as soon as it is
available, at the cost of generating spurious
.code nil
item when the stream
terminates. The application has to recognize and discard that
.code nil
item.
The ordinary lazy streams read ahead by one line and suppress this extra
item, so their representation is more accurate.
When \*(TX starts up, it automatically marks the
.code *stdin*
stream as real-time, if it is connected to a TTY device (a device for which
the POSIX function
.code isatty
reports true). This is only supported on platforms that have this function.
The behavior is overridden by the
.code -n
command line option.
.coNP Function @ open-file
.synb
.mets (open-file < path <> [ mode-string ])
.syne
.desc
The
.code open-file
function creates a stream connected to the file
which is located at the given
.metn path ,
which is a string.
The
.meta mode-string
argument is a string which uses the same
conventions as the mode argument of the C language
.code fopen
function, with greater permissiveness, and some extensions.
The syntax of mode-string is described by the following
grammar. Note that it permits no whitespace characters:
.mono
.mets < mode-string := [ < mode ] [ < options ]
.mets < mode := { < selector [ + ] | + }
.mets < selector := { r | w | a | m }
.mets < options := { b | l | u | i | n | < digit | < redirection }
.mets < digit := { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 }
.onom
If the
.meta mode-string
argument is omitted, the behavior is the same as an empty
mode string.
The
.meta mode
part of the mode string generates the following possibilities:
.RS
.meIP empty
If the
.meta mode
is missing, then a default mode is implied. The default
is specific to the particular stream-opening function. In
the case of
.codn open-file ,
the default mode is
.codn r .
.coIP +
A
.meta mode
consisting of just the
.code +
character is equivalent to
.codn r+ .
.coIP r
This
.meta mode
means that the file is opened for reading.
.coIP r+
The file is opened for reading and writing. It is not created
if it doesn't exist.
.coIP w
The file is opened for writing. If it exists, it is truncated
to zero length. If it doesn't exist, it is created.
.coIP w+
The file is opened for reading and writing. If it exists, it
is truncated to zero length. If it doesn't exist, it is created.
.coIP m
The file is opened for modification. This is the same as
.code w
except that the file is not truncated if it exists.
.coIP m+
The file is opened for reading and modification. This is the same as
.code w+
except that the file is not truncated if it exists.
.coIP a
The file is opened for writing. If it doesn't exist, it is
created. If it exists, the current position is advanced to
one byte past the end of the file, so that newly written data
are appended.
.coIP a+
The file is opened for reading and writing. If it doesn't exist,
it is created. The read position is at the beginning of the file,
but writes are appended to the end regardless of the position.
.RE
.IP
The meanings of the option characters are:
.RS
.coIP b
The file is opened in binary mode: no line ending translation takes place.
In the absence of this option, files are opened in text mode, in which newline
characters in the stream are an abstract indication of the end of a line,
translate to a system-specific way of terminating lines in text files.
.coIP l
Specifies that the stream will be line buffered. This means that an implicit
flush operation takes place whenever the newline character is output.
.coIP u
Specifies that the stream will be unbuffered. It is erroneous for both
.code l
and
.code u
to be specified.
.coIP i
Specifies that the stream will have the real-time
property set. For a description of the semantics, see the
.code real-time-stream-p
function. Briefly, this property affects the semantics of lazy lists which draw
input from the stream.
In addition, for a stream opened for writing or reading and writing, the
.code i
mode letter specifies that the stream will be line buffered, unless
specified as unbuffered with
.codn u .
.coIP n
Specifies that the operation shall not block.
.meIP digit
A decimal digit specifies the the stream buffer size
as binary exponential buffer size order, such that
.code 0
specifies 1024 bytes,
.code 1
specifies 2048 and so forth up to
.code 9
specifying 524288 bytes. If no such digit is specified, then the
stream uses a default buffer size. It is erroneous for the
size order digit to be present together with the option
.codn u .
.meIP redirection
This option refers to a special syntax that only has an effect
in mode strings that are passed to the
.code open-process
function; the syntax performs I/O redirections in the child process
created by that function, and is described in that function's
documentation.
.RE
.coNP Function @ open-tail
.synb
.mets (open-tail < path >> [ mode-string <> [ seek-to-end-p ]])
.syne
.desc
The
.code open-tail
function creates a tail stream connected to the file which is
located at the given
.metn path .
The
.meta mode-string
argument is a string which uses
the same conventions as the mode argument of the C language
.code fopen
function. If this argument is omitted, then
.str r
is used.
See the
.code open-file
function for a discussion of modes.
The
.code seek-to-end-p
argument is a Boolean which determines whether the initial
read/write position is at the start of the file, or just past the end.
It defaults to
.codn nil .
This argument only makes a difference if the file exists
at the time
.code open-tail
is called. If the file does not exist, and is later
created, then the tail stream will follow that file from the beginning. In
other words,
.meta seek-to-end-p
controls whether the tail stream reads all the
existing data in the file, if any, or whether it reads only newly added data
from approximately the time the stream is created.
A tail stream has special semantics with regard to reading at the end
of file. A tail stream never reports an end-of-file condition; instead
it polls the file until more data is added. Furthermore, if the file
is truncated, or replaced with a smaller file, the tail stream follows
this change: it automatically opens the smaller file and starts reading from
the beginning (the
.meta seek-to-end-p
flag only applies to the initial open).
In this manner, a tail stream can dynamically growing rotating log files.
Caveat: since a tail stream can re-open a new file which has the same
name as the original file, it behave incorrectly if the program
changes the current working directory, and the path name is relative.
.coNP Function @ open-directory
.synb
.mets (open-directory << path )
.syne
.desc
The
.code open-directory
function tries to create a stream which reads the
directory given by the string argument
.metn path .
If a filesystem object exists
under the path, is accessible, and is a directory, then the function
returns a stream. Otherwise, a file error exception is thrown.
The resulting stream supports the get-line operation. Each call to the
.code get-line
operation retrieves a string representing the next directory
entry. The value
.code nil
is returned when there are no more directory entries.
The
.code .
and
.code ..
entries in Unix filesystems are not skipped.
.coNP Function @ make-string-input-stream
.synb
.mets (make-string-input-stream << string )
.syne
.desc
The
.code make-string-input-stream
function produces an input stream object. Character read operations on the
stream object read successive characters from
.metn string .
Output operations and byte operations are not supported.
.coNP Function @ make-string-byte-input-stream
.synb
.mets (make-string-byte-input-stream << string )
.syne
.desc
The
.code make-string-byte-input-stream
function produces an input stream object. Byte read operations on
this stream object read successive byte values obtained by encoding
.meta string
into UTF-8. Character read operations are not supported, and neither
are output operations.
.coNP Function @ make-strlist-input-stream
.synb
.mets (make-strlist-input-stream << list )
.syne
.desc
The
.code make-strlist-input-stream
function produces an input stream object based on a list of strings.
Through the character read operations invoked on this stream,
the list of strings appears as a list of newline-terminated lines.
Output operations and byte operations are not supported.
.coNP Function @ make-string-output-stream
.synb
.mets (make-string-output-stream)
.syne
.desc
The
.code make-string-output-stream
function, which takes no arguments, creates a string output stream.
Data sent to this stream is accumulated into a string object.
String output streams supports both character and byte output operations.
Bytes are assumed to represent a UTF-8 encoding, and are decoded in order
to form characters which are stored into the string.
If an incomplete UTF-8 code is output, and a character output operation then
takes place, that code is assumed to be terminated and is decoded as invalid
bytes. The UTF-8 decoding machine is reset and ready for the start of a new
code.
The
.code get-string-from-stream
function is used to retrieve the accumulated string.
If the null character is written to a string output stream, the behavior
is unspecified. \*(TX strings cannot contain null bytes. A the pseudo-null
character
.codn #\exDC00 ,
also notated
.codn #\epnul ,
will produce a null byte when converted to UTF-8 and thus serves as an
effective internal representation of the null character in external data.
.coNP Function @ get-string-from-stream
.synb
.mets (get-string-from-stream << stream )
.syne
.desc
The
.meta stream
argument must be a string output stream. This function finalizes
the data sent to the stream and retrieves the accumulated character string.
If a partial UTF-8 code has been written to
.metn stream ,
and then this
function is called, the byte stream is considered complete and the partial
code is decoded as invalid bytes.
After this function is called, further output on the stream is not possible.
.coNP Function @ make-strlist-output-stream
.synb
.mets (make-strlist-output-stream)
.syne
.desc
The
.code make-strlist-output-stream
function is similar to
.codn make-string-output-stream .
However, the stream object produced by this function does not produce a string,
but a list of strings. The data is broken into multiple strings by newline
characters written to the stream. Newline characters do not appear in the
string list. Also, byte output operations are not supported.
.coNP Function @ get-list-from-stream
.synb
.mets (get-list-from-stream << stream )
.syne
.desc
The
.code get-list-from-stream
function returns the string list which has accumulated inside
a string output stream given by
.metn stream .
The string output stream is
finalized, so that further output is no longer possible.
.coNP Macro @ with-in-string-stream
.synb
.mets (with-in-string-stream >> ( stream-var << string )
.mets \ \ << body-form *)
.syne
.desc
The
.code with-in-string-stream
macro binds the symbol
.meta stream-var
as a variable, initializing it with a newly created
string input stream. The string input stream is
constructed from
.meta string
as if by the
.mono
.meti (make-string-input-stream << string )
.onom
expression.
Then it evaluates the
.metn body-form -s
in the scope of the variable.
The value of the last
.meta body-form
is returned, or else
.code nil
if no forms are present.
The
.meta stream-var
argument must be a bindable symbol,
as defined by the
.code bindable
function.
The
.meta string
argument must be a form
which evaluates to a character string value.
.coNP Macro @ with-in-string-byte-stream
.synb
.mets (with-in-string-byte-stream >> ( stream-var << string )
.mets \ \ << body-form *)
.syne
.desc
The
.code with-in-string-byte-stream
macro binds the symbol
.meta stream-var
as a variable, initializing it with a newly created
string byte input stream. The string input stream is
constructed from
.meta string
as if by the
.mono
.meti (make-string-byte-input-stream << string )
.onom
expression.
Then it evaluates the
.metn body-form -s
in the scope of the variable.
The value of the last
.meta body-form
is returned, or else
.code nil
if no forms are present.
The
.meta string
argument must be a form
which evaluates to a character string value.
.coNP Macro @ with-out-string-stream
.synb
.mets (with-out-string-stream <> ( stream-var ) << body-form *)
.syne
.desc
The
.code with-out-string-stream
macro binds the symbol specified
by the
.meta stream-var
argument as a variable, initializing it
with a newly created string output stream. The output
stream is created as if by the
.code make-string-output-stream
function.
Then it evaluates
.metn body-form -s
in the scope of that variable.
After these forms are evaluated, the string is extracted
from the string output stream, as if by the
.code get-string-from-stream
function, and returned as the result value
of the form.
.coNP Macro @ with-out-strlist-stream
.synb
.mets (with-out-strlist-stream <> ( stream-var ) << body-form *)
.syne
.desc
The
.code with-out-strlist-stream
macro binds the symbol specified
by the
.meta stream-var
argument as a variable, initializing it
with a newly created string list output stream. The output
stream is created as if by the
.code make-strlist-output-stream
function.
Then it evaluates
.metn body-form -s
in the scope of that variable.
After these forms are evaluated, the string list is extracted
from the string output stream, as if by the
.code get-strlist-from-stream
function, and returned as the result value
of the form.
.coNP Function @ make-byte-input-stream
.synb
.mets (make-byte-input-stream << obj )
.syne
.desc
The
.code make-byte-input-stream
creates a stream which supports the
.code get-byte
operation for traversing a byte-wise representation of
.metn obj .
The function serves as a generic interface for calling one of
several other stream constructing functions based on the
type of the
.meta obj
argument.
The
.meta obj
argument must be either a buffer, in which case
.code make-byte-input-stream
behaves like
.codn make-buf-stream ,
or else a string, in which case the function behaves like
.codn make-string-byte-input-stream .
Note: the repertoire of types handled by
.code make-byte-input-stream
may expand in future language versions.
.coNP Function @ close-stream
.synb
.mets (close-stream < stream <> [ throw-on-error-p ])
.syne
.desc
The
.code close-stream
function performs a close operation on
.metn stream ,
whose meaning is depends on the type of the stream. For some types of streams,
such as string streams, it does nothing. For streams which are connected
to operating system files or devices, will perform a close of the underlying
file descriptor, and dissociate that descriptor from the stream. Any buffered
data is flushed first.
.code close-stream
returns a Boolean true value if the close has occurred without
errors, otherwise
.codn nil .
For most streams, "without errors" means that any buffered output data is
flushed successfully.
For command and process pipes (see open-command and open-process), success also
means that the process terminates normally, with a successful error code, or an
unsuccessful one. An abnormal termination is considered an error, as
as is the inability to retrieve the termination status, as well as the situation
that the process continues running in spite of the close attempt.
Detecting these situations is platform specific.
If the
.meta throw-on-error-p
argument is specified, and isn't
.codn nil ,
then the
function throws an exception if an error occurs during the close operation
instead of returning
.codn nil .
.coNP Macro @ with-stream
.synb
.mets (with-stream >> ( stream-var << init-form )
.mets \ \ << body-form *)
.syne
.desc
The
.code with-stream
binds the variable whose name is given by the
.meta stream-var
argument, and macro arranges for the evaluation of
.metn body-form -s
in the scope of that variable.
The variable is initialized with the value produced
by the evaluation of
.meta init-form
which must be an expression which evaluates to a stream.
After each
.meta body-form
is evaluated, the stream is closed, as if by the
.mono
.meti (close-stream << stream-var )
.onom
expression.
The value of the last
.meta body-form
then becomes the result value of the form,
or else
.code nil
if these forms are absent.
If the evaluation of the
.metn body-form -s
is abandoned, the stream is still closed. That is to say,
the closure of the stream is a protected action, as if by
the
.code unwind-protect
operator.
.coNP Functions @, get-error @ get-error-str and @ clear-error
.synb
.mets (get-error << stream )
.mets (get-error-str << stream )
.mets (clear-error << stream )
.syne
.desc
When a stream operation fails, the
.code get-error
and
.code get-error-str
functions may be used to inquire about a more detailed cause of the error.
Not all streams support these functions to the same extent. For instance,
string input streams have no persistent state. The only error which occurs
is the condition when the string has no more data.
The
.code get-error
inquires
.meta stream
about its error condition.
The function returns
.code nil
to indicate there is no error condition,
.code t
to indicate an end-of-data condition,
or else a value which is specific to the stream type indicating the
specific error type.
Note: for some streams, it is possible for the
.code t
value to be returned even though no operation has failed; that is to say, the
streams "know" they are at the end of the data even though no read operation
has failed. Code which depends on this will not work with streams which
do not thus indicate the end-of-data
.IR "a priori" ,
but by means of a read operation which fails.
The
.code get-error-str
function returns a text representation of the error code. The
.code nil
error code is represented as the string
.codn "no error" ;
the
.code t
error code as
.code "eof"
and other codes have a stream-specific representation.
The
.code clear-error
function removes the error situation from a stream. On some streams, it does
nothing. If an error has occurred on a stream, this function should be called
prior to re-trying any I/O or positioning operations.
The return value is the previous error code, or
.code nil
if there was no error, or the operation is not supported on the stream.
.coNP Functions @, get-line @ get-char and @ get-byte
.synb
.mets (get-line <> [ stream ])
.mets (get-char <> [ stream ])
.mets (get-byte <> [ stream ])
.syne
.desc
These fundamental stream functions perform input. The
.meta stream
argument
is optional. If it is specified, it should be an input stream which supports
the given operation. If it is not specified, then the
.code *stdin*
stream is used.
The
.code get-char
function pulls a character from a stream which supports character
input. Streams which support character input also support the
.code get-line
function which extracts a line of text delimited by the end of the stream or a
newline character and returns it as a string. (The newline character does not
appear in the string which is returned).
Character input from streams based on bytes requires UTF-8 decoding, so that
get-char actually may read several bytes from the underlying low level
operating system stream.
The
.code get-byte
function bypasses UTF-8 decoding and reads raw bytes from
any stream which supports byte input. Bytes are represented as integer
values in the range 0 to 255.
Note that if a stream supports both byte input and character input, then mixing
the two operations will interfere with the UTF-8 decoding.
These functions return
.code nil
when the end of data is reached. Errors are
represented as exceptions.
See also:
.code get-lines
.coNP Function @ get-string
.synb
.mets (get-string >> [ stream >> [ count <> [ close-after-p ]]])
.syne
.desc
The
.code get-string
function reads characters from a stream, and assembles them into
a string, which is returned. If the
.meta stream
argument is omitted, then the
.code *stdin*
stream is used.
The stream is closed after extracting the data, unless
.meta close-after-p
is specified as
.codn nil .
The default value of this argument is
.codn t .
If the
.meta count
argument is missing, then all of the characters from the
stream are read and assembled into a string.
If present, the
.meta count
argument should be a positive integer indicating
a limit on how many characters to read. The returned string will be no
longer than
.metn count ,
but may be shorter.
.coNP Functions @ unget-char and @ unget-byte
.synb
.mets (unget-char < char <> [ stream ])
.mets (unget-byte < byte <> [ stream ])
.syne
.desc
These functions put back, into a stream, a character or byte which was
previously read. The character or byte must match the one which was most
recently read. If the
.meta stream
argument is omitted, then the
.code *stdin*
stream is used.
If the operation succeeds, the byte or character value is returned.
A
.code nil
return indicates that the operation is unsupported.
Some streams do not support these operations; some support
only one of them. In general, if a stream supports
.codn get-char ,
it supports
.codn unget-char ,
and likewise for
.code get-byte
and
.codn unget-byte .
Streams may require a pushed back byte or character to match
the character which was previously read from that stream
position, and may not allow a byte or character to be pushed
back beyond the beginning of the stream.
Space may be available for only one byte of pushback under the
.code unget-byte
operation.
The number of characters that may be pushed back by
.code unget-char
is not limited.
Pushing both a byte and a character, in either order, is also unsupported.
Pushing a byte and then reading a character, or pushing a character and
reading a byte, are unsupported mixtures of operations.
If the stream is binary, then pushing back a byte decrements its position,
except if the position is already zero. At that point, the position becomes
indeterminate.
The behavior of pushing back immediately after a
.code seek-stream
positioning operation is unspecified.
.coNP Functions @, put-string @, put-line @ put-char and @ put-byte
.synb
.mets (put-string < string <> [ stream ])
.mets (put-line >> [ string <> [ stream ]])
.mets (put-char < char <> [ stream ])
.mets (put-byte < byte <> [ stream ])
.syne
.desc
These functions perform output on an output stream. The
.meta stream
argument
must be an output stream which supports the given operation. If it is omitted,
then
.code *stdout*
is used.
The
.code put-char
function writes a character given by
.code char
to a stream. If the
stream is based on bytes, then the character is encoded into UTF-8 and multiple
bytes are written. Streams which support
.code put-char
also support put-line, and
.codn put-string .
The
.code put-string
function writes the characters of a string out to
the stream as if by multiple calls to put-char. The
.meta string
argument
may be a symbol, in which case its name is used as the string.
The
.code put-line
function is like
.codn put-string ,
but also writes an additional newline
character. The string is optional in
.codn put-line ,
and defaults to the empty string.
The
.code put-byte
function writes a raw byte given by the
.meta byte
argument
to
.metn stream ,
if
.meta stream
supports a byte write operation. The byte
value is specified as an integer value in the range 0 to 255.
All these functions return
.codn t .
On failure, they do not return, but throw exceptions of type
.codn file-error .
.coNP Functions @ put-strings and @ put-lines
.synb
.mets (put-strings < sequence <> [ stream ]])
.mets (put-lines < sequence <> [ stream ]])
.syne
.desc
These functions assume
.meta sequence
to be a sequence of strings, or of
symbols, or a mixture thereof. These strings are sent to the stream. The
.meta stream
argument must be an output stream. If it is omitted, then
.code *stdout*
is used.
The
.code put-strings
function iterates over
.meta sequence
and writes each element
to the stream as if using the
.code put-string
function.
The
.code put-lines
function iterates over
.code sequence
and writes each element
to the stream as if using the
.code put-line
function.
Both functions return
.codn t .
.coNP Function @ flush-stream
.synb
.mets (flush-stream <> [ stream ])
.syne
.desc
The
.code flush-stream
function is meaningful for output streams which accumulate data
which is passed on to the operating system in larger transfer units.
Calling
.code flush-stream
causes all accumulated data inside
.meta stream
to be passed
to the operating system. If called on streams for which this function is not
meaningful, it does nothing, and returns
.codn nil .
If
.meta stream
is omitted, the current value of
.code *stdout*
is used.
.coNP Function @ seek-stream
.synb
.mets (seek-stream < stream < offset << whence )
.syne
.desc
The
.code seek-stream
function is meaningful for file streams. It changes the
current read/write position within
.metn stream .
It can also be used to determine the current position: see the notes about the
return value below.
The
.meta offset
argument is a positive or negative integer which gives a
displacement that is measured from the point identified by the
.meta whence
argument.
Note that for text files, there isn't necessarily a 1:1 correspondence between
characters and positions due to line-ending conversions and conversions
to and from UTF-8.
The
.meta whence
argument is one of three keywords: :from-start, :from-current
and :from-end. These denote the start of the file, the current position
and the end of the file.
If
.meta offset
is zero, and
.meta whence
is
.codn :from-current ,
then
.code seek-stream
returns the current absolute position within the
stream, if it can successfully obtain it. Otherwise, it
returns
.code t
if it is successful.
If a character has been successfully put back into a text stream with
.code unget-char
and is still pending, then the position value is unspecified. If a
byte has been put back into a binary stream with
.codn unget-byte ,
and the previous position wasn't zero, then the position is decremented by one.
On failure, it throws an exception of type
.codn stream-error .
.coNP Function @ truncate-stream
.synb
.mets (truncate-stream < stream <> [ length ])
.syne
.desc
The
.code truncate-stream
causes the length of the underlying file associated with
.meta stream
to be set to
.meta length
bytes.
The stream must be a file stream, and must be open for writing.
If
.meta length
is omitted, then it defaults to the current position, retrieved
as if by invoking the
.code seek-stream
with an
.meta offset
argument of zero and
.meta whence
argument of
.codn :from-current .
Hence, after the
.code truncate-stream
operation, that position is one byte past the end of the file.
.coNP Functions @ stream-get-prop and @ stream-set-prop
.synb
.mets (stream-get-prop < stream << indicator )
.mets (stream-set-prop < stream < indicator << value )
.syne
.desc
These functions get and set properties on a stream. Only certain properties
are meaningful with certain kinds of streams, and the meaning depends on
the stream. If two or more stream types support a property of the same name, it
is expected that the property has the same or similar meaning for both
streams to the maximum extent that similarity is possible.
The
.code stream-set-prop
function sets a property on a stream. The
.meta indicator
argument is a symbol, usually a keyword symbol, denoting the property,
and
.meta value
is the property value. If the stream understands and accepts the
property, the function returns
.codn t .
Otherwise it returns
.codn nil .
The
.code stream-get-prop
function inquires about the value of a property on a
stream. If the stream understands the property, then it returns its current
value. If the stream does not understand a property, nil is returned, which is
also returned if the property exists, but its value happens to be
.codn nil .
The
.code :name
property is widely supported by streams of various types. It associates
the stream with a name. This property is not always modifiable.
File, process and stream socket I/O streams have a
.code :fd
property which can be accessed, but not modified. It retrieves
the same value as the
.code fileno
function.
The "real time"
property supported by these streams, connected with the
.code real-time-stream-p
function, also appears as the
.code :real-time
property.
I/O streams also have a property called
.code :byte-oriented
which, if set, suppresses the decoding of UTF-8 on character input. Rather,
each byte of the file corresponds directly to one character. Bytes
in the range 1 to 255 correspond to the character code points U+0001
to U+00FF. Byte value 0 is mapped to the code point U+DC00.
The logging priority of the
.code *stdlog*
syslog stream is controlled by the
.code :prio
property.
If
.meta stream
is a catenated stream (see the function
.codn make-catenated-stream )
then these functions transparently operate on the current head stream of the
catenation.
.coNP Functions @ make-catenated-stream and @ cat-streams
.synb
.mets (make-catenated-stream << stream *)
.mets (cat-streams << stream-list )
.syne
.desc
The
.code make-catenated-stream
function takes zero or more arguments which
are input streams of the same type, and combines
them into a single virtual stream called a catenated stream.
The
.code cat-streams
function takes a single list of input streams of
the same type, and similarly combines them into a catenated stream.
A catenated stream does not support seeking operations or output,
regardless of the capabilities of the streams in the list.
If the stream list is not empty, then the leftmost element of the
list is called the head stream.
The
.codn get-char ,
.codn get-byte ,
.codn get-line ,
.code unget-char
and
.code unget-byte
functions delegate
to the corresponding operations on the head stream, if it exists.
If the stream list is empty, they return
.code nil
to the caller.
If the
.codn get-char ,
.code get-byte
or
.code get-line
operation on the head stream yields
.codn nil ,
and there are more lists in the stream, then the stream is closed, removed from
the list, and the next stream, if any, becomes the head list. The operation is
then tried again. If any of these operations fail on the last list, it is not
removed from the list, so that a stream remains in place which can take the
.code unget-char
or
.code unget-byte
operations.
In this manner, the catenated streams appear to be a single stream.
Note that the operations can fail due to being unsupported. It is
the caller's responsibility to make sure all of the streams in the list
are compatible with the intended operations.
If the stream list is empty then an empty catenated stream is produced.
Input operations on this stream yield
.codn nil ,
and the
.code unget-char
and
.code unget-byte
operations throw an exception.
.coNP Function @ catenated-stream-p
.synb
.mets (catenated-stream-p << obj )
.syne
.desc
The
.code catenated-stream-p
function returns
.code t
if
.meta obj
is a catenated stream. Otherwise it returns
.codn nil .
.coNP Function @ catenated-stream-push
.synb
.mets (catenated-stream-push < new-stream << cat-stream )
.syne
.desc
The
.code catenated-stream-push
function pushes
.meta new-stream
to the front of the stream list inside
.metn cat-stream .
If an
.code unget-byte
or
.code unget-char
operation was successfully performed on
.meta cat-stream
previously to a call to
.codn catenated-stream-push ,
those operations were forwarded to the front stream.
If those bytes or characters are still pending,
they are pending inside that stream, and thus
are logically preceded by the contents
of
.metn new-stream .
.coNP Functions @ open-files and @ open-files*
.synb
.mets (open-files < path-list >> [ alternative-stream <> [ mode-string ]])
.mets (open-files* < path-list >> [ alternative-stream <> [ mode-string ]])
.syne
.desc
The
.code open-files
and
.code open-files*
functions create a list of streams by invoking
the
.code open-file
function on each element of
.metn path-list .
By default, the mode string
.str r
is passed to
.codn open-file ;
if the
.meta mode-string
argument specified, it overrides this default. In that situation,
the specified mode should permit reading.
These streams are turned
into a catenated stream as if applied as arguments to
.codn make-catenated-stream .
The effect is that multiple files appear to be catenated together into a single
input stream.
If the optional
.meta alternative-stream
argument is supplied, then if
.meta path-list
is empty,
.meta alternative-stream
is returned instead of an empty catenated stream.
The difference between
.code open-files
and
.code open-files*
is that
.code open-files
creates all of the
streams up-front. So if any of the paths cannot be opened, the operation throws.
The
.code open-files*
variant is lazy: it creates a lazy list of streams out of the
path list. The streams are opened as needed: before the second stream is opened,
the program has to read the first stream to the end, and so on.
.TP* Example:
Collect lines from all files that are given as arguments on the command line. If
there are no files, then read from standard input:
.verb
@(next (open-files *args* *stdin*))
@(collect)
@line
@(end)
.brev
.coNP Function @ abs-path-p
.synb
.mets (abs-path-p << path )
.syne
.desc
The
.code abs-path-function
tests whether the argument
.meta path
is an absolute path, returning a
.code t
or
.code nil
indication.
The function behaves in the same manner on all platforms, implementing
a platform-agnostic definition of
.IR "absolute path" ,
as follows.
An absolute path is a string which either begins with a slash or backslash
character, or which begins with an alphanumeric word, followed by a colon,
followed by a slash or backslash.
The empty string isn't an absolute path.
Examples of absolute paths:
.verb
/etc
c:/tmp
ftp://user@server
disk0:/home
Z:\eUsers
.brev
Examples of strings which are not absolute paths:
.mono
.mets >> ( the < empty << string )
.
abc
foo:bar/x
$:\eabc
.onom
.coNP Function @ pure-rel-path-p
.synb
.mets (pure-rel-path-p << path )
.syne
.desc
The
.code pure-rel-path-p
function tests whether the string
.meta path
represents a
.IR "pure relative path" ,
which is defined as a path which isn't absolute according to
.codn abs-path-p ,
which isn't the string
.str .
(single period),
which doesn't begin with a period followed by a slash or backslash,
and which doesn't begin with alphanumeric word
terminated by a colon.
The empty string is a pure relative path.
Other examples of pure relative paths:
.verb
abc.d
.tmp/bar
1234
x
$:/xyz
.brev
Examples of strings which are not pure relative paths:
.verb
.
/
/etc
./abc
.\e
foo:
$:\eabc
.brev
.coNP Functions @ dir-name and @ base-name
.synb
.mets (dir-name << path )
.mets (base-name < path <> [ suffix ])
.syne
.desc
The
.code dir-name
and
.code base-name
functions calculate, respective, the directory part and
base name part of a path name.
The calculation is performed in a platform-dependent way, using the
characters in the variable
.code path-sep-chars
as path component separators.
Both functions first remove from any further consideration all superfluous
trailing occurrences of the directory separator characters from
.codn path .
Thus input such as
.str "a////"
is reduced to just
.strn "a" ,
and
.str "///"
is reduced to
.strn "/" .
The resulting trimmed path is the
.I "effective path" .
If the effective path is an empty string, then
.code dir-name
returns
.str "."
and
.code base-name
returns the empty string.
If the effective path is not empty, and contains no path separator
characters, then
.code dir-name
returns
.str "."
and
.code base-name
returns the effective path.
Otherwise, the effective path is divided into two parts: the
.I "raw directory prefix"
and the remainder.
The raw directory prefix is the maximally long prefix of the effective
path which ends in a separator character.
The
.code dir-name
function returns the raw directory prefix, if that prefix consists of
nothing but a single directory separator character. Otherwise it
returns the raw directory prefix, with the trailing path separator
removed.
The
.code base-name
function returns the remaining part of the effective path, after
the raw directory prefix.
If the
.meta suffix
argument is given to
.codn base-name ,
then the returned base name is adjusted as follows. If the base
name ends in
.meta suffix
then a trimmed version of the base name is returned instead, with that suffix
removed. This adjustment isn't performed if it would result in an empty
string being returned.
.coNP Function @ path-cat
.synb
.mets (path-cat < dir-path << rel-path )
.syne
.desc
The
.code path-cat
function joins the directory path name given by the character
string argument
.meta dir-path
with the relative path name given by
.metn rel-path ,
returning the joined path.
The function is related to the functions
.code dir-name
and
.code base-name
in the following way: if
.meta p
is some path denoting an object in the file system, then
.code "(path-cat (dir-name p) (base-name p))"
produces a path
.meta p*
which denotes the same object. The paths
.meta p
and
.meta p*
might not be equivalent strings.
The
.code path-cat
function ensures that paths are joined without superfluous
path separator characters, regardless of whether
.meta dir-path
ends in a separator.
If a separator must be added, the character
.code /
(forward slash) is always used, even on platforms where
.code \e
(backslash) is also a pathname separator, and even if either argument includes
backslashes.
The
.code path-cat
function eliminates trivial occurrences of the
.code .
(dot) path component. It preserves trailing separators in the following
way: if
.meta rel-path
ends in a path separator character, then the returned string shall
end in that character; and if
.meta rel-path
vanishes entirely because it is equivalent to the dot, then the returned
string is
.meta dir-name
itself.
.TP* Examples:
.verb
(path-cat "" "") --> ""
(path-cat "" ".") --> ""
(path-cat "." "") --> ""
(path-cat "." ".") --> ""
(path-cat "abc" ".") --> "abc"
(path-cat "." "abc") --> "abc"
(path-cat "./" ".") --> "./"
(path-cat "." "./") --> "./"
(path-cat "abc/" ".") --> "abc/"
(path-cat "./" "abc") --> "abc"
(path-cat "/" ".") --> "/"
(path-cat "/" "abc") --> "/abc"
(path-cat "ab/cd" "ef") --> "ab/cd/ef"
.brev
.coNP Variable @ path-sep-chars
.desc
The
.code path-sep-chars
variable holds a string consisting of the characters which the underlying
operating system recognizes as path name separators.
If a particular of these characters is considered preferred on
the host platform, that character is placed in the first position of
.codn path-sep-chars .
Altering the value of this variable has no effect on any \*(TL library
function.
.coNP Functions @ read and @ iread
.synb
.mets (read >> [ source
.mets \ \ \ \ \ \ >> [ err-stream >> [ err-retval >> [ name <> [ lineno ]]]]])
.mets (iread >> [ source
.mets \ \ \ \ \ \ \ >> [ err-stream >> [ err-retval >> [ name <> [ lineno ]]]]])
.syne
.desc
The
.code read
function converts text denoting \*(TL structure, into the
corresponding data structure. The
.meta source
argument may be either a character
string, or a stream. If it is omitted, then
.code *stdin*
is used as the stream.
The source must provide the text representation of one complete \*(TL object.
Multiple calls to read on the same stream will extract successive objects
from the stream. To parse successive objects from a string, it is necessary
to convert it to a string stream.
The optional
.meta err-stream
argument can be used to specify a stream to which
parse errors diagnostics are sent. If absent, the diagnostics are suppressed.
The optional
.meta name
argument can be used to specify the file name which is used for reporting
errors. If this argument is missing, the name is taken from the name
property of the
.meta source
argument if it is a stream, or else the word
.code string
is used as the name if
.meta source
is a string.
The optional
.code lineno
argument, defaulting to 1, specifies the starting line number. This,
like the
.meta name
argument, is used for reporting errors.
If there are no parse errors, the function returns the parsed data
structure. If there are parse errors, and the
.meta err-retval
parameter is
present, its value is returned. If the
.meta err-retval
parameter
is not present, then an exception of type
.code syntax-error
is thrown.
The
.code iread
function ("interactive read") is similar to
.code read
except that it parses a modified version of the syntax. The modified
syntax does not support the application of the dot and dotdot operators
on a top-level expression. For instance, if the input is
.code a.b
or
.code "a .. b"
then
.code iread
will only read the
.code a
token whereas
.code read
will read the entire expression.
This modified syntax allows
.code iread
to return immediately when an expression is recognized, which is the
expected behavior if the input is being read from an interactive terminal.
By contrast,
.code read
waits for more input after seeing a complete expression, because of the
possibility that the expression will be further extended by means of the dot or
dotdot operators. An explicit end-of-input signal must be given from the
terminal to terminate the expression.
The special variable
.code *rec-source-loc*
controls whether these functions record source location info similarly to
.codn load .
Note: if these functions are used to scan data which is evaluated as Lisp code,
it may be useful to set
.code *rec-source-loc*
true in order to obtain better diagnostics. However, source location recording
incurs a performance and storage penalty.
.coNP Function @ record-adapter
.synb
.mets (record-adapter < regex >> [ stream <> [ include-match ]])
.syne
.desc
The
.code record-adapter
function returns a new stream object which acts as an
.I adapter
to the existing
.metn stream .
If an argument is not specified for
.metn stream ,
then the
.code *std-input*
stream is used.
With the exception of
.metn get-line ,
all operations on the returned adapter transparently delegate to the original
.meta stream
object.
When the
.code get-line
function is used on the adapter, it behaves differently. A string is
extracted from
.metn stream ,
and returned. However, the string isn't a line delimited by a newline
character, but rather a record delimited by
.metn regex .
This record is extracted as if by a call to the
.code read-until-match
function, invoked with the
.metn regex ,
.meta stream
and
.meta include-match
arguments.
All behavior which is built on the
.code get-lines
function is affected by the record-delimiting semantics of a record adapter's
.code get-line
implementation. Notably, the
.code get-lines
and
.code lazy-stream-cons
functions return a lazy list of delimited records rather than of lines.
.SS* Stream Output Indentation
\*(TL streams provide support for establishing hanging indentations
in text output. Each stream which supports output has a built-in state variable
called indentation mode, and another variable indicating the current
indentation amount. When indentation mode is enabled, then prior to the
first character of every line, the stream prepends the indentation: space
characters equal in number to the current indentation value.
This logic is implemented by the
.code put-char
and
.code put-string
functions, and all functions based on these. The
.code put-byte
function does not interact with indentation. The column position tracking
will be incorrect if byte and character output are mixed, affecting
the placement of indentation.
Indentation mode takes on four numeric values, given by the four
variables
.codn indent-off ,
.codn indent-data ,
.code indent-code
and
.codn indent-foff .
As far as stream output is concerned, the code and data modes
represented by
.code indent-code
and
.code indent-data
behave
the same way: both represent the "indentation turned on" state.
The difference between them influences the behavior of the
.code width-check
function. This function isn't used by any lower-level stream output
routines. It is used by the object printing functions like
.code print
and
.code pprint
to break up long lines.
The
.code indent-off
and
.code intent-foff
modes are also treated the same way by lower level stream output,
indicating "indentation turned off". The modes are distinguished
by
.code print
and
.code pprint
in the following way:
.code indent-off
is a "soft" disable which allows these object-printing routines
to temporarily turn on indentation while traversing aggregate objects.
Whereas the
.code indent-foff
("force off") value is a "hard" disable: the object-printing routines will not
enable indentation and will not break up long lines.
.coNP Variables @, indent-off @, indent-data @ indent-code and @ indent-foff
.desc
These variables hold integer values representing output stream
indentation modes. The value of
.code indent-off
is zero.
.coNP Functions @ get-indent-mode and @ set-indent-mode
.synb
.mets (get-indent-mode << stream )
.mets (set-indent-mode < stream << new-mode )
.mets (test-set-indent-mode < stream < compare-mode << new-mode )
.syne
.desc
These functions retrieve and manipulate the stream indent mode.
The
.code get-indent-mode
retrieves the current indent mode of
.metn stream .
The
.code set-indent-mode
function sets the indent mode of
.meta stream
to
.meta new-mode
and returns the previous mode.
Note: it is encouraged to save and restore the indentation mode,
and in a way that is exception safe.
If a block of code sets up indentation on a stream such as
.code *stdout*
and is terminated by an exception, the indentation will remain in
effect and affect subsequent output. The
.code with-resources
macro or
.code unwind-protect
operator may be used.
.coNP Functions @ test-set-indent-mode and @ test-neq-set-indent-mode
.synb
.mets (test-set-indent-mode < stream < compare-mode << new-mode )
.mets (test-neq-set-indent-mode < stream < compare-mode << new-mode )
.syne
.desc
The
.code test-set-indent-mode
function sets the indent mode of
.meta stream
to
.meta new-mode
if, and only if,
its current mode is equal to
.metn compare-mode .
Whether or not it changes the mode, it returns the previous mode.
The
.code test-neq-set-indent-mode
only differs in that it sets
.meta stream
to
.meta new-mode
if, and only if,
the current mode is
.B not
equal to
.metn compare-mode .
.coNP Functions @, get-indent @ set-indent and @ inc-indent
.synb
.mets (get-indent << stream )
.mets (set-indent < stream << new-indent )
.mets (inc-indent < stream << indent-delta )
.syne
.desc
These functions manipulate the indentation value of the stream.
The indentation takes effect the next time a character is output
following a newline character.
The
.code get-indent
function retrieves the current indentation amount.
The
.code set-indent
function sets
.metn stream 's
indentation to the value
.meta new-indent
and returns the previous value.
Negative values are clamped to zero.
The
.code inc-indent
function sets
.metn stream 's
indentation relative to the current printing column position,
and returns the old value.
The indentation is calculated by adding
.meta indent-delta
to the current column position.
If a negative indentation results, it is clamped to zero.
.coNP Function @ width-check
.synb
.mets (width-check < stream << alt-char )
.syne
.desc
The
.code width-check
function examines the state of the stream, taking into consideration
the current printing column position, the indentation state,
the indentation amount and an internal "force break" flag. It makes a decision
either to introduce a line break by printing a newline character, or else to
print the
.meta alt-char
character.
If a decision is made not to emit a line break, but
.meta alt-char
is
.codn nil ,
then the function has no effect at all.
The return value is
.code t
if the function has issued a line break, otherwise
.codn nil .
.coNP Function @ force-break
.synb
.mets (force-break << stream )
.syne
.desc
If the
.code force-break
function is called on a stream, it sets an internal "force break" flag which
affects the future behavior of
.codn width-check .
The
.code width-check
function examines this flag. If the flag is set,
.code width-check
clears it, and issues a line break without considering any other
conditions.
The
.metn stream 's
.code force-break
flag is also cleared whenever a newline character is output.
The
.code force-break
function returns
.codn stream .
Note: the
.code force-break
is involved in line breaking decisions. Whenever a list or list-like syntax is
being printed, whenever an element of that syntax is broken into multiple
lines, a break is forced after that element, in order to avoid output
which resembles the following diagonally-creeping pattern:
.verb
(a b c (d e f
g h i) j (k l
m n) o)
.brev
but instead is rendered in a more horizontally compact pattern:
.verb
(a b c (d e f
g h i)
j (k l
m n)
o)
.brev
When the printer prints
.code "(d e f g h i)"
it uses the
.code width-check
function between the elements; that function issues the
break between the
.code f
and
.codn g .
The printer monitors the return value of
.codn width-check ;
it knows that since one of the calls returned
.codn t ,
the object had been broken into two or more lines. It then calls
.code force-break
after printing the last element
.code i
of that object. Then, due to the force flag, the outer recursion of the
printer which is printing
.code "(a b c ...)"
will experience a break when it calls
.code width-check
before printing
.codn j .
Custom
.code print
methods defined on structure objects can take advantage of
.code width-check
and
.code force-break
in the same way so that application-defined output integrates
with the formatting algorithm.
.SS* Stream Output Limiting
Streams have two properties which are used by the The \*(TL object printer to
optionally truncate the output generated by aggregate objects.
A stream can specify a maximum length for aggregate objects via the
.code set-max-length
function. Using the
.code set-max-depth
function, the maximum depth can also be specified.
This feature is
useful when diagnostic output is being produced, and the objects involved are
so large that the diagnostic output overwhelms the output device or the user,
so as to become uninformative. Output limiting also prevents the printer's
non-termination on infinite, lazy structures.
It is recommended that functions which operate on streams passed in as
parameters save and restore these parameters, if they need to manipulate them,
for instance using
.codn with-resources :
.verb
(defun output-function (arg stream)
;; temporarily impose maximum width and depth
(with-resources ((ml (set-max-length stream 42)
(set-max-length stream ml))
(mw (set-max-depth stream 12)
(set-max-depth stream mw)))
(prinl arg stream)
...))
.brev
.coNP Function @ set-max-length
.synb
.mets (set-max-length < stream << value )
.syne
.desc
The
.code set-max-length
function establishes the maximum length for aggregate object printing.
It affects the printing of lists, vectors, hash tables, strings
as well as quasiliterals and quasiword list literals (QLLs).
The default value is 0 and this value means that no limit is imposed.
Otherwise, the value must be a positive integer.
When the list, vector or hash table object being printed has more
elements than the maximum length, then elements are printed only up to
the maximum count, and then the remaining elements are summarized by
printing the
.code ...
(three dots) character sequence as if it were an additional element.
This sequence is an invalid token; it cannot be read as input.
When a character string is printed, any positive value of
the maximum length which is less than 15 is considered to be 15.
The maximum length specifies the number of characters of the
a string which are output.
If a string which exceeds the maximum length is being printed
with read-print consistency, as by the
.code print
function, then only a prefix of the string is printed, limited
to the maximum number of characters. Then, the literal syntax is
closed using the character sequence
.code \e...\(dq
(backslash, dot, dot, dot, double quote)
whose leading invalid escape sequence
.code \e.
(backslash, dot) ensures that the truncated object is not readable.
If a string which exceeds the maximum length is being printed
without read-print consistency, as by the
.code pprint
function, then only a prefix of the string is printed, limited
to the maximum number of characters. Then the
character sequence
.code ...
is emitted.
Quasiliterals are treated using a combination of behaviors. Elements of a
quasiliteral are literal sequence of text, and embedded variables and
expressions. The maximum length specifies both the maximum number of elements
in the quasiliteral, and the maximum number of characters in any element which
is a sequence of text. When either limit is exceeded, the quasiliteral
is immediately terminated with the sequence
.code \e...`
(escaped dot, dot, dot, backtick). The maximum limit is applied to
the units of text cumulatively, rather than individually. As in the case of
string literals, smaller limit values than 15 are treated as 15,
but only for the cumulative text length limit. For limiting the number of
elements, the count is used as-is.
When a QLL is printed, the space-separated elements
of the literal are individually subject to the maximum length limit as if
they were independent quasiliterals. Furthermore, the sequence of these
elements is subject to the maximum length. If there are more elements in the
QLL, then the sequence
.code \e...`
(escaped dot, dot, dot, backtick) is emitted and thus the QLL ends.
The
.code set-max-length
function returns the previous value.
.coNP Function @ set-max-depth
.synb
.mets (set-max-depth < stream << value )
.syne
.desc
The
.code set-max-length
function establishes the maximum depth for the printing of nested
objects. It affects the printing of lists, vectors, hash tables
and structures. The default value is 0 and this value means that no limit is
imposed. Otherwise, the value must be a positive integer.
The depth of an object not enclosed in any object is zero. The depth of the
element of an aggregate is one greater than the depth of the aggregate itself.
For instance, given the list
.code "(1 (2 3))"
the list itself has depth 0, the atom
.code 1
has depth 1, as does the sublist
.codn "(2 3)" ,
and the
.code 2
and
.code 3
atoms have depth 2.
When an object is printed whose depth exceeds the maximum depth, then three dot
character sequence
.code ...
is printed instead of that object. This notation is an invalid token; it cannot be
read as input.
Additionally, when a vector, list, hash table or structure is printed which itself
doesn't exceed the maximum depth, but whose elements do exceed, then that object
is summarized, respectively, as
.codn "(...)" ,
.codn "#(...)" ,
.code "H#(...)"
and
.codn "S#(...)" ,
rather than repeating the
.code ...
sequence for each of its elements.
The
.code set-max-depth
function returns the previous value.
.SS* Coprocesses
.coNP Functions @ open-command and @ open-process
.synb
.mets (open-command < system-command <> [ mode-string ])
.mets (open-process < program < mode-string <> [ argument-list ])
.mets (open-subprocess < program < mode-string
.mets \ \ >> [ argument-list <> [ function ]])
.syne
.desc
These functions spawn external programs which execute concurrently
with the \*(TX program. Both functions return a unidirectional stream for
communicating with these programs: either an output stream, or an input
stream, depending on the contents of
.metn mode-string .
In
.codn open-command ,
the
.meta mode-string
argument is optional, defaulting to
the value
.str r
if it is missing. See the
.code open-file
function for a discussion of modes.
The
.code open-command
function is implemented using POSIX
.codn popen .
Those elements of
.meta mode-string
which are applicable to
.code popen
are passed to it, and hence their semantics follows from
their processing in that function.
The
.code open-command
function accepts, via the
.meta system-command
string parameter, a
system command, which is in a system-dependent syntax. On a POSIX system, this
would be in the POSIX Shell Command Language.
The
.code open-process
function specifies a program to invoke via the
.meta command
argument. This is subject to the operating system's search strategy.
On POSIX systems, if it is an absolute or relative path, it is treated as
such, but if it is a simple base name, then it is subject to searching
via the components of the PATH environment variable. If open-process
is not able to find
.metn program ,
or is otherwise unable to execute
the program, the child process will exit, using the value of the C variable
.code errno
as its exit status. This value can be retrieved via
.codn close-stream .
The
.meta argument-list
argument is a list of strings which specifies additional
optional arguments to be passed passed to the program. The
.meta program
argument
becomes the first argument, and
.meta argument-string
become the second and
subsequent arguments. If
.meta argument-strings
is omitted, it defaults to empty.
If a coprocess is open for writing
.mono
.meti >> ( mode-string
.onom
is specified as
.strn w ),
then
writing on the returned stream feeds input to that program's standard input
file descriptor. Indicating the end of input is performed by closing the
stream.
If a coprocess is open for reading
.mono
.meti >> ( mode-string
.onom
is specified as
.strn r ),
then
the program's output can be gathered by reading from the returned stream.
When the program finishes output, it will close the stream, which can be
detected as normal end of data.
The standard input and error file descriptors of an input coprocess
are obtained from the streams stored in the
.code *stdin*
and
.code *stderr*
special variables, respectively. Similarly, the standard output and error
file descriptors of an output coprocess are obtained from the
.code *stdout*
and
.code *stderr*
special variables. These variables must contain streams on which the
.code fileno
function is meaningful, otherwise the operation will fail.
What this functionality means is that re-binding the special variables
for standard streams has the effect of redirection. For example,
the following two expressions achieve the same effect of creating
a stream which reads the output of the
.code cat
program, which reads and produces the contents of the file
.codn text-file .
.verb
;; redirect input by rebinding *stdin*
(let ((*stdin* (open-file "text-file")))
(open-command "cat"))
;; redirect input using POSIX shell redirection syntax
(open-command "cat < text-file")
.brev
The following is erroneous:
.verb
;; (let ((*stdin* (make-string-input-stream "abc")))
(open-command "cat"))
.brev
A string input or output stream doesn't have an operating system file
descriptor; it cannot be passed to a coprocess.
The streams
.codn *stdin* ,
.code *stdout*
and
.code *stderr*
are not synchronized with their underlying file descriptors prior to
the execution of a coprocess. It is up to the program to ensure that
previous output to
.code *stdout*
or
.code *stderr*
is flushed, so that the output of the coprocess isn't re-ordered
with regard to output produced by the program. Similarly,
input buffered in
.code *stdin*
is not available to the coprocess, even though it has not
yet been read by the program. The program is responsible for preventing this
situation also.
If a coprocess terminates abnormally or unsuccessfully, an exception is raised.
On platforms which have the
.code fork
function, the
.meta mode-string
argument of
.code open-process
supports a special
.meta redirection
syntax. This syntax specifies I/O redirections which are done in the
context of the child process, before the specified program is executed.
Instances of the syntax are considered options; if
.meta mode-string
specifies a mode such as
.code r
that mode must precede the redirections. Redirections may be mixed with
other options.
Up to four redirections may be specified using one
of two forms: a short form or the long form. If more than four
redirections are specified, the
.meta mode-string
is considered ill-formed.
The short form of the syntax consists of three characters: the prefix
character
.codn > ,
a single decimal digit indicating the file descriptor to be redirected,
and then a third character which is either another digit, or else one of the
two characters
.code n
or
.codn x .
If the third character is a digit, it indicates the target file descriptor
of the redirection. For instance
.code >21
indicates that file descriptor 2 is to be redirected to 1 (so that material
written to standard error goes to the same destination as that written
to standard output).
If the third character is
.codn n ,
it means that the file descriptor will be redirected to the file
.codn /dev/null .
For instance,
.code >2n
indicates that descriptor 2 (standard error) will be redirected to
the null device. If the third character is
.codn x ,
it indicates that the file descriptor shall be closed. For instance
.code >0x
means to close descriptor 0 (standard input).
The long form of the syntax allows file descriptors that require more
than one decimal digit. It consists of the same prefix character
.code >
which is immediately followed by an open parenthesis
.codn ( .
The parenthesis is immediately followed by one or more digits which
give the to-be-redirected file descriptor. This is followed by
one or more whitespace characters, and then either another multi-digit decimal file descriptor
or one of the two letters
.code n
or
.codn x .
This second element must be immediately followed by the closing
parenthesis
.codn ) .
Thus
.code >21
and
.code >2n
may be written in the long form, respectively, as
.code ">(2 1)"
and
.codn ">(2 n)" ,
while
.code ">(32 47)"
has no short form equivalent.
Multiple redirections may be specified, in any mixture of the long and
short form. For instance
.code "r>21>0n>(27 31)"
specifies a process pipe that is open for reading, capturing the
output of the process. In that process, standard error is redirected
to standard output, standard input is connected to the null device,
and descriptor 27 is redirected to descriptor 31.
Note: on platforms which don't have a
.code fork
function, the implementation of
.code open-process
is simulated via
.code open-command
and therefore does not support the redirection syntax; it is parsed
and ignored.
The
.code open-subprocess
function is a variant of
.code open-process
that is available on platforms which have a
.code fork
function. This function has all the same argument conventions and semantics as
.codn open-process ,
adding the
.meta function
argument. If this argument isn't
.codn nil ,
then it must specify a function which can be called with no arguments.
This function is called in the child process after any redirections are
established, just before the program specified by the
.meta program
argument is executed. Moreover, the
.code open-subprocess
function allows
.meta program
to be specified as
.code nil
in which case
.meta function
must be specified. When
.meta function
returns, the child process terminates as if by a call to
.code exit*
with an argument of zero.
.SS* I/O-Related Convenience Functions
The functions in this group create a stream, perform an I/O operation
on it, and ensure that it is closed, in one convenient operation. They
operate on files or command streams.
Several other functions in this category exist, which operate with buffers.
They are documented in the Buffer Functions subsection under the
FOREIGN FUNCTION INTERFACE section.
.coNP Functions @, file-get @ file-get-string and @ file-get-lines
.synb
.mets (file-get << name )
.mets (file-get-string << name )
.mets (file-get-lines << name )
.syne
.desc
The
.code file-get
function opens a text stream over the file indicated by the string argument
.meta name
for reading, reads the printed representation of a \*(TL object from it,
and returns that object, ensuring that the stream is closed.
The
.code file-get-string
is similar to
.code file-get
except that it reads the entire file as a text stream and returns
its contents in a single character string.
The
.code file-get-lines
function opens a text stream over the file indicated by
.meta name
and returns produces a lazy list of strings representing the lines
of text of that file as if by a call to the
.code get-lines
function, and returns that list. The stream remains open until the
list is consumed to the end, as indicated in the description of
.codn get-lines .
.coNP Functions @, file-put @ file-put-string and @ file-put-lines
.synb
.mets (file-put < name << obj )
.mets (file-put-string < name << string )
.mets (file-put-lines < name << list )
.syne
.desc
The
.codn file-put ,
.code file-put-string
and
.code file-put-lines
functions open a text stream over the file indicated by the string argument
.metn name ,
write the argument object into the file in their specific manner,
and then close the file.
If the file doesn't exist, it is created.
If it exists, it is truncated to zero length and overwritten.
The
.code file-put
function writes a printed representation of
.meta obj
using the
.code prinl
function. The return value is that of
.codn prinl .
The
.code file-put-string
function writes
.meta string
to the stream using the
.code put-string
function. The return value is that of
.codn put-string .
The
.code file-put-lines
function writes
.meta list
to the stream using the
.code put-lines
function. The return value is that of
.codn put-lines .
.coNP Functions @, file-append @ file-append-string and @ file-append-lines
.synb
.mets (file-append < name << obj )
.mets (file-append-string < name << string )
.mets (file-append-lines < name << list )
.syne
.desc
The
.codn file-append ,
.code file-append-string
and
.code file-append-lines
functions open a text stream over the file indicated by the string argument
.metn name ,
write the argument object into the stream in their specific manner,
and then close the stream.
These functions are close counterparts of, respectively,
.codn file-get ,
.code file-append-string
and
.codn file-append-lines .
These functions behave differently when the indicated file
already exists. Rather than being truncated and overwritten,
the file is extended by appending the new data to its end.
.coNP Functions @, command-get @ command-get-string and @ command-get-lines
.synb
.mets (command-get << cmd )
.mets (command-get-string << cmd )
.mets (command-get-lines << cmd )
.syne
.desc
The
.code command-get
function opens text stream over an input command pipe created for
the command string
.metn cmd ,
as if by the
.code open-command
function. It reads the printed representation of a \*(TL object from it, and
returns that object, ensuring that the stream is closed.
The
.code command-get-string
is similar to
.code command-get
except that it reads the entire file as a text stream and returns
its contents in a single character string.
The
.code command-get-lines
function opens a text stream over an input command pipe created for the
command string
.meta cmd
and returns produces a lazy list of strings representing the lines
of text of that file as if by a call to the
.code get-lines
function, and returns that list. The stream remains open until the
list is consumed to the end, as indicated in the description of
.codn get-lines .
.coNP Functions @, command-put @ command-put-string and @ command-put-lines
.synb
.mets (command-put < cmd << obj )
.mets (command-put-string < cmd << string )
.mets (command-put-lines < cmd << list )
.syne
.desc
The
.codn command-put ,
.code command-put-string
and
.code command-put-lines
functions open an output text stream over an output command pipe created
for the command specified in the string argument
.metn cmd ,
as if by the
.code open-command
function.
They write the argument object into the stream in their specific manner,
and then close the stream.
The
.code command-put
function writes a printed representation of
.meta obj
using the
.code prinl
function. The return value is that of
.codn prinl .
The
.code command-put-string
function writes
.meta string
to the stream using the
.code put-string
function. The return value is that of
.codn put-string .
The
.code command-put-lines
function writes
.meta list
to the stream using the
.code put-lines
function. The return value is that of
.codn put-lines .
.SS* Buffer streams
A stream type exists which allows
.code buf
objects to be manipulated through the stream interface.
A buffer stream is created using the
.code make-buf-stream
function, which can either attach the stream to an existing buffer,
or create a new buffer that can later be retrieved from the stream
using
.codn get-buf-from-stream .
Operations on the buffer stream treat the underlying buffer much like if it
were a memory-based file. Unless the underlying buffer is a "borrowed buffer"
referencing the storage belonging to another object
(such as the buffer object produced by the
.code buf-d
FFI type's get semantics) the stream operations can change the buffer's size.
Seeking beyond the end of the buffer an then writing one or more bytes
extends the buffer's length, filling the newly allocated area with zero bytes.
The
.code truncate-stream
function is supported also.
Buffer streams also support the
.code :byte-oriented
property.
Macros
.code with-out-buf-stream
and
.code with-in-buf-stream
are provided to simplify the steps involved in using buffer streams
in some common scenarios. Note that in spite of the naming of these
macros there is only one buffer stream type, which supports bidirectional I/O.
.coNP Function @ make-buf-stream
.synb
.mets (make-buf-stream <> [ buf ])
.syne
.desc
The
.code make-buf-stream
function return a new buffer stream. If the
.meta buf
argument is supplied, it must be a
.code buf
object. The stream is then associated with this object.
If the argument is omitted, a buffer of length zero is created and associated
with the stream.
.coNP Function @ get-buf-from-stream
.synb
.mets (get-buf-from-stream << buf-stream )
.syne
.desc
The
.code get-buf-from-stream
returns the buffer object associated with
.meta buf-stream
which must be a buffer stream.
.coNP Macros @ with-out-buf-stream and @ with-in-buf-stream
.synb
.mets (with-out-buf-stream >> ( var <> [ buf-expr ])
.mets \ \ << body-form *)
.mets (with-in-buf-stream >> ( var << buf-expr )
.mets \ \ << body-form *)
.syne
.desc
The
.code with-out-buf-stream
and
.code with-in-buf-stream
macros both bind variable
.meta var
to an implicitly created buffer stream, and evaluate zero or more
.metn body-form -s
in the environment where the variable is visible.
The
.meta buf-expr
argument, which may be omitted in the use of the
.code with-out-buf-stream
macro, must be an expression which evaluates to a
.code buf
object.
The
.meta var
argument must be a symbol suitable for naming a variable.
The implicitly allocated buffer stream is connected
to the buffer specified by
.meta buf-expr
or, when
.meta buf-expr
is omitted, to a newly allocated buffer.
The code generated by the
.code with-out-buf-stream
macro, if it terminates normally, yields the buffer object
as its result value.
The
.code with-in-buf-stream
returns the value of the last
.metn body-form ,
or else
.code nil
if no forms are specified.
.TP* Examples:
.verb
(with-out-buf-stream (*stdout* (make-buf 24))
(put-string "Hello, world!"))
-> #b'48656c6c6f2c2077 6f726c6421000000 0000000000000000'
(with-out-buf-stream (*stdout*) (put-string "Hello, world!"))
-> #b'48656c6c6f2c2077 6f726c6421'
.brev
.SS* Foreign Pointers
.coNP The @ cptr type
Objects of type
.code cptr
are Lisp values which contain a foreign pointer ("C pointer"). This data type
is used by the
.code dlopen
function and is generally useful in conjunction with the Foreign Function
Interface (FFI). An arbitrary pointer emanating from a foreign function
can be captured as a
.code cptr
value, which can be passed back into foreign code. For this purpose, there
exits also a matching FFI type called
.codn cptr .
The
.code cptr
type supports a symbolic type tag, which defaults to
.codn nil .
The type tag plays a role in FFI. The FFI
.code cptr
type supports a tag attribute. When a
.code cptr
object is converted to a foreign pointer under the control of the FFI
type, and that FFI type has a tag other than
.codn nil ,
the object's tag must exactly match that of the FFI type, or the conversion
throws an error. In the reverse direction, when a foreign pointer is
converted to a
.code cptr
object under control of the FFI
.code cptr
type, the object inherits the type tag from the FFI type.
.coNP Function @ cptr-int
.synb
.mets (cptr-int < integer <> [ type-symbol ])
.syne
.desc
The
.code cptr-int
function converts
.meta integer
into a pointer in a system-specific way
which is consistent with the system's addressing structure. Then it returns
that pointer contained in a
.code cptr
object.
The
.meta integer
parameter must be an integer which is in range for a pointer value.
Note: this range is wider than the
.code fixnum
range; a portion of the range of
.code bignum
integers can denote pointers.
The
.meta type-symbol
argument should be a symbol. If omitted, it defaults to
.codn nil .
This symbol becomes the
.code cptr
object's type tag.
.coNP Function @ cptr-obj
.synb
.mets (cptr-obj < object <> [ type-symbol ])
.syne
.desc
The
.code cptr-obj
function converts
.meta object
object directly to a
.codn cptr .
The
.meta object
argument may be of any type.
The raw representation of
.meta object
is simply stored in a new instance of
.code cptr
and returned.
The
.meta type-symbol
argument should be a symbol. If omitted, it defaults to
.codn nil .
This symbol becomes the
.code cptr
object's type tag.
The lifetime of the returned
.code cptr
object is independent from that of
.metn object .
If the lifetime of
.meta object
reaches its end before that of the
.codn cptr ,
the pointer stored inside the
.code cptr
becomes invalid.
.coNP Function @ int-cptr
.synb
.mets (int-cptr << cptr )
.syne
.desc
The
.code int-cptr
function retrieves the pointer value of the
.meta cptr
object as an integer.
If an integer
.meta n
is in a range convertible to
.code cptr
type, then the expression
.mono
.meti (int-cptr (cptr-int << n ))
.onom
reproduces
.metn n .
.coNP Function @ cptr-buf
.synb
.mets (cptr-buf < buf <> [ type-symbol ])
.syne
.desc
The
.code cptr-buf
returns a
.code cptr
object which holds a pointer to a buffer object's storage
area. The
.meta buf
argument must be of type
.codn buf .
The
.meta type-symbol
argument should be a symbol. If omitted, it defaults to
.codn nil .
This symbol becomes the
.code cptr
object's type tag.
The lifetime of the returned
.code cptr
object is independent from that of
.metn buf .
If the lifetime of
.meta buf
reaches its end before that of the
.codn cptr ,
the pointer stored inside the
.code cptr
becomes invalid.
.coNP Function @ cptr-cast
.synb
.mets (cptr-cast < type-symbol << cptr )
.syne
.desc
The
.code cptr-cast
function produces a new
.code cptr
object which has the same pointer as
.meta cptr
but whose type is given by
.metn type-symbol .
Casting
.meta cptr
objects with
.code cptr-cast
circumvents the safety mechanism which
.code cptr
type tagging provides.
.coNP Function @ cptr-zap
.synb
.mets (cptr-zap << cptr )
.syne
.desc
The
.code cptr-zap
function changes the pointer value of the
.meta cptr
object to the null pointer.
The
.meta cptr
argument must be of
.code cptr
type.
The return value is
.meta cptr
itself.
Note: it is recommended to use
.code cptr-zap
when the program has taken some action which invalidates the pointer value
stored in a
.code cptr
object, where a risk exists that the value may be subsequently misused.
.coNP Function @ cptr-free
.synb
.mets (cptr-free << cptr )
.syne
.desc
The
.code cptr-free
function passes the
.meta cptr
object's pointer to the C library
.code free
function. After this action, it behaves exactly like
.codn cptr-zap .
The
.meta cptr
argument must be of
.code cptr
type.
The return value is
.meta cptr
itself.
Note: this function is unsafe. If the pointer didn't originate from the
.code malloc
family of memory allocation functions, or has already been freed, or
copies of the pointer exist which are still in use, the consequences are
likely catastrophic.
.coNP Function @ cptrp
.synb
.mets (cptrp << value )
.syne
.desc
The
.code cptrp
function tests whether
.meta value
is a
.codn cptr .
It returns
.code t
if this is the
case,
.code nil
otherwise.
.coNP Function @ cptr-type
.synb
.mets (cptr-type << cptr )
.syne
.desc
The
.code cptr-type
function retrieves the
.meta cptr
object's type tag.
.coNP Function @ cptr-get
.synb
.mets (cptr-get < cptr <> [ type ])
.syne
.desc
The
.code cptr-get
function extracts a Lisp value by converting a C object
at the memory location denoted by
.metn cptr ,
according to the FFI type
.metn type .
The external representation at the specified memory location is
is scanned according to the
.meta type
and converted to a Lisp value which is returned.
If the
.meta type
argument is specified, it must be a FFI type object.
If omitted, then the
.code cptr
object's type tag is interpreted as a FFI type symbol and resolved to
a type; the resulting type, if one is found is substituted for
.metn type .
If the lookup fails an error exception is thrown.
The
.meta cptr
object must be of type
.code cptr
and point to a memory area suitably aligned for, and large
enough to hold a foreign representation of
.metn type ,
at the byte offset indicated by the
.meta offset
argument.
If
.meta cptr
is a null pointer, an exception is thrown.
The
.code cptr-get
operation is similar to the "get semantics" performed by FFI
in order to extract the return value of foreign function
calls, and by the FFI callback mechanism to extract the
arguments coming into a callback.
The
.meta type
argument may not be a variable length type, such as an array of
unspecified size.
Note: the
.code cptr-get
and
.code cptr-out
is useful in simplifying the interaction with "semi-opaque" foreign objects:
objects which serve as a API handles that are treated as opaque pointers in API
argument calls, but which expose some internal members that the application
must access directly. The
.code cptr
objects pass through the foreign API without undergoing conversion,
as usual. The application uses these two functions to perform conversion as
necessary. Under this technique, the description of the foreign object need not
be complete. Structure members which occur after the last member that the
application is interested in need not be described in the FFI type.
.coNP Function @ cptr-put
.synb
.mets (cptr-put < cptr < obj <> [ type ])
.syne
.desc
The
.code cptr-put
function converts a Lisp value into a C representation,
which is stored at the memory location denoted by
.metn cptr ,
according to the FFI type
.metn type .
The function's return value is
.metn obj .
If the
.meta type
argument is specified, it must be a FFI type object.
If omitted, then the
.code cptr
object's type tag is interpreted as a FFI type symbol and resolved to
a type; the resulting type, if one is found is substituted for
.metn type .
If the lookup fails an error exception is thrown.
The
.meta obj
argument must be an object compatible with the conversions
implied by
.metn type .
The
.meta cptr
object must be of type
.code cptr
and point to a memory area suitably aligned for, and large
enough to hold a foreign representation of
.metn type ,
at the byte offset indicated by the
.meta offset
argument.
If
.meta cptr
is a null pointer, an exception is thrown.
It is assumed that
.meta obj
is an object which was returned by an earlier call to
.codn cptr-get ,
and that the
.meta cptr
and
.meta type
arguments are the same objects that were used in that call.
The
.code cptr-out
function performs the "out semantics" encoding action, similar
to the treatment applied to the arguments of a callback prior to
returning to foreign code.
.coNP Variable @ cptr-null
.desc
The
.code cptr-null
variable holds a null pointer as a
.code cptr
instance.
Two
.code cptr
objects may be compared for equality using the
.code equal
function, which tests whether their pointers are equal.
The
.code cptr-null
variable compares
.code equal
to values which have been subject to
.code cptr-zap
or
.codn cptr-free .
A null
.code cptr
may be produced by the expression
.codn "(cptr-obj nil)" ;
however, this creates a freshly allocated object on each evaluation.
The expression
.code "(cptr-int 0)"
also produces a null pointer on all platforms where \*(TX is found.
.coNP Function @ cptr-size-hint
.synb
.mets (cptr-size-hint < cptr << bytes )
.syne
.desc
The
.code cptr-size-hint
function indicates to the garbage collector that the given
.meta cptr
object is associated with
.meta bytes
of foreign memory that are otherwise invisible to the garbage collector.
Note: this function should be used if the foreign memory is indirectly
managed by the
.meta cptr
object in cooperation with the garbage collector. Specifically,
.meta cptr
should have a finalizer registered against it which will liberate the
foreign memory.
.SS* User-Defined Streams
In \*(TL, stream objects aren't structure types, and therefore lie outside of
the object-oriented programming system. However, \*(TL supports a delegation
mechanism which allows a structure which provides certain methods to be used as
a stream.
The function
.code make-struct-delegate-stream
takes as an argument the instance of a structure, which is
referred to as the
.IR "stream interface object" .
The function returns a stream object such that when
stream operations are invoked on this stream, it delegates these
operations to methods of the stream interface object.
A structure type called
.code stream-wrap
is provided, whose instances can serve as stream interface objects.
This structure has a slot called
.meta stream
which holds a stream, and it provides all of the methods required for
the delegation mechanism used by
.codn make-struct-delegate-stream .
This
.code stream-wrap
operations simply invoke the ordinary stream operations on the
.meta stream
slot. The
.code stream-wrap
type can be used as a base class for a derived class which intercepts
certain operations on a stream (by defining the corresponding methods) while
allowing other operations to transparently pass to the stream (via the
base methods inherited from
.codn stream-wrap ).
.coNP Function @ make-struct-delegate-stream
.synb
.mets (make-struct-delegate-stream << object )
.syne
.desc
The
.code make-struct-delegate-stream
function returns a stream whose operations depend on the
.metn object ,
a stream interface object.
The
.meta object
argument must be a structure which implements certain
subsets of, or all of, the following methods:
.codn put-string ,
.codn put-char ,
.codn put-byte ,
.codn get-line ,
.codn get-char ,
.codn get-byte ,
.codn unget-char ,
.codn unget-byte ,
.codn put-buf ,
.codn fill-buf ,
.codn close ,
.codn flush ,
.codn seek ,
.codn truncate ,
.codn get-prop ,
.codn set-prop ,
.codn get-error ,
.codn get-error-str ,
.code clear-error
and
.codn get-fd .
Implementing
.code get-prop
is mandatory, and that method must support the
.code :name
property.
Failure to implement some of the other methods will impair the use of certain
stream operations on the object.
.coNP Method @ put-string
.synb
.mets << stream .(put-string str)
.syne
.desc
The
.code put-string
method is implemented on a stream interface object.
It should behave in a manner consistent with the
description of the
.code put-string
stream I/O function.
.coNP Method @ put-char
.synb
.mets << stream .(put-char chr)
.syne
.desc
The
.code put-char
method is implemented on a stream interface object.
It should behave in a manner consistent with the
description of the
.code put-char
stream I/O function.
.coNP Method @ put-byte
.synb
.mets << stream .(put-byte byte)
.syne
.desc
The
.code put-byte
method is implemented on a stream interface object.
It should behave in a manner consistent with the
description of the
.code put-byte
stream I/O function.
.coNP Method @ get-line
.synb
.mets << stream .(get-line)
.syne
.desc
The
.code get-line
method is implemented on a stream interface object.
It should behave in a manner consistent with the
description of the
.code get-line
stream I/O function.
.coNP Method @ get-char
.synb
.mets << stream .(get-char)
.syne
.desc
The
.code get-char
method is implemented on a stream interface object.
It should behave in a manner consistent with the
description of the
.code get-char
stream I/O function.
.coNP Method @ get-byte
.synb
.mets << stream .(get-byte)
.syne
.desc
The
.code get-byte
method is implemented on a stream interface object.
It should behave in a manner consistent with the
description of the
.code get-byte
stream I/O function.
.coNP Method @ unget-char
.synb
.mets << stream .(unget-char chr)
.syne
.desc
The
.code unget-char
method is implemented on a stream interface object.
It should behave in a manner consistent with the
description of the
.code unget-char
stream I/O function.
.coNP Method @ unget-byte
.synb
.mets << stream .(unget-byte byte)
.syne
.desc
The
.code unget-byte
method is implemented on a stream interface object.
It should behave in a manner consistent with the
description of the
.code unget-byte
stream I/O function.
.coNP Method @ put-buf
.synb
.mets << stream .(put-buf buf pos)
.syne
.desc
The
.code put-buf
method is implemented on a stream interface object.
It should behave in a manner consistent with the
description of the
.code put-buf
stream I/O function.
Note: there is a severe restriction on the use of the
.meta buf
argument. The buffer object denoted by the
.meta buf
argument may be specially allocated and have a lifetime
which is scoped to the method invocation. The
.code put-buf
method shall not permit the
.meta buf
object to be used beyond the duration of the method
invocation.
.coNP Method @ fill-buf
.synb
.mets << stream .(fill-buf buf pos)
.syne
.desc
The
.code fill-buf
method is implemented on a stream interface object.
It should behave in a manner consistent with the
description of the
.code fill-buf
stream I/O function.
Note: there is a severe restriction on the use of the
.meta buf
argument. The buffer object denoted by the
.meta buf
argument may be specially allocated and have a lifetime
which is scoped to the method invocation. The
.code fill-buf
method shall not permit the
.meta buf
object to be used beyond the duration of the method
invocation.
.coNP Method @ close
.synb
.mets << stream .(close offs whence)
.syne
.desc
The
.code close
method is implemented on a stream interface object.
It should behave in a manner consistent with the
description of the
.code close-stream
stream I/O function.
.coNP Method @ flush
.synb
.mets << stream .(flush offs whence)
.syne
.desc
The
.code flush
method is implemented on a stream interface object.
It should behave in a manner consistent with the
description of the
.code flush-stream
stream I/O function.
.coNP Method @ seek
.synb
.mets << stream .(seek offs whence)
.syne
.desc
The
.code seek
method is implemented on a stream interface object.
It should behave in a manner consistent with the
description of the
.code seek-stream
stream I/O function.
.coNP Method @ truncate
.synb
.mets << stream .(truncate len)
.syne
.desc
The
.code truncate
method is implemented on a stream interface object.
It should behave in a manner consistent with the
description of the
.code truncate-stream
stream I/O function.
.coNP Method @ get-prop
.synb
.mets << stream .(get-prop sym)
.syne
.desc
The
.code get-prop
method is implemented on a stream interface object.
It should behave in a manner consistent with the
description of the
.code get-prop
stream I/O function.
.coNP Method @ set-prop
.synb
.mets << stream .(set-prop sym nval)
.syne
.desc
The
.code set-prop
method is implemented on a stream interface object.
It should behave in a manner consistent with the
description of the
.code set-prop
stream I/O function.
.coNP Method @ get-error
.synb
.mets << stream .(get-error)
.syne
.desc
The
.code get-error
method is implemented on a stream interface object.
It should behave in a manner consistent with the
description of the
.code get-error
stream I/O function.
.coNP Method @ get-error-str
.synb
.mets << stream .(get-error-str)
.syne
.desc
The
.code get-error-str
method is implemented on a stream interface object.
It should behave in a manner consistent with the
description of the
.code get-error-str
stream I/O function.
.coNP Method @ clear-error
.synb
.mets << stream .(clear-error)
.syne
.desc
The
.code clear-error
method is implemented on a stream interface object.
It should behave in a manner consistent with the
description of the
.code clear-error
stream I/O function.
.coNP Method @ get-fd
.synb
.mets << stream .(get-fd)
.syne
.desc
The
.code get-fd
method is implemented on a stream interface object.
It should behave in a manner consistent with the
description of the
.code fileno
stream I/O function.
.coNP Structure @ stream-wrap
.synb
.mets (defstruct stream-wrap nil
.mets \ \ stream
.mets \ \ (:method put-string (me str)
.mets \ \ \ \ (put-string str me.stream))
.mets \ \ (:method put-char (me chr)
.mets \ \ \ \ (put-char chr me.stream))
.mets \ \ (:method put-byte (me byte)
.mets \ \ \ \ (put-byte byte me.stream))
.mets \ \ (:method get-line (me)
.mets \ \ \ \ (get-line me.stream))
.mets \ \ (:method get-char (me)
.mets \ \ \ \ (get-char me.stream))
.mets \ \ (:method get-byte (me)
.mets \ \ \ \ (get-byte me.stream))
.mets \ \ (:method unget-char (me chr)
.mets \ \ \ \ (unget-char chr me.stream))
.mets \ \ (:method unget-byte (me byte)
.mets \ \ \ \ (unget-byte byte me.stream))
.mets \ \ (:method put-buf (me buf pos)
.mets \ \ \ \ (put-buf buf pos me.stream))
.mets \ \ (:method fill-buf (me buf pos)
.mets \ \ \ \ (fill-buf buf pos me.stream))
.mets \ \ (:method close (me)
.mets \ \ \ \ (close-stream me.stream))
.mets \ \ (:method flush (me)
.mets \ \ \ \ (flush-stream me.stream))
.mets \ \ (:method seek (me offs whence)
.mets \ \ \ \ (seek-stream me.stream offs whence))
.mets \ \ (:method truncate (me len)
.mets \ \ \ \ (truncate-stream me.stream len))
.mets \ \ (:method get-prop (me sym)
.mets \ \ \ \ (stream-get-prop me.stream sym))
.mets \ \ (:method set-prop (me sym nval)
.mets \ \ \ \ (stream-set-prop me.stream sym nval))
.mets \ \ (:method get-error (me)
.mets \ \ \ \ (get-error me.stream))
.mets \ \ (:method get-error-str (me)
.mets \ \ \ \ (get-error-str me.stream))
.mets \ \ (:method clear-error (me)
.mets \ \ \ \ (clear-error me.stream))
.mets \ \ (:method get-fd (me)
.mets \ \ \ \ (fileno me.stream)))
.syne
.desc
The
.code stream-wrap
class provides a trivial implementation of a stream interface.
It has a single slot,
.code stream
which should be initialized with a stream object.
Each methods of
.metn stream-wrap ,
shown in its entirety in the above Syntax section, simply
invoke the corresponding stream I/O library functions, passing
the method arguments, and the value of the
.code stream
slot to that function, and consequently returning whatever that function
returns.
Note: the
.code stream-wrap
function is intended to useful as an inheritance base. A user-defined
structure can inherit from
.code stream-wrap
and provide its own versions of some of the methods, thereby intercepting
those operations to customize the behavior.
For instance, a function equivalent to the
.code record-adapter
function could be implemented by constructing an object derived from
.code stream-wrap
which overrides the behavior of the
.code get-line
method, and then using the
.code make-struct-delegate-stream
to return a stream based on this object.
.TP* Example:
.verb
;;; Implementation of my-record-adapter,
;;; a function resembling
;;; the record-adapter implementation
(defstruct rec-input stream-wrap
regex
include-match-p
;; get-line overridden to use regex-based
;; extraction using read-until-match
(:method get-line (me)
(read-until-match me.regex me.stream
me.include-match-p))))
(defun my-record-adapter (regex stream include-match-p)
(let ((recin (new rec-input
stream stream
regex regex
include-match-p include-match-p)))
(make-struct-delegate-stream recin)))
.brev
.SS* Symbols and Packages
\*(TL has a package system inspired by the salient features of ANSI Common
Lisp, but substantially simpler.
Each symbol has a name, which is a string.
A package is an object which serves as a container of symbols; the package
associates the name strings with symbols.
A symbol which exists inside a package is said to be interned in that package.
A symbol can be interned in more than one package.
A symbol may also have a home package. A symbol which has a home package
is always interned in that package.
A symbol which has a home package is called an
.IR "interned symbol" .
A symbol which is interned in one or more packages, but has no home package,
is a
.IR "quasi-interned symbol" .
When a quasi-interned symbol is printed, if it is not interned in
the package currently held in the
.code *package*
variable, it will appear in uninterned notation denoted by a
.code #:
prefix, even though it is interned in one or more packages.
This is because in any situation when a symbol is printed with a package
prefix, that prefix corresponds to the name of its home package.
The reverse isn't true: when a symbol token is read bearing a package
prefix, the token denotes any interned symbol in the indicated package,
whether or not the package is the home package of that symbol.
Packages are held in a global list which can be used to search for a package by
name. The
.code find-package
function performs this lookup. A package may be
deleted from the list with the
.code delete-package
function, but it continues
to exist until the program loses the last reference to that package.
When a package is deleted with
.codn delete-package ,
its symbols are uninterned from all other packages.
An existing symbol can be brought into a package via the
.code use-sym
function, causing it to be interned in that package. A symbol which thus exists
inside a package which is not its home package is called a
.IR "foreign symbol" ,
relative to that package.
The contrasting term with
.I "foreign symbol"
is
.IR "local symbol" ,
which refers to a symbol, relative to a package, which is interned in that
package and that package is also its home. Every symbol interned in
a package is either foreign or local.
If a foreign symbol is introduced into a package, and has the same name
as an existing local symbol, the local symbol continues to exist, but
is hidden: it is not accessible via a name lookup on that package.
While hidden, a symbol loses its home package and is thus
degraded to either quasi-interned or uninterned status, depending
on whether that symbol is interned in other packages.
When a foreign symbol is removed from a package via
.codn unuse-sym ,
then if a hidden symbol exists in that package of the same name,
that hidden symbol is re-interned in that package and re-acquires
that package as its home package, becoming an interned symbol again.
Finally, packages have a
.IR "fallback package list" :
a list of associated packages, which may be empty. The fallback package
list is manipulated with the functions
.code package-fallback-list
and
.codn set-package-fallback-list ,
and with the
.code :fallback
clause of the
.code defpackage
macro. The fallback package list plays a role only in three situations:
one in the \*(TL parser, one in the printer, and one in the interactive
listener. Besides that, two library functions refer to it:
.code intern-fb
and
.codn find-symbol-fb .
The parser situation involving the fallback list occurs when the
\*(TL parser resolves an unqualified symbol token: a symbol token not carrying
a package prefix. Such a symbol name is resolved against the current package
(the package currently stored in the
.code *package*
special variable). If a symbol matching the token
is not found in the current package, then the packages in its fallback
package list are searched for the symbol. The first matching symbol which is
found in the fallback list is returned. If no matching symbol is found in the
fallback list, then the token is interned as a new symbol is interned in the
current package. The packages in the current package's fallback list may
themselves have fallback lists. Those fallback lists are not involved; no such
recursion takes place.
The printer situation involving the fallback list is as follows.
If a symbol is being printed in a machine-readable way (not "pretty"),
has a home package and is not a keyword symbol, then a search takes place
through the current package and its fallback list. If the symbol is found
in any of those places, and if those places are devoid of any symbols
which have the same name, thus causing ambiguity, then the symbol is printed
without a package prefix.
The listener situation involving the fallback list is a follows.
When tab completion is used on a symbol without a package
prefix, the listener searches for completions not only in the current
package, but in the fallback list also.
.TP* "Dialect Notes:"
The \*(TL package system doesn't support the ANSI Common Lisp
concept of package use, replacing that concept with fallback packages.
Though the
.code use-package
and
.code unuse-package
functions exist and are similar to the ones in ANSI CL,
they actually operate on individual foreign symbols, bringing
them in or removing them, respectively. These functions effectively
iterate over the local symbols of the used or unused package, and invoke
.code use-sym
or
.codn unuse-sym ,
respectively.
The \*(TL package system consequently doesn't support the concept
of shadowing symbols, and conflicts do not exist. When a foreign symbol is
introduced into a package which already has a symbol by that name, that symbol
is silently removed from that package if it is itself foreign, or else hidden
if it is local.
The \*(TL package system also doesn't feature the concept of
internal and external symbols. The rationale is that this distinction
divides symbols into subsets in a redundant way. Packages are already
subsets of symbols. A module can use two packages to simulate private
symbols. An example of this is given in the Package Examples section below.
The \*(TL fallback package list mechanism resembles ANSI CL package use,
and satisfies similar use scenarios. However, this mechanism does not cause
a symbol to be considered visible in a package. If a package
.code foo
contains no symbol
.codn bar ,
but one of the packages in
.codn foo 's
fallback list does contain
.codn bar ,
that symbol is nevertheless not considered visible in
.codn foo .
The syntax
.code foo:bar
will not resolve.
The fallback mechanism only comes into play when a package is installed
as the current package in the
.code *package*
variable. It then allows unqualified symbol references to refer across
the fallback list.
.NP* Package Examples
The following example illustrates a simple scenario of a module
whose identifies are in a package, and which also has private identifiers
in a private package.
.verb
;; Define three packages.
(defpackage mod-priv
(:fallback usr))
(defpackage mod)
(defpackage client
(:fallback mod usr)
(:use-from mod-priv other-priv))
;; Switch to mod-priv package
(in-package mod-priv)
(defun priv-fun (arg)
(list arg))
;; Another function with a name in the mod-priv package.
(defun other-priv (arg)
(cons arg arg))
;; Define a function in mod; a public function.
;; Note that we don't have to change to the mod package,
;; to define functions with names in that package.
;; We rely on interning being allowed for the qualified
;; mod:public-fun syntax.
(defun mod:public-fun (arg)
(priv-fun arg)) ;; priv-fun here is mod-priv:priv-fun
;; Switch to client package
(in-package client)
(priv-fun) ;; ERROR: refers to client:priv-fun, not defined
(mod:priv-fun) ;; ERROR: mod-priv:priv-fun not used in mod
(mod-priv:priv-fun 3) ;; OK: direct reference via qualifier
(public-fun 3) ;; OK: mod:public-fun symbol via fallback
(other-priv 3) ;; OK: foreign symbol mod-priv:other-priv
;; present in client due to :use-from
.brev
The following example shows how to create a package called
.code custom
in which the
.code +
symbol from the
.code usr
package is replaced with a local symbol. A function is
then defined using the local symbol, which allows strings
to be catenated with
.codn + :
.verb
(defpackage custom
(:fallback usr)
(:local + - * /))
(defmacro outside-macro (x) ^(+ ,x 42))
(in-package custom)
(defun binary-+ (: (left 0) (right 0))
(if (and (numberp left) (numberp right))
(usr:+ left right)
`@left@right`))
(defun + (. args)
[reduce-left binary-+ args])
(+) -> 0
(+ 1) -> 1
(+ 1 "a") -> "1a"
(+ 1 2) -> 3
(+ "a") -> "a"
(+ "a" "b" "c") -> "abc"
;; macro expansions using usr:+ are not affected
(outside-macro "a") -> ;; error: + invalid operands "a" 42
.brev
.NP* Packages and the Extraction Language
The \*(TX extraction language has a syntax in which certain Lisp symbolic
expressions denoting directives
.code "@(collect ...)"
or
.code "@(end)"
behave as if they were the tokens of a phrase structure. As a matter of
implementation, these are processed specially in the parser and lexical
analyzer, and are not read in the same way as ordinary Lisp forms.
On the other hand, some directives are not this way. For instance the
.codn "@(bind ...)" ,
syntax is processed as a true Lisp expression, in which the
.code bind
token is subject to the usual rules for interning a symbol, sensitive to
.code *package*
in the usual way.
The following notes describe the treatment of "special" directives that are
involved in phrase structure syntax. It applies to all directives which head
off a block that must be terminated by
.codn "@(end)" ,
all "punctuation" directives like
.code "@(and)"
or
.code "@(end)"
and all sub-phrase indicators like
.code "@(last)"
or
.codn "@(elif)" .
Firstly, each such directive may have a package prefix on its main symbol, yet
is still recognized as the same token. That is to say,
.code "@(foo:collect)"
is still treated by the tokenizer and parser as the
.code "@(collect)"
token, regardless of the package prefix, and regardless of whether
.code foo:end
is the same symbol as the
.code usr:end
symbol.
However, this doesn't mean that any
.code foo:collect
is allowed to denote the
.code collect
directive.
A qualified symbol such as
.code foo:collect
must correspond to (be the same object as) precisely one of two symbols:
either the same-named symbol in the
.code usr
package, or else the same-named symbol in the
.code keyword
package. If this condition isn't satisfied, the situation is a syntax
error. Note that this check uses the original
.code usr
and
.code keyword
packages, not the packages which are currently named
.str "usr"
or
.str "keyword"
in the current
.codn *package-alist* .
A check is also performed for an unqualified symbol.
An unqualified symbol like
.code collect
must also resolve, in the context of the current value of the
.code *package*
variable, to the same named-symbol in either the original
.code usr
or
.code keyword
package. Thus if the current package isn't
.codn usr ,
and
.code "@(collect)"
is being processed, the current package must be such that
.code collect
resolves to
.codn usr:collect .
either because that symbol is present in the current pack via
import, or else visible via the fallback list.
These rules are designed to approximate what the behavior would be
if these directives were actually scanned as Lisp forms in the usual
way and then recognized as phrase structure tokens according to
the identity of their leading symbol. The additional restriction is added that
that the directive symbol names are treated as reserved. If there exists a
user-defined pattern function called
.code mypackage:end
it may not be invoked using the syntax
.codn "@(mypackage:end)" ,
which is erroneous; though it is invocable indirectly via the
.code "@(call)"
directive.
.NP* Package Library Conventions
Various functions in the package and symbol area of the library have a
.meta package
parameter. When the argument is optional, it defaults to the current
value of the
.code *package*
special variable.
If specified, the argument may be a character string, which is taken as the
name of a package. It may also be a symbol, in which case the symbol's name,
which is a character string, is used. Thus the objects
.codn :sys ,
.codn usr:sys ,
.code abc:sys
and
.str sys
all refer to the same package, the system package which is named
.strn sys .
A
.code package
parameter may also simply be a package object.
Some functions, like
.code use-package
and
.code unuse-package
functions accept a list of packages as their first argument.
This may be a list of objects which follow the above conventions:
strings, symbols or package objects.
Also, instead of a list, an atom may be passed: a string, symbol
or package object. It is treated as a singleton list consisting
of that object.
.coNP Variables @, user-package @ keyword-package and @ system-package
.desc
These variables hold predefined packages. The
.code user-package
contains all of the public symbols in the \*(TL library.
The
.code keyword-package
holds keyword symbols, which are printed with
a leading colon. The
.code system-package
is for internal symbols, helping
the implementation avoid name clashes with user code in some situations.
These variables shouldn't be modified. If they are modified, the consequences
are unspecified.
The names of these packages, respectively, are
.strn usr ,
.strn sys ,
and
.strn keyword .
.coNP Special variable @ *package*
.desc
This variable holds the current package. The global value of this variable
is initialized to a package called
.strn pub .
The
.code pub
package has the
.code usr
package in its fallback list; thus when
.code pub
is current, all of the
.code usr
symbols, comprising the content of the \*(TL library, are visible.
All forms read and evaluated from the \*(TX command line, in the interactive listener,
from files via
.code load
or
.code compile-file
or from the \*(TX pattern language are processed in this default
.code pub
package, unless arrangement are made to change to a different package.
The current package is used as the default package for interning symbol tokens
which do not carry the colon-delimited package prefix.
The current package also affects printing. When a symbol is printed whose
home package matches the current package, it is printed without a package
prefix. (Keyword symbols are always printed with the colon prefix, even if the
keyword package is current.)
.coNP Function @ make-sym
.synb
.mets (make-sym << name )
.syne
.desc
The
.code make-sym
function creates and returns a new symbol object. The argument
.metn name ,
which must be a string, specifies the name of the symbol. The symbol
does not belong to any package (it is said to be "uninterned").
Note: an uninterned symbol can be interned into a package with the
.code rehome-sym
function. Also see the
.code intern
function.
.coNP Function @ gensym
.synb
.mets (gensym <> [ prefix ])
.syne
.desc
The
.code gensym
function is similar to make-sym. It creates and returns a new
symbol object. If the
.meta prefix
argument is omitted, it defaults to
.strn g .
Otherwise it must be a string.
The difference between
.code gensym
and
.code make-sym
is that
.code gensym
creates the name
by combining the prefix with a numeric suffix.
The numeric suffix is a decimal digit string, taken from the value of
the variable
.codn *gensym-counter* ,
after incrementing it.
Note: the variation in name is not the basis of the uniqueness assurance
offered by
.code make-sym
and
.codn gensym ;
the basis is that the returned symbol is a freshly instantiated object.
.code make-sym
still returns unique symbols even if repeatedly called with the same
string.
.coNP Special variable @ *gensym-counter*
.desc
This variable is initialized to 0. Each time the
.code gensym
function is called,
it is incremented. The incremented value forms the basis of the numeric
suffix which
.code gensym
uses to form the name of the new symbol.
.coNP Function @ make-package
.synb
.mets (make-package < name <> [ weak ])
.syne
.desc
The
.code make-package
function creates and returns a package named
.metn name ,
where
.meta name
is a string. It is an error if a package by that name exists already.
Note: ordinary creation of packages for everyday program modularization
should be performed with the
.code defpackage
macro rather than by direct use of
.codn make-package .
If the
.meta weak
parameter is given an argument which is a Boolean true, then the resulting
package holds symbols weakly, from a garbage collection point of view. If the
only reference to a symbol is that which occurs inside the weak package, then
that symbol may be removed from the package and reclaimed by the garbage
collector.
Note: weak packages address the following problem. The application creates a
package for the purpose of reading Lisp data. Symbols occurring in that data
therefore are interned into the package. Subsequently, the application retains
references to some of the symbols, discarding the others. If the package isn't
weak, then because the application is retaining some of the symbols, and those
symbols hold a reference to the package, and the package holds a reference to
all symbols that were interned in it, all of the symbols are retained. If a
weak package is used, then the uninterested symbols are eligible for garbage
collection.
.coNP Function @ delete-package
.synb
.mets (delete-package << package )
.syne
.desc
The
.code delete-package
breaks the association between a package and its name.
After
.codn delete-package ,
the
.meta package
object continues to exist, but cannot be found using
.codn find-package .
Furthermore,
.code delete-package
iterates over all remaining packages. For each remaining package
.metn p ,
it performs the semantic action of the
.mono
.meti (unuse-package < package << p)
.onom
expression. That is to say, all of the remaining packages
are scrubbed of any foreign symbols which are the local symbols
of the deleted
.metn package .
.coNP Function @ merge-delete-package
.synb
.mets (merge-delete-package dst-package <> [ src-package ])
.syne
.desc
The
.code merge-delete-package
iterates over all of the local symbols of
.meta src-package
and rehomes each symbol into
.metn dst-package .
Then, it deletes
.metn src-package .
Note: the local symbols are identified as if using
.codn package-local-symbols ,
rehoming is performed as if using
.codn rehome-sym ,
and deleting
.meta src-package
is performed as if using
.codn delete-package .
.coNP Function @ packagep
.synb
.mets (packagep << obj )
.syne
.desc
The
.code packagep
function returns
.code t
if
.meta obj
is a package, otherwise it returns
.codn nil .
.coNP Function @ find-package
.synb
.mets (find-package << name )
.syne
.desc
The argument
.meta name
should be a string. If a package called
.meta name
exists,
then it is returned. Otherwise
.code nil
is returned.
.coNP Special variable @ *package-alist*
.desc
The
.code *package-alist*
variable contains the master association list
which contains an entry about each existing
package.
Each element of the list is a cons cell
whose
.code car
field is the name of a package and whose
.code cdr
is a package object.
Note: the \*(TL application can overwrite or re-bind this
variable to manipulate the active package list. This is
useful for
.IR sandboxing :
safely evaluating code that is obtained as an input
from an untrusted source, or calculated from such an input.
The contents of
.code *package-alist*
have security implications because textual source code
can refer to any symbol in any package by invoking
a package prefix. For instance, even if the
.code open
function's name is not available in the current package
(established by the
.code *package*
variable) that symbol can easily be obtained using the
syntax
.codn usr:open .
However, the entire
.code usr
package itself can be removed from
.codn *package-alist* .
In that situation, the syntax
.code usr:open
is no longer valid.
At the same time, selected symbols from the original
.code usr
can be nevertheless made available via some intermediate
package, which is present in
.code *package-alist*
and which contains a subset of the
.code usr
symbols that has been curated for safety. That curated package may even
be called
.codn usr ,
so that if for instance
.code cons
is present in that package, it may be referred to as
.code usr:cons
in the usual way.
.coNP Function @ package-alist
.synb
.mets (package-alist)
.syne
.desc
The
.code package-alist
function retrieves the value of
.codn *package-alist* .
Note: this function is obsolescent. There is no reason to use it
in new code instead of just accessing
.code *package-alist*
directly.
.coNP Function @ package-name
.synb
.mets (package-name << package )
.syne
.desc
The
.code package-name
function retrieves the name of a package.
.coNP Function @ package-symbols
.synb
.mets (package-symbols <> [ package ])
.syne
.desc
The
.code package-symbols
function returns a list of all the symbols
which are interned in
.metn package .
.coNP Functions @ package-local-symbols and @ package-foreign-symbols
.synb
.mets (package-local-symbols <> [ package ])
.mets (package-foreign-symbols <> [ package ])
.syne
.desc
The
.code package-local-symbols
function returns a list of all the symbols
which are interned in
.metn package ,
and whose home package is that package.
The
.code package-foreign-symbols
function returns a list of all the symbols which
are interned in
.metn package ,
which do not have that package as their home package,
or do not have a home package at all.
The union of the local and foreign symbols contains exactly
the same elements as the list returned by
.codn package-symbols :
the symbols interned in a package are partitioned into
local and foreign.
.coNP Functions @ package-fallback-list and @ set-package-fallback-list
.synb
.mets (package-fallback-list << package )
.mets (set-package-fallback-list < package << package-list )
.syne
.desc
The
.code package-fallback-list
returns the current
.I "fallback package list"
associated with
.metn package .
The
.code set-package-fallback-list
replaces the fallback package list of
.meta package
with
.metn package-list .
The
.meta package-list
argument must be a list which is a mixture of symbols, strings or
package objects. Strings are taken to be package names, which must
resolve to existing packages. Symbols are reduced to strings via
.codn symbol-name .
.coNP Functions @ intern and @ intern-fb
.synb
.mets (intern < name <> [ package ])
.syne
.desc
The argument
.meta name
must be a string. The optional argument
.meta package
must be a package. If
.meta package
is not supplied, then the value
taken is that of
.codn *package* .
The
.code intern
function searches
.meta package
for a symbol called
.metn name .
If that symbol is found, it is returned. If that symbol is not found,
then a new symbol called
.meta name
is created and inserted into
.metn package ,
and that symbol is returned. In this case, the package becomes the
symbol's home package.
The
.code intern-fb
function is very similar to
.code intern
except that if the symbol is not found in
.meta package
then the packages listed in the fallback list of
.meta package
are searched, in order. Only these packages themselves are searched,
not their own fallback lists. If a symbol called
.meta name
is found, the search terminates and that symbol is returned.
Only if nothing is found in the fallback list will
.code intern-fb
create a new symbol and insert it into
.metn package ,
exactly like
.codn intern .
.coNP Function @ unintern
.synb
.mets (unintern < symbol <> [ package ])
.syne
.desc
The
.code unintern
function removes
.meta symbol
from
.metn package .
The
.code nil
symbol may not be removed from the
.code usr
package; an error exception is thrown in this case.
If
.code symbol
isn't
.codn nil ,
then
.meta package
is searched to determine whether it contains
.meta symbol
as an interned symbol (either local or foreign), or a hidden symbol.
If
.meta symbol
is a hidden symbol, then it is removed from the hidden symbol store.
Thereafter, even if a same-named foreign symbol is removed from the
package via
.code unuse-sym
or
.codn unuse-package ,
those operations will no longer restore the hidden symbol to interned
status. In this case,
.meta unintern
returns the hidden symbol that was removed from the hidden store.
If
.meta symbol
is a foreign symbol, then it is removed from the package. If the package
has a hidden symbol of the same name, that hidden symbol is re-interned
in the package, and the package once again becomes its home package.
In this case,
.meta symbol
is returned.
If
.meta symbol
is a local symbol, the symbol is removed from the package.
In this case also,
.meta symbol
is returned.
If
.meta symbol
is not found in the package as either an interned or hidden
symbol, then the function has no effect and returns
.codn nil .
.coNP Functions @ find-symbol and @ find-symbol-fb
.synb
.mets (find-symbol < name >> [ package <> [ notfound-val ]])
.mets (find-symbol-fb < name >> [ package <> [ notfound-val ]])
.syne
.desc
The
.code find-symbol
and
.code find-symbol-fb
functions search
.meta package
for a symbol called
.metn name .
That argument must be a character string.
If the
.meta package
argument is omitted, the parameter defaults to the
current value of
.codn *package* .
If the symbol is found in
.meta package
then it is returned.
If the symbol is not found in
.metn package ,
then the function
.code find-symbol-fb
also searches the packages listed in the fallback list of
.meta package
are searched, in order. Only these packages themselves are searched,
not their own fallback lists. If a symbol called
.meta name
is found, the search terminates and that symbol is returned.
The function
.code find-symbol
only searches
.metn package ,
ignoring its fallback list.
If a symbol called
.meta name
isn't found, then these functions return
.meta notfound-val
is returned, which defaults to
.codn nil .
Note: an ambiguous situation exists when
.meta notfound-val
is a symbol, such as its default value
.codn nil ,
because if that symbol is successfully found,
it is indistinguishable from
.metn notfound-val .
.coNP Function @ rehome-sym
.synb
.mets (rehome-sym < symbol <> [ package ])
.syne
.desc
The arguments
.meta symbol
and
.meta package
must be a symbol and package object,
respectively, and
.meta symbol
must not be the symbol
.codn nil .
The
.code rehome-sym
function moves
.meta symbol
into
.metn package .
If
.meta symbol
is already interned in a package, it is first removed from that package.
If a symbol of the same name exists in
.metn package ,
that symbol is first removed
from
.metn package .
Also, if a symbol of the same name exists in the hidden symbol store of
.metn package ,
that hidden symbol is removed.
Then
.code symbol
is interned into
.metn package ,
and
.meta package
becomes its home package, making it a local symbol of
.metn package .
Note: if
.code symbol
is currently the hidden symbol of some package, it is not removed
from the hidden symbol store of that package. This is a degenerate
case. The implication is that if that hidden symbol is ever
restored in that package, it will once again have that package as
its home package, and consequently it will turn into a foreign
symbol of
.metn package .
.coNP Function @ symbolp
.synb
.mets (symbolp << obj )
.syne
.desc
The
.code symbolp
function returns
.code t
if
.meta obj
is a symbol, otherwise it returns
.codn nil .
.coNP Function @ symbol-name
.synb
.mets (symbol-name << symbol )
.syne
.desc
The
.code symbol-name
function returns the name of
.metn symbol .
.coNP Function @ symbol-package
.synb
.mets (symbol-package << symbol )
.syne
.desc
The
.code symbol-package
function returns the home package of
.metn symbol .
If
.meta symbol
has no home package, it returns
.codn nil .
.coNP Function @ keywordp
.synb
.mets (keywordp << obj )
.syne
.desc
The
.code keywordp
function returns
.code t
if
.meta obj
is a keyword symbol, otherwise it
returns
.codn nil .
.coNP Function @ bindable
.synb
.mets (bindable << obj )
.syne
.desc
The
.code bindable
function returns
.code t
if
.meta obj
is a bindable symbol, otherwise it returns
.codn nil .
All symbols are bindable, except for keyword symbols, and the
special symbols
.code t
and
.codn nil .
.coNP Function @ use-sym
.synb
.mets (use-sym < symbol <> [ package ])
.syne
.desc
The
.code use-sym
function brings an existing
.code symbol
into
.metn package .
In all cases, the function returns
.codn symbol .
If
.meta symbol
is already interned in
.metn package ,
then the function has no effect.
Otherwise
.meta symbol
is interned in
.metn package .
If a symbol having the same name as
.meta symbol
already exists in
.metn package ,
then it is replaced.
If that replaced symbol is a local symbol of
.metn package ,
then the replaced symbol turns into a hidden symbol associated
with the package. It is placed into a special hidden symbol store
associated with
.meta package
and is stripped of its home package, becoming quasi-interned or uninterned.
An odd case is possible whereby
.meta symbol
is already a hidden symbol of
.metn package .
In this case, the hidden symbol replaces some foreign symbol and
is interned in
.metn package .
Thus it simultaneously exists as both an interned
foreign symbol and as a hidden symbol of
.metn package .
.coNP Function @ unuse-sym
.synb
.mets (unuse-sym < symbol <> [ package ])
.syne
.desc
The
.code unuse-sym
function removes
.meta symbol
from
.metn package .
If
.meta symbol
is not interned in
.metn package ,
the function does nothing and returns
.codn nil .
If
.meta symbol
is a local symbol of
.metn package ,
an error is thrown: a package cannot "unuse" its own symbol. Removing
a symbol from its own home package requires the
.code unintern
function.
Otherwise
.meta symbol
is a foreign symbol interned in
.meta package
and is removed.
If the package has a hidden symbol of the same name as
.metn symbol ,
that symbol is re-interned into
.meta package
as a local symbol. In this case, that previously hidden symbol is
returned.
If the package has no hidden symbol matching the removed
.metn symbol ,
then
.meta symbol
itself is returned.
.coNP Functions @ use-package and @ unuse-package
.synb
.mets (use-package < package-list <> [ package ])
.mets (unuse-package < package-list <> [ package ])
.syne
.desc
The
.meta use-package
and
.meta unuse-package
are convenience functions which perform a mass import of symbols from one
package to another, or a mass removal, respectively.
The
.code use-package
function iterates over all of the local symbols of the packages in
.metn package-list .
For each symbol
.metn s ,
it performs the semantic action implied by the
.mono
.meti (use-sym < s << package )
.onom
expression.
Similarly
.code unuse-package
iterates
.meta package-list
in the same way, performing, effectively, the semantic action
of the
.mono
.meti (unuse-sym < s << package )
.onom
expression.
The
.meta package-list
argument must be a list which is a mixture of symbols, strings or
package objects. Strings are taken to be package names, which must
resolve to existing packages. Symbols are reduced to strings via
.codn symbol-name .
.coNP Macro @ defpackage
.synb
.mets (defpackage < name << clause *)
.syne
.desc
The
.code defpackage
macro provides a convenient means to create a package and establish its
properties in a single construct. It is intended for the ordinary situations
in which packages support the organization of programs into modules.
The
.code name
argument, giving the package name, may be a symbol or a character string.
If it is a symbol, then the symbol's name is taken to be name for the
package.
If a package called
.code name
already exists, then
.code defpackage
selects that package for further operations. Otherwise, a new,
empty package is created. In either case, this package is referred
to as the
.I "present package"
in the following descriptions.
The
.code name
may be optionally followed by one or more clauses, which are processed
in the order that they appear. Each clause is a compound form headed
by a keyword.
The supported clauses are as follows:
.RS
.meIP (:fallback << package-name *)
The
.code :fallback
clause specifies the packages to comprise the fallback list of
the present package. If this clause is omitted, or if it is present
with not
.meta package-name
arguments, then the present package has an empty fallback list.
Each
.meta package-name
may be a string or symbol naming an existing package. It is permitted
for the present package itself to appear in its own fallback list.
This is useful for creating a package with a non-empty fallback list
which doesn't actually provide access to any other package.
.meIP (:use << package-name *)
The
.code :use
clause specifies packages whose local symbols are to be interned
into the present package as foreign symbols. Each
.meta package-name
may be a string or symbol naming an existing package.
The list of package names is processed as if by a call to
.codn use-package .
.meIP (:use-syms << symbol *)
The
.code :use-syms
clause specifies individual symbols to be interned in the present package.
The arguments are symbols.
.meIP (:use-from < package-name << symbol-name *)
The
.code :use-from
clause specifies the names of local symbols in a package denoted by
.meta package-name
to be used in the present package. All arguments of
.code :use-from
are either strings or symbols which are reduced to strings by mapping
to their names. Each
.meta symbol-name
is interned in the package identified by
.metn package-name ,
which may have the effect of creating that symbol.
This symbol is expected to be a local symbol of that package. If
that is so, the symbol is brought into the present package via
.codn use-symbol .
Otherwise if the symbol is foreign to package identified by
.metn package-name ,
then an error exception is thrown.
.meIP (:local << symbol-name *)
The
.code :local
clause specifies the names of symbols to be interned in the new package
as local symbols. Each
.meta symbol-name
argument must be either a character string or a symbol. If it is a symbol, its
name is taken, thereby reducing the argument to a character string.
The arguments are processed in the order in which they appear. Each name is
first interned in the newly created package using the
.code intern
function. Then, if the resulting symbol is foreign to the package, it is
removed with
.code unuse-sym
and the name is interned again.
.RE
.coNP Macro @ in-package
.synb
.mets (in-package << name )
.syne
.desc
The
.code in-package
macro causes the
.code *package*
special variable to take on the package denoted by
.metn name .
The macro checks, at expansion time, that
.meta name
is either a string or symbol. An error is thrown if
this isn't the case.
The
.meta name
argument expression isn't evaluated, and so must not be quoted.
The code generated by the macro performs a search for the
package. If the package is not found at the time when
the macro's expansion is evaluated, an error is thrown.
.SS* Pseudo-random Numbers
.coNP Special variable @ *random-state*
.desc
The
.code *random-state*
variable holds an object which encapsulates the state
of a pseudo-random number generator. This variable is the default argument
value for the
.code random-fixnum
and
.codn "random functions" ,
for the convenience of writing programs which are not concerned about the
management of random state.
On the other hand, programs can create and manage random states, making it
possible to obtain repeatable sequences of pseudo-random numbers which do not
interfere with each other. For instance objects or modules in a program can
have their own independent streams of random numbers which are repeatable,
independently of other modules making calls to the random number functions.
When \*(TX starts up, the
.code *random-state*
variable is initialized with
a newly created random state object, which is produced as if by
the call
.codn "(make-random-state 42)" .
.coNP Special variable @ *random-warmup*
.desc
The
.code *random-warmup*
special variable specifies the value which is used by
.code make-random-state
in place of a missing
.meta warmup-period
argument.
To "warm up" a pseudo-random number generator (PRNG) means to obtain some
values from it which are discarded, prior to use. The number of values
discarded is the
.IR "warm-up period" .
The WELL512a PRNG used in \*(TX produces 32-bit values, natively. Thus each
warm-up iteration retrieves and discards a 32-bit value. The PRNG has
a state space consisting of a vector of sixteen 32-bit words, making
the state space 4096 bits wide.
Warm up is required because PRNG-s, in particular PRNG-s with large state
spaces and long periods, produce fairly predictable sequences of values in the
beginning, before transitioning into chaotic behavior. This problem is worse
for low complexity seeds, such as small integer values.
The sequences are predictable in two ways. Firstly, some initial values
extracted from the PRNG may exhibit patterns ("problem 1"). Secondly, the initial values
from sequences produced from similar seeds (for instance consecutive integers)
may be similar or identical ("problem 2").
.TP* Notes:
The default value of
.code *random-warmup*
is only 8. This is insufficient to
ensure good initial PRNG behavior for seeds even as large as 64 bits or more.
That is to say, even if as many as eight bytes' worth of true random bits are
used as the seed, the PRNG will exhibit predictable behaviors, and a poor
distribution of values.
Applications which critically depend on good PRNG behavior should choose
large warm-up periods into the hundreds or thousands of iterations.
If a small warm-up period is used, it is recommended to use larger seeds
which initialize more of the 4096 bit state space.
\*(TX's PRNG implementation addresses "problem 1" first problem by padding the
unseeded portions of the state space with random values (from a static table
that doesn't change). For instance, if the integer 1 is used to seed the space,
then one 32 bit word of the space is set to the value 1. The remaining 15 are
populated from the random table. This helps to ensure that a good PRNG sequence
is obtained immediately. However, it doesn't address "problem 2": that
similar seed values generate similar sequences, when the warm-up period is
small. For instance, if 65536 different random state objects are created, from
each of the 16-bit seeds in the range [0, 65536), and then a random 16-bit
value is extracted from each state, only 1024 unique values result.
.coNP Function @ make-random-state
.synb
.mets (make-random-state >> [ seed <> [ warmup-period ])
.syne
.desc
The
.code make-random-state
function creates and returns a new random state,
an object of the same kind as what is stored in the
.code *random-state*
variable.
The seed, if specified, must be either an integer value, an
existing random state object, or a vector returned from a call
to the function
.codn random-state-get-vec .
Note that the sign of the seed is ignored, so that negative seed
values are equivalent to their additive inverses.
If seed is not specified, then
.code make-random-state
produces a seed based
on some information in the process environment, such as current
time of day. It is not guaranteed that two calls to
.code (make-random-state)
that are separated by less than some minimum increment of real time produce
different seeds. The minimum time increment depends on the platform.
On a platform with a millisecond-resolution real-time clock, the minimum
time increment is a millisecond. Calls to make-random-state less than
a millisecond apart may predictably produce the same seed.
If an integer seed is specified, then the integer value is mapped to a
pseudo-random sequence, in a platform-independent way.
If an existing random state is specified as a seed, then it is duplicated. The
returned random state object is a distinct object which is in the same
state as the input object. It will produce the same remaining pseudo-random
number sequence, as will the input object.
If a vector is specified as a seed, then a random state is constructed
which duplicates the random state object which was captured in that vector
representation by the
.code random-state-get-vec
function.
The
.meta warm-up-period
argument specifies the number of values which are immediately obtained and
discarded from the newly-seeded generator before it is returned.
Warm-up is not performed when
.meta seed
is an existing random state object, and this argument is ignored in that
case. If the parameter is required, but the argument is missing, then
the value of the
.code *random-warmup*
special variable is used. This variable has a default value which may be too
small for serious applications of pseudo-random numbers; see the Notes under
.codn *random-warmup* .
.coNP Function @ random-state-p
.synb
.mets (random-state-p << obj )
.syne
.desc
The
.code random-state-p
function returns
.code t
if
.meta obj
is a random state, otherwise it
returns
.codn nil .
.coNP Function @ random-state-get-vec
.synb
.mets (random-state-get-vec <> [ random-state ])
.syne
.desc
The
.code random-state-get-vec
function converts a random state into a vector of integer values.
If the
.meta random-state
argument, which must be a random state object, is omitted,
then the value of the
.code *random-state*
is used.
.coNP Functions @, random-fixnum @ random and @ rand
.synb
.mets (random-fixnum <> [ random-state ])
.mets (random < random-state << modulus )
.mets (rand < modulus <> [ random-state ])
.syne
.desc
All three functions produce pseudo-random numbers, which are positive integers.
The numbers are obtained from a WELL512a PRNG, whose state is stored in the
random state object.
The
.code random-fixnum
function produces a random fixnum integer: a reduced range
integer which fits into a value that does not have to be heap-allocated.
The
.code random
and
.code rand
functions produce a value in the range [0,
.metn modulus ).
They differ only in the order of arguments. In the
.code rand
function, the random state
object is the second argument and is optional. If it is omitted, the global
.code *random-state*
object is used.
The
.meta modulus
argument must be a positive integer. If
.meta modulus
is 1, then the function returns zero without altering the state of the
pseudo-random number generator.
.coNP Function @ random-float
.synb
.mets (random-float <> [ random-state ])
.syne
.desc
The
.code random-float
function produces a pseudo-random floating-point value in the range [0.0, 1.0).
The numbers are obtained from a WELL512a PRNG, whose state is stored in the
random state object given by the argument to the optional
.meta random-state
parameter, which defaults to the value of
.codn *random-state* .
.SS* Time
.coNP Functions @, time @ time-usec and @ time-nsec
.synb
.mets (time)
.mets (time-usec)
.mets (time-nsec)
.syne
.desc
The
.code time
function returns the number of seconds that have elapsed since
midnight, January 1, 1970, in the UTC timezone: a point in
time called
.IR "the epoch" .
The
.code time-usec
function returns a cons cell whose
.code car
field holds the seconds measured in the same way, and whose
.code cdr
field extends the precision by giving
number of microseconds as an integer value between 0 and 999999.
The
.code time-nsec
function is similar to
.code time-usec
except that the returned cons cell's
.code cdr
field gives a number of nanoseconds as an integer value
between 0 and 999999999.
Note: on hosts where obtaining nanosecond precision is not available, the
.code time-nsec
function obtains a microseconds value instead, and multiplies
it by 1000.
.coNP Functions @ time-string-local and @ time-string-utc
.synb
.mets (time-string-local < time << format )
.mets (time-string-utc < time << format )
.syne
.desc
These functions take the numeric time returned by the
.code time
function, and convert it to a textual representation in a flexible way,
according to the contents of the
.meta format
string.
The
.code time-string-local
function converts the time to the local timezone of
the host system. The
.code time-string-utc
function produces time in UTC.
The
.meta format
argument is a string, and follows exactly the same conventions as
the format string of the C library function
.codn strftime .
The
.meta time
argument is an integer representing seconds obtained from the
time function or from the
.code car
field of the cons returned by the
.code time-usec
function.
.coNP Functions @ time-fields-local and @ time-fields-utc
.synb
.mets (time-fields-local << time )
.mets (time-fields-utc << time )
.syne
.desc
These functions take the numeric time returned by the time function,
and convert it to a list of seven fields.
The
.code time-string-local
function converts the time to the local timezone of
the host system. The
.code time-string-utc
function produces time in UTC.
The fields returned as a list consist of six integers, and a Boolean value.
The six integers represent the year, month, day, hour, minute and second.
The Boolean value indicates whether daylight savings time is in effect
(always
.code nil
in the case of
.codn time-fields-utc ).
The
.meta time
argument is an integer representing seconds obtained from the
.code time
function or from the
.code time-usec
function.
.coNP Structure @ time
.synb
.mets (defstruct time nil
.mets \ \ year month day hour min sec dst
.mets \ \ gmtoff zone)
.syne
.desc
The
.code time
structure represents a time broken down into individual fields.
The structure almost directly corresponds to the
.code "struct tm"
type in the ISO C language. There are differences.
Whereas the
.code "struct tm"
member
.code tm_year
represents a year since 1900, the
.code year
slot of the
.code time
structure represents the absolute year, not relative to 1900.
Furthermore, the
.code month
slot represents a one-based numeric month, such that 1 represents
January, whereas the C member
.code tm_mon
uses a zero-based month. The
.code dst
slot is a \*(TL Boolean value. The slots
.codn hour ,
.codn min ,
and
.code sec
correspond directly to
.codn tm_hour ,
.codn tm_min ,
and
.codn tm_sec .
The slot
.code gmtoff
represents the number of seconds east of UTC, and
.code zone
holds a string giving the abbreviated time zone name.
On platform where the C type
.code "struct tm"
has fields corresponding to these slots, values for
these slots are calculated and stored into them by the
.code time-struct-local
and
.code time-struct-utc
functions, and also the related
.code time-local
and
.code time-utc
methods. On platform where the corresponding fields are not
present in the C language
.codn "struct tm" ,
these slots are unaffected by those functions,
retaining the default initial value
.code nil
or a previously stored value, if applicable.
Lastly, the values of
.code gmtoff
and
.code zone
are not ignored by functions which accept a
.code time
structure as a source of input values.
.coNP Functions @ time-struct-local and @ time-struct-utc
.synb
.mets (time-struct-local << time )
.mets (time-struct-utc << time )
.syne
.desc
These functions take the numeric time returned by the time function,
and convert it to an instance of the
.code time
structure.
The
.code time-struct-local
function converts the time to the local timezone of
the host system. The
.code time-struct-utc
function produces time in UTC.
The
.meta time
argument is an integer representing seconds obtained from the
.code time
function or from the
.code time-usec
function.
.coNP Functions @, time-parse @ time-parse-local and @ time-parse-utc
.synb
.mets (time-parse < format << string )
.mets (time-parse-local < format << string )
.mets (time-parse-utc < format << string )
.syne
.desc
The
.code time-parse
function scans a time description in
.meta string
according to the specification given in the
.meta format
string. If the scan is successful, a structure
of type
.code time
is returned, otherwise
.codn nil .
The
.meta format
argument follows the same conventions as the POSIX
C library function
.codn strptime .
Prior to obtaining the time from
.meta format
and
.meta string
the returned structure is created and initialized
with a time which represents time 0 ("the epoch")
if interpreted in the UTC timezone as by the
.meta time-utc
method.
The
.code time-parse-local
and
.code time-parse-utc
functions return an integer time value: the same value
that would be returned by the
.code time-local
and
.code time-utc
methods, respectively, when applied to the structure
object returned by
.codn time-parse .
Thus, these equivalences hold:
.verb
(time-parse-local f s) <--> (time-parse f s).(time-local)
(time-parse-utc f s) <--> (time-parse f s).(time-utc)
.brev
Note: the availability of these three functions
depends on the availability of
.codn strptime .
.coNP Methods @ time-local and @ time-utc
.synb
.mets << time-struct .(time-local)
.mets << time-struct .(time-utc)
.syne
.desc
The
.code time
structure has two methods called
.code time-local
and
.codn time-utc .
The
.code time-local
function considers the slots of the
.code time
structure instance
.meta time-struct
to be local time, and returns its integer representation
as the number of seconds since the epoch.
The
.code time-utc
function is similar, except it considers
the slots of
.meta time-struct
to be in the UTC time zone.
Note: these functions work by converting the slots into arguments
which are applied to
.code make-time
or
.codn make-time-utc .
.coNP Method @ time-string
.synb
.mets << time-struct .(time-string << format )
.syne
.desc
The
.code time
structure has a method called
.codn time-string .
This method accepts a
.meta format
string argument, which it uses to convert
the fields to a character string representation
which is returned.
The
.meta format
argument is a string, and follows exactly the same conventions as
the format string of the C library function
.codn strftime .
.coNP Method @ time-parse
.synb
.mets << time-struct .(time-parse < format << string )
.syne
.desc
The
.code time-parse
method scans a time description in
.meta string
according to the specification given in the
.meta format
string.
If the scan is successful, the structure
is updated with the parsed information, and
the remaining unmatched portion of
.meta string
is returned. If all of
.meta string
is matched, then an empty string is returned.
Slots of
.meta time-struct
which are originally
.code nil
are replaced with zero, even if these
zero values are not actually parsed from
.metn string .
If the scan is unsuccessful, then
.code nil
is returned and the structure is not
altered.
The
.meta format
argument follows the same conventions as the POSIX
C library function
.codn strptime .
Note: the
.code time-parse
method may be unavailable if the host system does not
provide the
.code strptime
function. In this case, the
.code time-parse
static slot of the
.code time
struct is
.codn nil .
.coNP Functions @ make-time and @ make-time-utc
.synb
.mets (make-time < year < month < day
.mets \ \ \ \ \ \ \ \ \ \ < hour < minute < second << dst-advice )
.mets (make-time-utc < year < month < day
.mets \ \ \ \ \ \ \ \ \ \ \ \ \ \ < hour < minute < second << dst-advice )
.syne
.desc
The
.code make-time
function returns a time value, similar to the one returned by the
.code time
function. The
.code time
value is constructed not from the system clock, but
from a date and time specified as arguments. The
.meta year
argument is a calendar year, like 2014.
The
.meta month
argument ranges from 1 to 12.
The
.meta hour
argument is a 24-hour time, ranging from 0 to 23.
These arguments represent a local time, in the current time zone.
The
.meta dst-advice
argument specifies whether the time is expressed in
daylight savings time (DST). It takes on three possible values:
.codn nil ,
the keyword
.codn :auto ,
or else the symbol
.codn t .
Any other value has the same interpretation as
.codn t .
If
.meta dst-advice
is
.codn t ,
then the time is assumed to be expressed in DST.
If the argument is
.codn nil ,
then the time is assumed not to be in DST.
If
.meta dst-advice
is
.codn :auto ,
then the function tries to determine whether
DST is in effect in the current time zone for the specified date and time.
The
.code make-time-utc
function is similar to
.codn make-time ,
except that
it treats the time as UTC rather than in the local time zone.
The
.meta dst-advice
argument is supported by
.code make-time-utc
for function
call compatibility with
.codn make-time .
It may or may not have any effect
on the output (since the UTC zone by definition doesn't have daylight
savings time).
.SS* Data Integrity
.coNP Function @ crc32-stream
.synb
.mets (crc32-stream < stream >> [ nbytes <> [ crc-prev ]])
.syne
.desc
The
.code crc32-stream
calculates the CRC-32 sum over the bytes read from
.metn stream ,
starting at the stream's current position.
If the
.meta nbytes
argument is specified, it should be a nonnegative
integer. It gives the number of bytes which should be read
and included in the sum. If the argument is omitted, then bytes are read
until the end of the stream.
The optional
.meta crc-prev
argument defaults to zero. It is fully documented under the
.code crc32
function.
The
.code crc32-stream
functions returns the calculated CRC-32 as a non-negative integer.
.coNP Function @ crc32
.synb
.mets (crc32 < obj <> [ crc-prev ])
.syne
.desc
The
.code crc32
function calculates the CRC-32 sum over
.metn obj ,
which may be a character string or a buffer.
If
.meta obj
is a buffer, then the sum is calculated over all of the bytes contained
in that buffer, according to its current length.
If
.meta obj
is a character string, then the sum is calculated over the bytes
which constitute its UTF-8 representation.
The optional
.meta crc-prev
argument defaults to zero. If specified, it should be a nonnegative integer in
the 32 bit range. This argument is useful when a single CRC-32 must be
calculated in multiple operations over several objects. The first call should
specify a value of zero, or omit the argument. To continue the checksum,
each subsequent call to the function should pass as the
.meta crc-prev
argument the CRC-32 obtained from the previous call.
The
.code crc32
function returns the calculated CRC-32 as a non-negative integer.
.TP* Examples:
.mono
;; Single operation
(crc32 "ABCD") --> 3675725989
;; In two steps, demonstrating crc-prev argument:
(crc32 "CD" (crc32 "AB")) -> 3675725989
.onom
.coNP Functions @ sha256-stream and @ md5-stream
.synb
.mets (sha256-stream < stream >> [ nbytes <> [ buf ]])
.mets (md5-stream < stream >> [ nbytes <> [ buf ]])
.syne
.desc
The
.code sha256-stream
calculates the NIST SHA-256 digest over the bytes read from
.metn stream ,
starting at the stream's current position.
The
.code md5-stream
function calculates the MD5 digest, using the
RSA Data Security, Inc. MD5 Message-Digest Algorithm.
If the
.meta nbytes
argument is specified, it should be a nonnegative
integer. It gives the number of bytes which should be read
and included in the digest. If the argument is omitted, then bytes are read
until the end of the stream.
If the
.meta buf
argument is omitted, the digest value is returned as a new,
buffer object. This buffer is 32 bytes long in the case of SHA-256,
holding a 256-bit digest, and 16 bytes long in the case of MD5,
holding a 128-bit digest.
If the
.meta buf
argument is specified, it must be a buffer that is at least 16 bytes long
in the case of MD5, and at least 32 bytes long in the case of SHA-256.
The hash is placed into that buffer, which is then returned.
.coNP Functions @ sha256 and @ md5
.synb
.mets (sha256 < obj <> [ buf ])
.mets (md5 < obj <> [ buf ])
.syne
.desc
The
.code sha256
function calculates the NIST SHA-256 digest over
.metn obj ,
which may be a character string or a buffer.
Similarly, the
.code md5
functions calculates the MD5 digest over
.metn obj ,
using the RSA Data Security, Inc. MD5 Message-Digest Algorithm.
If
.meta obj
is a buffer, then the digest is calculated over all of the bytes contained
in that buffer, according to its current length.
If
.meta obj
is a character string, then the digest is calculated over the bytes
which constitute its UTF-8 representation.
If the
.meta buf
argument is omitted, the digest value is returned as a new,
buffer object. This buffer is 32 bytes long in the case of SHA-256,
holding a 256-bit digest, and 16 bytes long in the case of MD5,
holding a 128-bit digest.
If the
.meta buf
argument is specified, it must be a buffer that is at least 16 bytes long
in the case of MD5, and at least 32 bytes long in the case of SHA-256.
The hash is placed into that buffer, which is then returned.
.coNP Functions @, sha256-begin @ sha256-hash and @ sha256-end
.synb
.mets (sha256-begin)
.mets (sha256-hash < ctx << obj )
.mets (sha256-end < ctx <> [ buf ])
.syne
.desc
The three functions
.codn sha256-begin ,
.code sha256-hash
and
.code sha256-end
implement a stateful computation of SHA256 digest which allows multiple input
sources to contribute to the result. Furthermore, the context object may be
serially re-used for calculating multiple digests.
The
.code sha256-begin
function, which takes no arguments, returns a new SHA256 digest-producing
context object.
The
.code sha256-hash
updates the state of the SHA256 digest object
.meta ctx
by including
.meta obj
into the digest calculation. The
.meta obj
argument may be: a character or character string, whose UTF-8 representation is
digested; a buffer object, whose contents are digested; or an integer,
representing a byte value in the range 0 to 255 included in the digest.
The
.code sha256-hash
function may be called multiple times to include any mixture of
strings and buffers into the digest calculation.
The
.code sha256-end
function finalizes the digest calculation and returns the digest in
a buffer. If the
.meta buf
argument is omitted, then a new 32-byte buffer is created for this
purpose. Otherwise,
.meta buf
must specify a
.code buf
object that is at least 32 bytes long. The digest is stored into this
buffer and that the buffer is returned.
The
.code sha256-end
function additionally resets the
.meta ctx
object into the initial state of a newly created context object, so
that it may be used for another digest session.
.coNP Functions @, md5-begin @ md5-hash and @ md5-end
.synb
.mets (md5-begin)
.mets (md5-hash < ctx << obj )
.mets (md5-end < ctx <> [ buf ])
.syne
.desc
The three functions
.codn md5-begin ,
.code md5-hash
and
.code md5-end
implement a stateful computation of MD5 digest which allows multiple input
sources to contribute to the result. Furthermore, the context object may be
serially re-used for calculating multiple digests.
The
.code md5-begin
function, which takes no arguments, returns a new MD5 digest-producing
context object.
The
.code md5-hash
updates the state of the MD5 digest object
.meta ctx
by including
.meta obj
into the digest calculation. The
.meta obj
argument may be: a character or character string, whose UTF-8 representation is
digested; a buffer object, whose contents are digested; or an integer,
representing a byte value in the range 0 to 255 included in the digest.
The
.code md5-hash
function may be called multiple times to include any mixture of
strings and buffers into the digest calculation.
The
.code md5-end
function finalizes the digest calculation and returns the digest in
a buffer. If the
.meta buf
argument is omitted, then a new 16-byte buffer is created for this
purpose. Otherwise,
.meta buf
must specify a
.code buf
object that is at least 16 bytes long. The digest is stored into this
buffer and that the buffer is returned.
The
.code md5-end
function additionally resets the
.meta ctx
object into the initial state of a newly created context object, so
that it may be used for another digest session.
.SS* The Awk Utility
The \*(TL library provides a macro called
.code awk
which is inspired by the Unix utility Awk. The macro implements
a processing paradigm similar to that of the utility: it scans
one or more input streams, which are divided into records or fields,
under the control of user-settable regular-expression-based delimiters.
The records and fields are matched against a sequence of programmer-defined
conditions (called "patterns" in the original Awk), which have associated
actions. Like in Awk, the default action is to print the current record.
Unlike Awk, the
.code awk
macro is a robust, self-contained language feature which can be used
anywhere where a \*(TL expression is called for, cleanly nests
with itself and can produce a return value when done. By contrast,
a function in the Awk language, or an action body, cannot instantiate
a local Awk processing machine.
The
.code awk
macro implements some of the most important Awk
conventions and semantics, in Lisp syntax, while eschewing others.
It does not implement implement the Awk convention that
variables become defined upon first mention; variables must be
defined to be used. It doesn't implement Awk's weak type system.
A character string which looks like a number isn't a number,
and an empty string or undefined variable doesn't serve as zero
in arithmetic expressions enclosed in the macro.
All expression evaluation within
.code awk
is the usual \*(TL evaluation.
The
.code awk
macro also does not provide a library of functions corresponding to
those in the Awk library, nor does it provide counterparts various
global variables in Awk such as the
.code ENVIRON
and
.code PROCINFO
arrays, or
.code RSTART
and
.codn RLENGTH .
Such features of Awk are extraneous to its central paradigm.
.coNP Macro @ awk
.synb
.mets (awk >> {( condition << action *)}*)
.syne
.desc
The
.code awk
macro processes one or more input sources, which may be streams or
files. Each input source is scanned into records, and each record
is broken into fields. For each record, the sequence of condition-action
clauses (except for certain special clauses) is processed. Every
.meta condition
is evaluated, and if it yields true, the corresponding
.metn action -s
are evaluated.
The
.meta condition
and
.meta action
forms are understood to be in a scope in which certain local
identifiers exist in the variable namespace as well as in the function
namespace. These are called
.I "awk functions"
and
.IR "awk macros" .
If
.meta condition
is one of the following keyword symbols, then it is a special clause,
with special semantics:
.codn :name ,
.codn :let ,
.codn :inputs ,
.codn :output ,
.codn :begin ,
.codn :set ,
.codn :end ,
.codn :begin-file ,
.code :set-file
and
.codn :end-file .
These clause types are explained below.
In such a clause, the
.meta action
expressions are not necessarily forms to be evaluated; the treatment
of these expressions depends on the clause. Otherwise, if
.meta condition
is not one of the above keyword symbols, the clause is an ordinary
condition-action clause, and
.meta condition
is a \*(TL expression, evaluated to determine a Boolean value
which controls whether the
.meta action
forms are evaluated. In every ordinary condition-action clause which
contains no
.meta action
forms, the
.code awk
macro substitutes the single action equivalent to the form
.codn "(prn)" :
a call to the local awk function
.codn prn .
The behavior of this macro, when called with no arguments, as above,
is to print the current
record (contents of the variable
.codn rec )
followed by the output record terminator from the variable
.codn ors .
While the processing loop in
.code awk
scans an input source, it also binds the special variable
.code *stdin*
to the open stream associated with that source. This binding is
in effect across all ordinary clauses, as well as across the
special clauses
.code :begin-file
and
.codn :end-file .
The following is a description of the special clauses:
.RS
.meIP (:name << sym )
The
.code :name
clause establishes the name of the implicit block contained
within the expansion of the
.code awk
macro. Forms enclosed in the macro can use
.code return-from
to abandon the
.code awk
form, specifying this symbol as the argument.
If the
.code :name
form is omitted, the implicit block is named
.codn awk .
It is an error for two or more
.code :name
forms to appear.
The
.code :name
clause must have an argument which is a symbol;
the symbol
.code nil
is not permitted.
.meIP (:let >> { sym | >> ( sym << init-form )}*)
Regardless of what order they appear in relation to
other clauses in the same
.code awk
macro,
.code :let
clauses are evaluated first before the macro takes any other action. The
argument forms of this clause are variables or variable-init forms. They are
treated the same way as analogous forms in the
.code let*
special form. Note that these are not enclosed in an extra list
as they are in the that form. The bindings established by the
.code :let
clause have a scope which extends over all the other clauses in the
.code awk
macro.
If multiple
.code :let
clauses are present, they are effectively consolidated into
a single clause, in the order they appear.
Note that the lexical variables, functions and macros established by the
.code awk
macro
(called, respectively,
.IR "awk macros" ,
.I "awk functions"
and
.IR "awk variables" )
are in an inner scope relative to
.code :let
bindings. For instance if
.code :let
creates a binding for a variable called
.codn fs ,
that variable will be visible only to subsequent forms appearing
in the same
.code :let
clause or later
.code :let
clauses, and also visible in
.code :inputs
and
.code :output
clauses.
In
.codn :begin ,
.codn :set ,
.codn :end ,
and ordinary clauses, it will be shadowed by the
.code awk
variable
.codn fs ,
which holds the field separator regular expression or string.
.meIP (:inputs << source-form *)
The
.code :inputs
clause is evaluated by the
.code awk
macro after processing the
.code :let
clauses. Each
.meta source-form
is evaluated and the values of these forms are gathered into a list.
This list then comprises the list of input sources for the
.code awk
processing task.
Each input source must be one of three kinds of objects.
It may be a stream object, which must be capable of character
input. It may be a list of strings, which
.code awk
will convert to an input stream as if by the
.code make-strlist-input-stream
function.
Or else it must be a character
string, which denotes a filesystem path name which
.code awk
will open for reading.
If the
.code :inputs
clause is omitted, then a defaulting behavior occurs for obtaining
the list of input sources. If the special variable
.code *args*
isn't the empty list, then
.code *args*
is taken as the input sources. Otherwise, the
.code *stdin*
stream is taken as the one and only input source.
If the
.code awk
macro uses
.code *args*
via the above defaulting behavior, it copies
.code *args*
and sets that variable to
.codn nil .
This is done in order that if
.code awk
is used from the \*(TX command line, for example using the
.code -e
command line option, after
.code awk
terminates, \*(TX will not try to open the next argument
as a script file or treat it as an option.
Note: programs which want
.code awk
not to modify
.code *args*
can explicitly specify
.code *args*
as the argument to the
.code :inputs
keyword, rather than allow
.code *args*
to be used through the defaulting behavior. Only the
defaulting behavior consumes the arguments by overwriting
.code *args*
with
.codn nil .
It is an error to specify more than one
.code :inputs
clause.
.meIP (:output << output-form )
The
.code :output
clause is processed just after the
.code :inputs
clause. It must have exactly one argument, which is an expression
that evaluates to a string, or else to an output stream.
If it evaluates to a string, then that string is used as the name
of a file to open for writing, and the resulting stream
is taken in place of that string.
The
.code :output
clause, if present, has the effect of creating a local binding for the
.code *stdout*
special variable.
This new value of
.code *stdout*
is visible to all forms within the macro.
If a
.code :let
clause is present, it establishes bindings
in a scope which is nested within the scope established
by
.codn :output .
Therefore,
.metn init-form -s
in the
.code :let
may refer to the new value of
.code *stdout*
established by
.codn :output .
Furthermore,
.code :let
can rebind
.codn *stdout* ,
causing the definition provided by
.code :output
to be shadowed.
In the case when the
.code :output
argument is a string such that a new stream is opened
on the file, the
.code awk
macro will close that stream when it finishes executing.
Moreover, that stream is treated uniformly as a member of
the set of streams that are implicitly managed by the
redirection macros in the same
.code awk
macro invocation. In brief, the implication is that if
.code :output
creates a stream for the file path name
.str "out.txt"
and somewhere in the same
.code awk
macro, there is a redirection of the form, or equivalent to
.mono
(-> "out.txt")
.onom
then this redirection shall refer to the same stream
that was established by
.codn :output .
Note also that in this example situation, the expression
.mono
(-> "out.txt" :close)
.onom
has the effect of closing the
.code :output
stream.
.meIP (:begin << form *)
All
.code :begin
clauses are processed in the order in which they appear, before
input processing begins.
Each
.code form
is evaluated. These forms have in their scope the awk local variables
and macros.
.meIP (:set >> { place << new-value }*)
The
.code :set
clause provides a shorthand which allows the frequently occurring pattern
.code "(:begin (set ...))"
to be condensed to
.codn "(:set ...)" .
.meIP (:end << form *)
All
.code :end
clauses are processed, in the order in which they appear,
when the input processing loop terminates.
This termination occurs when all records
from all input sources are either processed or skipped, or else
by an explicit termination such
as a dynamic non-local transfer, such as
.codn return-from ,
or the throwing of an exception.
Upon termination, the end clauses are processed in the order they appear. Each
.code form
is evaluated, left to right.
In the normal termination case, the value of the last
.meta form
of the last end clause appears as the return value of the
.code awk
macro.
Note that only termination of the
.code awk
macro initiated from condition-action clauses,
.code :begin-file
clauses, or
.code :end-file
clauses triggers
.code :end
clause processing.
If termination of the
.code awk
macro is initiated from within a
.codn :let ,
.codn :inputs ,
.code :output
or
.code :begin
clause, then end
clauses are not processed.
If an
.code :end
clause performs a non-local transfer, the remaining
.code :end
forms in that clause and
.code :end
clauses which follow are not evaluated.
.meIP (:begin-file << form *)
All
.code :begin-file
clauses are processed in the order in which they appear, before
.code awk
switches to each new input.
If both
.code :begin
and
.code :begin-file
forms are specified, then before the first input is processed,
.code :begin
clauses are processed first, then the
.code :begin-file
clauses.
.meIP (:set-file >> { place << new-value }*)
The
.code :set-file
clause is a shorthand which translates
.code "(:set-file ...)"
to
.codn "(:begin-file (set ...))" .
.meIP (:end-file << form *)
All
.code :end-file
clauses are processed after the processing of an input
source finishes.
If both
.code :end
and
.code :end-file
forms are specified, then before after the last input is processed,
.code :end-file
clauses are processed first, then the
.code :end
clauses.
The
:end-file
clauses are processed unconditionally, no matter how
the processing of an input source terminates, whether terminated
naturally by running out of records, prematurely by invocation of the
.code next-file
macro, or via a dynamic non-local control transfer such as a block
return or exception throw.
If a
.code :begin-file
clause performs a non-local transfer,
.code :end-file
processing is not triggered, because the processing of the input
source is deemed not to have taken place.
.meIP >> ( condition << action *)
Clauses which do not have one of the specially recognized keywords
in the first position are ordinary condition-action clauses. After
processing the
.code :begin
clauses, the awk enters a loop in which it extracts successive records
from the input sources according to the
.code rs
(record separator) variable. Each record is divided into fields according
to the
.code fs
(field separator)
variable, and various
.code awk
variables are updated. Then, the condition-action clauses are processed, in the order
in which they appear. Each
.meta condition
is evaluated. If the resulting value is a regular expression
or a function, then this regular expression or function is invoked on the value
stored in the record variable
.codn rec ,
and the result is taken to be the truth value of
.metn condition .
Otherwise, if the resulting value of
.meta condition
is other than a function or regular expression, it is taken directly
to be the truth value.
If the condition is true, then its associated
.meta action
forms are evaluated. Either way, processing passes to the next condition
clause (unless an explicit step is taken in one of the
.metn action -s
to prevent this, for instance by invoking the
.code next
and
.code next-file
macros).
When an input source runs out of records,
.code awk
switches to the next input source. When there are no more input sources,
the macro terminates.
.RE
.coNP Variables @ rec and @ orec
.desc
The awk variable
.code rec
holds the current record. It is automatically updated prior to the
processing of the condition-pattern clauses. Prior to the extraction
of the first record, its value is
.codn nil .
It is possible to assign to
.codn rec .
The value assigned to
.code rec
must be a character string. Immediately upon the assignment, the character
string is delimited into fields according to the field separator
awk variable
.codn fs ,
and these fields are assigned to the field list
.codn f .
At the same time, the
.code nf
variable is updated to reflect the new number of fields.
Likewise, modification of these variables causes
.code rec
to be reconstructed by a catenation of the textual representation
of the fields in
.code f
separated by copies of the output field separator
.codn ofs .
The
.code orec
variable ("original record") also holds the current record. It is automatically
updated prior to the processing of the condition-clauses at the same time as
.code rec
with the same contents. Like
.codn rec ,
it is initially
.code nil
before the first record is read. The
.code orec
variable is unaffected by modification of
the variables
.codn rec ,
.code f
and
.codn nf .
It may be assigned. Doing so has no effect on any other
variable.
.coNP Variable @ f
.desc
The awk variable
.code f
holds the list of fields. Prior to the first record being read,
its value is
.codn nil .
Whenever a new record is read, it is divided into fields according
to the field separator variable
.codn fs ,
and these fields are stored in
.code f
as a list of character strings.
If the variable
.code f
is assigned, the new value must be a sequence. The variable
.code nf
is automatically updated to reflect the length of this sequence.
Furthermore, the
.code rec
variable is updated by catenating a string representation of the
elements of this sequence, separated by the contents of the
.code ofs
(output field separator)
awk variable.
Note that assigning to a DWIM bracket form which indexes
.codn f ,
such as for instance
.code "[f 0]"
constitutes an implicit modification of
.codn f ,
and triggers the recalculation of
.codn rec .
Modifications of the
.code f
list which do not involve an implicit or explicit assignment to the variable
.code f
itself do not have this recalculating effect.
Unlike in Awk, assigning to the nonexistent field
.mono
.meti [f << m ]
.onom
where
.meta m
>=
.code nf
is erroneous.
.coNP Variable @ nf
.desc
The awk variable
.code nf
holds the current number of fields in the sequence
.codn f .
Prior to the first record being read, it is initially zero.
If
.code nf
is assigned, then
.code f
is modified to reflect the new number of fields. Fields are deleted from
.code f
if the new value of
.code nf
is smaller. If the new value of
.code nf
is larger, then fields are added. The added fields are empty strings,
which means that
.code f
must be a sequence of a type capable of holding elements which are
strings.
If
.code nf
is assigned, then
.code rec
is also recalculated, in the same way as described in the documentation for the
.code f
variable.
.coNP Variable @ nr
.desc
The awk variable
.code nr
holds the current absolute record number. Record numbers start at 1.
Absolute means that this value does not reset to 1 when
.code awk
switches to a new input source; it keeps incrementing for each record.
See the
.code fnr
variable.
Prior to the first record being read, the value of
.code nr
is zero.
.coNP Variable @ fnr
.desc
The awk variable
.code fnr
holds the current record number within the file. The first record is 1.
Prior to the first record being read from the first input source,
the value of
.code fnr
is zero. Thereafter, it resets to 1 for the first record of each input
source and increments for the remaining records of the same input
source.
.coNP Variable @ arg
.desc
The awk variable
.code arg
is an integer which indicates what input source is being processed.
Prior to input processing, it holds the value zero. When the first
record is extracted from the first input source, it is set to 1.
Thereafter, it is incremented whenever
.code awk
switches to a new input source.
.coNP Variable @ fname
.desc
The awk variable
.code fname
provides access to a character string which, if the current input is
a file stream, is the name of the underlying file. Assigning to this
variable changes its value, but has no effect on the input stream.
Whenever a new input source is used by
.code awk
it sets this variable either from the file name on which it is opening
a stream.. When using an existing stream rather than opening a file,
.code awk
sets this variable from the
.code :name
property of the stream.
Note that the redirection macros
.code <-
and
.code <!
have no effect on this variable. Within their scope,
.code fname
retains its value.
.coNP Variable @ rs
.desc
The awk variable
.code rs
specifies a string or regular expression which is used for
delimiting characters read from the inputs into pieces called records.
Note: the record extraction is internally implemented using record streams
instantiated by the
.code record-adapter
function.
The regular expression pattern stored in
.code rs
is used to matches substrings in the input which separate or terminate records.
Unless the
.code krs
variable is set true, the substrings which match
.code rs
are discarded and the records consist of the non-matching extents between
them.
The initial value of
.code rs
is
.strn "\en" :
the newline character. This means that, by default, records are lines.
If
.code rs
is changed to the value
.codn nil ,
then record separation operates in
.IR "paragraph mode" ,
which is described below.
If a match for the record separator occurs at the end of the stream,
it is not considered to delimit an empty record, but acts as the
terminator for the previous record.
When a new value is assigned to
.codn rs ,
it has no effect on the most recently scanned and delimited record which is
still current, or previous records. The new value applies to the next, not yet
read record.
In paragraph mode, records are separated by a newline character followed by one
or more blank lines (empty lines or lines containing only a mixture of
tabs and spaces). This means that, effectively, the record-separating
sequences match the regular expression
.codn "/\en[ \en\et]*\en/" .
There are two differences between paragraph mode and simply using the above
regular expression as
.codn rs .
The first difference is that if the first record which is read upon entering
paragraph mode is empty (because the input begins with a match for the
separator regex), then that record is thrown away, and the next record is read.
The second difference is that, if field separation based on the
.code fs
variable is in effect, then regardless of the value of
.codn fs ,
newline characters separate fields. Therefore, the programmer-defined
.code fs
doesn't have to include a match for newline. Moreover, if it is a simple
fixed string, it need not be converted to a regular expression which also
matches a newline.
.coNP Variable @ krs
.desc
The awk variable
.code krs
stands for "keep record separator". It is a Boolean variable, initialized to
.codn nil .
If it is set to a true value, then the separating text matched
by the pattern in the
.code rs
variable is retained as part of the preceding record rather than removed.
When a new value is assigned to
.codn krs ,
it has no effect on the most recently scanned and delimited record which is
still current, or previous records. The new value applies to the next, not yet
read record.
.coNP Variables @ fs and @ ft
.desc
The awk variable
.code fs
and
.code ft
each specify a string or regular expression which is used for each
record that is stored in the
.code rec
variable into fields.
Both variables are initialized to
.codn nil ,
in which case a default behavior is in effect, described below.
Use of these variable is mutually exclusive; it is an error for both of these
variables to simultaneously have a value other than
.codn nil .
The value stored in either variable must be
.codn nil ,
a character string or a regular expression. If it contains a string or
regex, it is said to contain a pattern. A string value effectively behaves
as a fixed regular expression which matches the sequence of characters
in the string verbatim, without treating any of them as regex operators.
The splitting of
.code rec
into fields is influenced by the Boolean
.code kfs
("keep field separators")
variable, whose effect is discussed in its description.
If
.code kfs
is false, the splitting is carried out as follows.
If
.code fs
contains a pattern, then
.code rec
is treated specially when it is the empty string: in that case,
the pattern in
.code fs
is ignored, and no fields are produced: the field list
.code f
is the empty list, and
.code nf
is zero. A non-empty record is split by searching it for matches for the
.code fs
pattern. If a match does not occur, then the entire record is a field.
If one match occurs, then the record is split into two fields, either of which,
or both, might be empty. If two matches occur, the record is split into
three fields, and so on. If
.code fs
finds only an empty string match in the record, then it is considered
to match each of the empty strings between two consecutive characters of the
record. Consequently, the record is split into its individual characters, each
one becoming a field. Note: all of these behaviors, except for the special
treatment of the empty record, are accomplished by a call to the
.code split-str
function.
If the variable
.code ft
("field tokenize") contains a pattern, that pattern is used to positively
recognize tokens within the input record, rather than to match separating
material between them. Those matching tokens then constitute the fields.
The tokenizing is performed using the
.code tok-str
function.
If
.code fs
and
.code ft
are both
.codn nil ,
as is initially the case, then the splitting into fields is performed
as if the
.code ft
variable held the regular expression
.codn "/[^\en\et ]+/" .
This means that, by default, fields are sequences of consecutive characters
which are not spaces, tabs or newlines.
Newlines are excluded from fields (and thus separate them) because they can
occur in a record when the value of the record separator
.code rs
is customized.
.coNP Variable @ kfs
.desc
The awk variable
.code kfs
is a Boolean flag which is initialized to
.codn nil .
If it is set to any other value, it indicates a request to retain
the pieces of the record which separate the fields (even when they are
empty strings). The retained pieces appear as fields, interspersed
among the regular fields so that all of the fields appear in the order
in which they were extracted from the record.
When
.code kfs
is set, and tokenization-style delimiting is in effect due to
.code ft
being set, there is always at least one field, even if the record is empty.
If the record doesn't match the tokenizing regular expression in
.code ft
then a single field is generated, then the entire record is
taken as one field, denoting the non-matching space, even
if the record is the empty string.
If the record matches one or more tokens, then the first and
last field will always contain the non-matching material before
the first and last token, respectively. This is true even if
the material is empty. Thus
.code "[f 0]"
always has the material before the first token, whether or not
the first token is matched immediately at the first character
position in the record. This behavior follows from the semantics
of the
.code keep-sep
parameter of the
.code tok-str
function.
Similarly, when splitting based on
.code fs
is in effect and
.code kfs
is set, there is always at least one field, even if the record
is empty. If
.code fs
finds no match in the record, then the entire record,
even if empty, is taken as one field. In that case, there
are no separator to retain. When
.code fs
finds one or more
matches, then these are included as fields. Separators are
always between the fields. If a separator finds a nonempty
match at the beginning of a record, that causes an empty field
to be split off: the separator is understood as intervening
between an empty string before the first character of the
record, and subsequent material which follows the text
matched by the separator. Thus the first field is an empty
field, and the second is the matched text which is
included due to
.code kfs
being set. An analogous situation occurs at the end of the record: if
.code fs
matches a nonempty string at the tail of the record, it splits off an empty
last field, preceded by a field holding the matched separator portion.
Empty matches are only permitted to occur between the characters
of the record, not before the first character of after the last.
If
.code fs
matches the entire record, then there will be three fields:
the first and last of these three will be empty strings,
and the middle field, the separator, will be a copy of the record.
Under
.codn kfs ,
empty matches cause empty string to be included among the
fields. All of this follows from the semantics of the
.code keep-sep
parameter of the
.code split-str
function.
.coNP Variable @ fw
.desc
The awk variable
.code fw
controls the fixed-width-based delimiting of records into fields.
The variable is initialized to
.codn nil .
In that state, it has no effect.
When this variable holds a
.cod2 non- nil
value, it is expected to be a list of integers.
The use of the
.code fs
or
.code ft
variables is suppressed, and fields are extracted according
to the widths indicated by the list. The fields are consecutive,
such that if the list is
.code "(5 3)"
then the first five characters of the record are identified
as field
.code "[f 0]"
and the next three characters after that as
.codn "[f 1]" .
Only complete fields are extracted from the record. If, after
the extraction of the maximum possible complete fields, more characters
remain, those characters are assigned to an extra field.
An empty record produces an empty list of fields regardless
of the integers stored in fw.
A zero width extracts a zero length field, except when
no more characters remain in the record.
If
.code nil
is stored into
.code fw
then control over field separation is relinquished to the
.code fs
or
.code ft
variables, according to their current values.
If
.code fw
holds a value other than
.code nil
or else a list of non-negative integers, the behavior is unspecified.
.TP* Examples
The following table shows how various combinations of the
value the input record
.code rec
and field widths in the variable
.code fw
give rise to field values
.codn f :
.verb
rec fw f
---------------------------------
"abc" (0) ("" "abc")
"abc" (2) ("ab" "c")
"abc" (1 2) ("a" "bc")
"abc" (1 3) ("a" "bc")
"abc" (1 1) ("a" "b" "c")
"abc" (3) ("abc")
"abc" (4) ("abc")
"" (4) nil
"" (0) nil
.brev
.coNP Variable @ ofs
.desc
The awk variable
.code ofs
hold the output field separator. Its initial value is a string
consisting of a single space character.
When the
.code prn
function prints two or more arguments, or fields,
the value of
.code ofs
is used to separate them.
Whenever
.code rec
is implicitly updated due to a change in the variable
.code f
or
.codn nf ,
.code ofs
is used to separate the fields, as they appear in
.codn rec .
.coNP Variable @ ors
.desc
The awk variable
.codn ors ,
though it stands for "output record separator" holds what
is in fact the output record terminator. It is named after the
.code ORS
variable in Awk.
Each call to the
.code prn
function terminates its output by emitting the value of
.codn ors .
The initial value of
.code ors
is a character string consisting of a single newline,
and so the
.code prn
function prints lines.
.coNP Function @ prn
.synb
.mets (prn << form *)
.syne
.desc
The awk function
.code prn
performs output into the
.code *stdout*
stream. The
.code :output
clause affects the destination by rebinding
.codn *stdout* .
If called with no arguments,
.code prn
prints
.code rec
followed by
.codn ors .
Otherwise, it prints the values of the arguments, separated by
.codn ofs ,
followed by
.codn ors .
When a condition-action clause specifies no action forms,
then a call to
.code prn
with no arguments is the default action.
Each argument
.meta form
is printed by conversion to a string, as if by the expression
.code `@val`
where
.code val
is some variable which holds the value produced by the
evaluation of
.metn form .
Thus if the value is
.codn nil ,
the output for that argument is an empty string, rather than the text
.strn nil .
.coNP Macro @ next
.synb
.mets (next)
.syne
.desc
The awk macro
.code next
may be invoked in a condition-pattern clause. It terminates
the processing of that clause, and all subsequent clauses,
causing
.code awk
to process the next record, if there is one. If there is no next
record,
.code awk
terminates.
.coNP Macro @ again
.synb
.mets (again)
.syne
.desc
The awk macro
.code again
may be invoked in a condition-pattern clause. It terminates the
processing of that clause, and all subsequent clauses.
Then, the current value of the record, namely the datum stored
in the Awk variable
.codn rec ,
is delimited into fields, and all of the condition-pattern clauses
are processed again.
No other state is modified. In particular, the record number
.code nr
and the
.code orec
variable holding the original record both retain their current values.
Note: this is an original feature in the \*(TL
.code awk
macro, which has no counterpart in POSIX or GNU Awk.
.coNP Macro @ next-file
.synb
.mets (next-file)
.syne
.desc
The awk macro
.code next-file
may be invoked in a condition-pattern clause. It terminates
the processing of that clause, and all subsequent clauses.
Awk then abandons the current input source, and moves to the
next one. If there is no next input source,
.code awk
terminates.
.coNP Macros @, rng @, -rng @ rng- @, -rng- @, --rng @, --rng- @, rng+ @ -rng+ and @ --rng+
.synb
.mets (rng < from-condition << to-condition )
.mets (-rng < from-condition << to-condition )
.mets (rng- < from-condition << to-condition )
.mets (-rng- < from-condition << to-condition )
.mets (--rng < from-condition << to-condition )
.mets (--rng- < from-condition << to-condition )
.mets (rng+ < from-condition << to-condition )
.mets (-rng+ < from-condition << to-condition )
.mets (--rng+ < from-condition << to-condition )
.syne
.desc
The nine awk macros in the
.code rng
family may be used anywhere within an ordinary condition-pattern
.code awk
clause.
Each provides a Boolean test which is true if the current record lands within
a range of records delimited by conditions. Each provides its own
distinct, useful nuance, which is identified by the mnemonic characters
prefixed or suffixed to the name.
The basic
.code rng
macro inclusively matches ranges of records. Each such range begins with a record
for which
.meta from-condition
yields true, and ends on the record for which
.meta to-condition
is true. What it means to match is that the
.code rng
expression yields a Boolean true value when it is evaluated in the context
of processing any of the records which are included in the range.
The table below summarizes the semantic variations of these nine
range macro operators. The leftmost column represents the file of records
being processed. The remaining columns indicate, using the character
.code X
those rows for each of the nine range operators yield true. Each operator
is assumed to be invoked with the arguments
.code #/H/
and
.code #/T/
as its
.meta from-condition
and
.metn to-condition ,
respectively: for example,
.code "(rng #/H/ #/T/)"
in the case of
.codn rng :
.verb
DATA rng -rng rng- -rng- --rng --rng- rng+ -rng+ --rng+
----------------------------------------------------------
PROLOG
H1 X X X
H2 X X X X X X
H3 X X X X X X
B1 X X X X X X X X X
B2 X X X X X X X X
T1 X X X X X X
T2 X X X
T3 X X X
EPILOG
.brev
The prefix or suffix characters are mnemonic. A single
.code -
(dash) indicates the exclusion of one record. A double
.code --
(dash dash)
indicates the exclusion of all leading records which match
.metn from-condition ;
this appears on the left side only.
The
.code +
character, appearing on the right only, indicates that
all consecutive records which match
.meta to-condition
are included in the range, not only the first one.
Ranges are oblivious to the division between successive sources of input; a
range can start in one file of records and terminate in another.
To prevent a range from spanning input transitions, additional complexity
is required in the expression.
Ranges expressed using the
.code rng
family macros may combine with other expressions, including
other ranges, and allow arbitrary nesting: the
.meta from-condition
or
.meta to-condition
can be a range, or an expression containing ranges.
The expressions
.meta from-condition
and
.meta to-condition
are ordinary expressions which are evaluated. However, their
evaluation is unusual in two ways.
Firstly, if either expression
produces, as its result, a function or regular expression object,
then that function or regular expression object is applied to
the current record (value of the
.code rec
variable), and the result of that application is then taken
as the result of the condition. This allows for expressions like
.code "(rng (f^ #/start/) #/end/)"
which denotes a range which begins with a record which
begins with the prefix
.str start
and ends with a record which contains
.str end
as a substring.
Secondly, the conditions are evaluated
out of order with respect to the surrounding expression
in which they occur. Ranges and their constituent
.meta from-condition
and
.meta to-condition
are evaluated just prior to the processing of the condition-action clauses.
Each
.code rng
expression is reduced to a Boolean value.
Then, when the condition-action clauses are processed and their
.meta condition
and
.meta action
forms are evaluated, each occurrence of a
.code rng
expression simply denotes its previously evaluated Boolean value.
Therefore, it is not possible for expressions to short circuit
the evaluation of ranges. Ranges cannot "miss" their starting or
terminating conditions; every range occurring anywhere in the condition-action
clauses is tested against every record that is processed.
Because of this perturbed evaluation order, code which happens to place side
effects into ranges may produce surprising results.
For instance, the expression
.code "(if nil (rng (prinl 'hello) (prinl 'world)))"
will produce output even though the
.code if
condition is
.codn nil ,
and, moreover, this output will happen before the clauses are processed in
which this
.code if
expression appears. At the time when the
.code if
itself is evaluated, the
.code rng
expression merely fetches a previously computed Boolean value which indicates
whether the range is active for this record.
Also, the behavior is unspecified if range expressions attempt to modify
the awk-special variables.
.codn rec ,
.codn f ,
.codn fs ,
.code ft
or
.codn kfs .
It is not recommended to place any side effects into range expressions.
A more detailed description of the range operators follows.
.RS
.meIP (rng < from << to )
This type of range becomes active when a record is encountered for which the
.meta from
expression yields true. While the range is active, the expression evaluates
true. If, when the range is active, a record is encountered for which the
.meta to
expression yields true, the range remains active for that record and is
deactivated after the completion of processing for that record. If
the range is inactive and a record is encountered or which both
.meta from
and
.meta to
are true, then the range is activated for that record and then deactivated
when that record is processed.
Records for which
.meta from
and
.meta to
are not true do not affect the range's activation state.
.meIP (-rng < from << to )
This type of range is active under the same conditions as the
.code rng
type. However, the expression yields a Boolean false value for the
first record which begins a range. That is to say, when the range is
inactive, and a record is scanned for which
.meta from
is true, the range activates, but the range expression yields
.codn nil .
This is true regardless of whether the
.meta to
expression yields true for that record. If there are additional records
in the range, the expression yields a true value for those records.
.meIP (rng- < from << to )
This type of range is active under the same conditions as the
.code rng
type. However, the range expression yields
.code nil
for the record for which
.code to
yields true which terminates the range. This occurs even if that is
the same record which activated the range by triggering the
.meta from
condition. Note that if a range terminates abruptly due to no more records
being available, the range expression still yields true for the last record.
.meIP (-rng- < from << to )
This type of range is active under the same conditions as the
.code rng
type. However, the range expression yields
.code nil
for the first record which activates the range, and for the last
record which deactivates the range by activating the
.code to
condition. If the range is active over fewer than three records, then
the expression never yields true for that range. If the range terminates
abruptly due to no more records being available, and if the last record
processed isn't the one which activated the range due to triggering the
.code from
condition, the expression yields true for that record.
.meIP (--rng < from << to )
This type of range is active under the same conditions as
.codn rng .
However, the range expression yields
.code nil
for the entire leading sequence of consecutive records for which
.meta from
is true. If
.meta from
is true of the
.meta to
record which terminates the range,
.code nil
is returned for that record also.
.meIP (--rng- < from << to )
This type of range is active under the same conditions as
.codn rng .
However, the range expression yields
.code nil
for the entire leading sequence of consecutive records for which
.meta from
is true, and also yields nil for the last record which triggers the
.meta to
condition.
.meIP (rng+ < from << to )
This range is active under different conditions compared to
.codn rng .
Though it becomes active in the same way, when the
.meta from
expression yields true, the deactivation logic is different.
The range is deactivated when a record for which
.meta to
is true is followed by a record for which
.meta to
is not true. That record is excluded from the range; if the
.meta from
expression happens to be true for that record, a new range begins
at that record. Thus, effectively, the range is terminated not
by single record which triggers
.meta to
but by a sequence of one or more such consecutive records.
.meIP (-rng+ < from << to )
This range is active under the same conditions as
.codn rng+ .
However, the range expression yields
.code nil
for the first record in the range. If the range contains only one record, then
it returns
.code nil
for that record.
.meIP (--rng+ < from << to )
This range is active under the same conditions as
.codn rng+ .
However, the range expression yields
.code nil
for the entire leading sequence of consecutive records for which
.meta from
is true. This is the case even for those for which the
.meta to
expression is true.
.RE
.coNP Macro @ ff
.synb
.mets (ff < opip-arg *)
.syne
.desc
The awk macro
.code ff
(filter fields)
provides a shorthand for filtering the field list
.code f
trough a pipeline of chained functions expressed using
.code opip
argument syntax.
The following equivalence holds, except that
.code f
refers to the awk variable even if the
.code mf
invocation occurs in code which establishes
a binding which shadows
.codn f .
.verb
(ff a b c ...) <--> (set f [(opip a b c ...) f])
.brev
.TP* Example:
.verb
;; convert all fields from string to floating-point
(ff (mapcar flo-str))
.brev
.coNP Macro @ mf
.synb
.mets (mf < opip-arg *)
.syne
.desc
The awk macro
.code mf
(map fields)
provides a shorthand for mapping each field
individually trough a pipeline of chained functions expressed using
.code opip
argument syntax.
The following equivalence holds, except that
.code f
refers to the awk variable even if the
.code mf
invocation occurs in code which establishes
a binding which shadows
.codn f .
.verb
(mf a b c ...) <--> (set f (mapcar (opip a b c ...) f))
.brev
.TP* Example:
.verb
;; convert all fields from string to floating-point
(mf flo-str)
.brev
.coNP Macro @ fconv
.synb
.mets (fconv >> { clause | : | - }*)
.syne
.desc
The awk macro
.code fconv
provides a succinct way to request conversions of the textual fields.
Conversions are expressed by clauses which correspond with fields.
Each
.meta clause
is an expression which must evaluate to a function. The clause is evaluated
in the same manner as the argument a
.code dwim
operator, using Lisp-1-style name lookup. Thus, functions may be
specified simply by using their name as a
.metn clause .
Furthermore, several local functions exist in the scope of each
.metn clause ,
providing a short-hand notation. These are described below.
Conversion proceeds by applying the function produced by
a clause to the field to which that clause corresponds, positionally.
The return value of the function applied to the field replaces
the field.
When a clause is specified as the symbol
.code -
(minus)
it has a special meaning: this minus clause occupies a field
position and corresponds to a field, but performs no conversion
on its field.
The
.code :
(colon)
symbol isn't a clause and does not correspond to a field position.
Rather, it acts as a separator among clauses. It need not appear at
all. If it appears, it may appear at most twice. Thus, the
clauses may be separated into up to three sequences.
If the colon does not appear, then all the clauses are
.IR "prefix clauses" .
Prefix clauses line up with fields from left to right. If there are fewer
fields than prefix clauses, the values of the excess clauses are evaluated, but
ignored.
.IR "Vice versa" ,
if there are fewer prefix clauses than fields, then the excess
fields are not subject to conversions.
If the colon appears once, then the clauses before the colon, if any, are
prefix clauses, as described in the previous paragraph. Clauses after the
colon, if any, are
.IR "interior clauses" .
Interior clauses apply to any fields which are left unconverted by the prefix
clauses. All interior clauses are evaluated. If there are fewer fields than
interior clauses, then the values of the excess interior clauses are ignored.
If there are more fields than clauses, then the clause values are cycled:
re-used from the beginning against the excess fields, enough times to convert
all the fields.
If the colon appears twice, then the clauses before the first colon, if any,
are prefix clauses, the clauses between the two clause are interior clauses,
and those after the second colon are
.IR "suffix clauses" .
The presence of suffix clauses change the behavior relative to the one-colon
case as follows. After the conversions are performed according to the prefix
clauses, the remaining fields are counted. If there are are only as many
fields as there are suffix clauses, or fewer, then the interior clauses are
evaluated, but ignored. The remaining fields are processed against the suffix
clauses. If after processing the prefix clauses there are more fields
remaining than suffix clauses, then a number of rightmost fields equal to the
number of suffix clauses is reserved for those clauses. The interior fields
are applied only to the unreserved middle fields which precede these reserved
rightmost fields, using the same repeating behavior as in the one-colon case.
Finally, the previously reserved rightmost fields are processed using
the suffix clauses.
The following special convenience functions are in scope of the clauses,
effectively providing a short-hand for commonly-needed conversions:
.RS
.coIP i
Provides conversion to integer. It is identical to the
.code toint
function.
.coIP o
Converts a string value holding an octal representation
to the integer which it denotes. The expression
.code "(o str)"
is equivalent to
.codn "(toint str 8)" .
.coIP x
Converts a string value holding a hexadecimal representation
to the integer which it denotes. The expression
.code "(x str)"
is equivalent to
.codn "(toint str 16)" .
.coIP b
Converts a string value holding a binary (base two) representation
to the integer which it denotes. The expression
.code "(b str)"
is equivalent to
.codn "(toint str 2)" .
.coIP c
Converts a string value holding a C-language-style representation
to the integer which it denotes, meaning that the
.code 0x
prefix denotes a hexadecimal value, a leading zero octal, otherwise
decimal. These prefixes follow the
.code +
or
.code -
sign, if present.
The expression
.code "(c str)"
is equivalent to
.codn "(toint str #\ec)" .
.coIP r
Converts a string holding a floating-point representation to
the floating-point value which it denotes. The expression
.code "(r str)"
is equivalent to
.codn "(tofloat str)" .
.ccIP @, iz @, oz @, xz @, bz @ cz and @ rz
Conversion similar to
.codn i ,
.codn o ,
.codn x ,
.codn b ,
.code c
and
.codn r ,
but using
.code tointz
and
.codn tofloatz .
Thus fields which are non-numeric strings or the object
.code nil
get converted to 0, or 0.0 in the case of
.codn rz .
.RE
.IP
Because
.code fconv
macro destructively operates on the elements of the field list
.codn f ,
it has the same effect as an assignment to the fields:
the value of
.code rec
is updated.
The return value of
.code fconv
is
.codn f .
.TP* Examples:
.verb
;; convert up to first three fields to integer:
(awk ((fconv i i i)))
;; convert all fields to floating-point
(awk ((fconv : r :)))
;; convert first and second fields to integer
;; from hexadecimal;
;; convert last field to integer from octal;
;; process pairs of fields in between
;; these by leaving the first element of
;; each pair unconverted and converting second
;; to floating-point;
(awk ((fconv x x : - r : o)))
;; convert all fields, except the first,
;; from integer, turning empty strings
;; and non-integer junk as zero;
;; leave first field unconverted:
(awk ((fconv - : iz)))
.brev
.coNP Macros @, -> @, ->> @, <- @ !> and @ <!
.synb
.mets (-> < path << form *)
.mets (->> < path << form *)
.mets (<- < path << form *)
.mets (!> < command << form *)
.mets (<! < command << form *)
.syne
.desc
These awk macros provide convenient redirection of output and input to and from
files and commands.
When at least one
.meta form
argument is present, the functions
.codn -> ,
.code ->>
and
.code !>
evaluate each
.meta form
in a dynamic environment in which the
.code *stdout*
variable is bound to a file output stream, for the first two
functions, or output command pipe in the case of the last one.
Similarly, when at least
.meta form
argument is present, the remaining functions
.code <-
and
.code <!
evaluate each
.meta form
in a dynamic environment in which
.code *stdin*
is bound to to a file input stream or input command pipe, respectively.
The
.meta path
and
.meta command
arguments are treated as forms, and evaluated.
They should evaluate to strings.
The first evaluation of one of these macros for a given
.meta path
or
.meta command
being used in a particular direction (input or output) and type (file or
command) creates a stream. That stream is then associated with the given
.meta path
or
.meta command
string, together with the direction and type. Upon a subsequent evaluation
of one of these macros for the same
.meta path
or
.meta command
string, direction and type, a new stream is not opened; rather, the
previously associated stream is used.
The
.code ->
macro indicates that the file named
.meta path
is to be opened for writing and overwritten, or created if it doesn't exist.
The
.code ->>
macro indicates that the file named by
.meta path
is to be opened in append mode, created if necessary.
The
.code <-
macro indicates that the file given by
.meta path
is to be opened for reading.
The
.code !>
macro indicates that
.meta command
is to be opened as an output command pipe. The
.code <!
macro indicates that
.meta command
is to be opened as an input command pipe.
If any of these macros is invoked without any
.meta form
arguments, then it yields the stream object associated with
.meta path
or
.meta command
argument, direction and type. If the association doesn't exist,
the stream is first created.
If
.meta form
arguments are present, then the value of the last one is yielded
as a value, except in the case when the last form yields the
.code :close
keyword symbol.
If the last
.meta form
yields the
.code :close
keyword symbol, the the association between the
.meta path
or
.metn command ,
direction and type and the stream is removed, and the stream
is closed. In this case, the result value of the macro isn't the
.code :close
symbol, but rather the return value of the
.meta close-stream
call that is implicitly applied to the stream.
Even if there is only one
.meta form
which yields
.codn :close ,
the stream is created, if it doesn't exist prior to the macro
invocation.
In each invocation of these macros, after every
.meta form
is evaluated, the stream is implicitly flushed, if it is an output stream.
The association between the
.meta pipe
or
.meta command
strings, direction and type is scoped to the inner-most enclosing
.code awk
macro. An inner
.code awk
macro cannot refer to the associations established in an outer
.code awk
macro. An outer
.code awk
macro can obtain an association's stream object and communicate
that stream to the nested macro where it can be used.
When the
.meta awk
surrounding macro terminates, all of the streams opened by these
redirection macros are closed, without breaking those associations.
If lexical closures are captured inside the macro, and then invoked after the
macro has terminated, and inside those closures the redirection macros are
used, those macro instances will with closed stream objects, and so
attempts to perform I/O will fail.
.coNP Examples of @ awk Macro Usage
The following examples are
.code awk
macro equivalents of the examples of the POSIX
.code awk
utility given in IEEE Std 1003.1, 2013 Edition.
.RS
.IP 1.
Print lines for which field 3 is greater than 5:
.verb
;; print lines with fields separated by ofs,
;; and [f 2] converted to integer:
(awk ((and [f 2] (fconv - - iz) (> [f 2] 5))))
;; print strictly original lines from orec
(awk ((and [f 2] (fconv - - iz) (> [f 2] 5))
(prn orec)))
.brev
.IP 2.
Print every tenth line:
.verb
(awk ((zerop (mod nr 10))))
.brev
.IP 3.
Print any line with a substring matching a regex:
.verb
(awk (#/(G|D)(2\ed[\ew]*)/))
.brev
Note the subtle flaw here: the
.code [\ew]*
portion of the regular expression contributes nothing
to what lines are matched. The following example
has a similar flaw.
.IP 4.
Print any line with a substring beginning with a
.code G
or
.code D
followed by a sequence of digits and characters:
.verb
(awk (#/(G|D)([\ed\ew]*)/))
.brev
.IP 5.
Print lines where the second field matches a regex,
while the fourth one doesn't:
.verb
(awk (:let (r #/xyz/))
((and [f 3] [r [f 1]] (not [r [f 3]]))))
.brev
.IP 6.
Print lines containing a backslash in the second field:
.verb
(awk ((find #\e\e [f 1])))
.brev
.IP 7.
Print lines containing a backslash using a regex constructed
from a string. Note that backslash escapes are interpreted
twice: once in the string literal, and once in the parsing
of the regex, requiring four backslashes to encode one:
.verb
(awk (:let (r (regex-compile "\e\e\e\e")))
((and [f 1] [r [f 1]])))
.brev
.IP 8.
Print penultimate and ultimate field in each record,
separating then by a colon:
.verb
;; original: {OFS=":";print $(NF-1), $NF}
;;
(awk (t (set ofs ":") (prn [f -2] [f -1])))
.brev
.IP
Note that the above behaves
more correctly than the original Awk example because in the
when there is only one field,
.code $(NF-1)
reduces to
.code $0
which refers to the entire record, not to the field.
This sort of bug is why the \*(TL
.code awk
does not imitate the design decision to make the record
the first numbered field.
.IP 9.
Output the line number and number of fields separated by colon,
by producing a single string first:
.verb
(awk (t (prn `@nr:@nf`)))
.brev
.IP 10.
Print lines longer than 72 characters:
.verb
(awk ((> (len rec) 72)))
.brev
.IP 11.
Print first two fields in reverse order, separated by
.codn ofs :
.verb
(awk (t (prn [f 1] [f 0])))
.brev
.IP 12.
Same as 11, but with field separation consisting of a
comma, or spaces and tabs, or both in sequence:
.verb
(awk (:set fs #/,[ \et]*|[ \et]+/)
(t (prn [f 1] [f 0])))
.brev
.IP 13.
Add the values in the first column, then print sum and
average:
.verb
;; original:
;; {s += $1}
;; END {print "sum is ", s, " average is", s/NR}
;;
(awk (:let (s 0) (n 0))
([f 0] (fconv r) (inc s [f 0]) (inc n))
(:end (prn `sum is @s average is @(/ s n)`)))
.brev
Note that the original is not robust against blank lines
in the input. Blank lines are treated as if they had a
first column field of zero, and are counted toward the
denominator in the calculation of the average.
.IP 14.
Print fields in reverse order, one per line:
.verb
(awk (t (tprint (reverse f))))
.brev
.IP 15.
Print all lines between occurrences of
.code start
and
.codn stop :
.verb
(awk ((rng #/start/ #/stop/)))
.brev
.IP 16.
Print lines whose first field is different from
the corresponding field in the previous line:
.verb
(awk (:let prev)
((nequal [f 0] prev) (prn) (set prev [f 0])))
.brev
.IP 17.
Simulate the
.code echo
utility:
.verb
(awk (:begin (prn `@{*args* " "}`)))
.brev
Note: if this is evaluated in the command line, for instance with the
.code -e
option, an explicit exit is required to prevent the arguments from being
processed by
\*(TX after
.code awk
completes:
.verb
(awk (:begin (prn `@{*args* " "}`) (exit 0)))
.brev
.IP 18.
Pint the components of the
.code PATH
environment variable, one per line:
.verb
;; Process variable as if it were a file:
(awk (:inputs (make-string-input-stream
(getenv "PATH")))
(:set fs ":")
(t (tprint f)))
;; Just get, split and print; awk macro is irrelevant
(awk (:begin (tprint (split-str (getenv "PATH") ":"))))
.brev
.IP 19.
Given a file called
.code input
which contains page headers of the format
.str "Page #"
and a \*(TL file called
.code prog.tl
which contains:
.verb
(awk (:let (n (toint n)))
(#/Page/ (set [f 1] (pinc n)))
(t))
.brev
the command line:
.verb
txr -Dn=5 prog.tl input
.brev
prints the file, filling in page numbers starting at 5.
.RE
.SS* Environment Variables and Command Line
Note that environment variable names, their values, and command line
arguments are all regarded as being externally encoded in UTF-8. \*(TX performs
the encoding and decoding automatically.
.coNP Special variables @, *args-full* @ *args-eff* and @ *args*
.desc
The
.code *args-full*
variable holds the original, complete list of arguments passed
from the operating system, including the program executable
name.
During command line option processing, \*(TX may transform the
argument list. The hash bang mechanism, and the
.code --args
and
.code --eargs
options can inject new command line arguments, as can code
which is executed during argument processing via the
.code -e
options and others.
The
.code *args-eff*
variable holds the list of
.I "effective arguments" ,
which is the argument list after these transformations are applied.
This variable is established and set to the same value as
.code *args-full*
prior to command line processing, but is not updated with its final
value until after command line processing.
The
.code *args*
variable holds a list of strings representing the remaining
arguments which follow any options processed by the \*(TX executable,
and the script name. This list is a suffix of
.codn *args-eff* .
Thus, the arguments before
.code *args*
can be calculated using the expression
.codn "(ldiff *args-eff* *args*)" .
The
.code *args*
variable is available to to \*(TL expressions invoked from the
command line via the
.codn -p ,
.code -e
and other such options. During these evaluations,
.code *args*
holds all the remaining options, after the invoking option and its
argument expression. In other words, code executed from the command line
has access to the remaining arguments which follow it.
Furthermore, this code may modify the value of
.codn *args* .
Such a modification is visible to the option processing code.
That is to say code executed from the command line can rewrite the remaining
list of arguments, and that list takes effect.
.coNP Function @ env
.synb
.mets (env)
.syne
.desc
The
.code env
function retrieves the list of environment variables. Each
variable is represented by a single entry in the list: a string which
contains an
.code =
(equal) character somewhere, separating the variable name
from its value.
See also: the
.code env-hash
function.
.coNP Function @ env-hash
.synb
.mets (env-hash)
.syne
.desc
The
.code env-hash
function constructs and returns an
.code :equal-based
hash. The hash is
populated with the environment variables, represented as key-value pairs.
.coNP Functions @, getenv @ setenv and @ unsetenv
.synb
.mets (getenv << name )
.mets (setenv < name < value <> [ overwrite-p ])
.mets (unsetenv << name )
.syne
.desc
These functions provide access to, as well as manipulation of, environment
variables. Of these three,
.code setenv
and
.code unsetenv
might not be available on some platforms, or
.code unsetenv
might be be present in a simulated form which sets the variable
.meta name
to the empty string rather than deleting it.
The
.code getenv
function searches the environment for the environment variable whose name
is
.metn name .
If the variable is found, its value is returned. Otherwise
.code nil
is returned.
The
.code setenv
function creates or modifies the environment variable indicated by
.metn name .
The
.meta value
string argument specifies the new value for the variable.
If
.meta value
is
.codn nil ,
then
.code setenv
behaves like
.codn unsetenv ,
except that it observes the
.meta overwrite-p
argument. That is to say, the meaning of a null
.meta value
is that the variable is to be removed.
If the
.meta overwrite-p
argument is specified, and is true,
then the variable is overwritten if it already exists.
If the argument is false, then the variable is not modified if it
already exists. If the argument is not specified, it defaults
to the value
.metn t ,
effectively giving rise to a two-argument form of
.code setenv
which creates or overwrites environment variables.
A variable removal is deemed to be an overwrite.
Thus if both
.meta value
and
.meta overwrite-p
are
.codn nil ,
then
.code setenv
does nothing.
The
.code setenv
function unconditionally returns
.meta value
regardless of whether or not it overwrites or removes an existing variable.
The
.code unsetenv
function removes the environment variable
specified by
.metn name ,
if it exists. On some platforms, it instead sets the environment variable
to the empty string.
Note: supporting removal semantics in
.code setenv
allows for the following simple save/modify/restore pattern:
.verb
(let* ((old-val (getenv "SOME-VAR")))
(unwind-protect
(progn (setenv "SOME-VAR" new-val)
...)
(setenv "SOME-VAR" old-val)))
.brev
This works in the case when
.code SOME-VAR
exists, as well as in the case that it doesn't exist.
In both cases, its previous value or, respectively, non-existence,
is restored by the
.code unwind-protect
cleanup form.
.SS* Command Line Option Processing
\*(TL provides a support for recognizing, extracting and validating
the POSIX-style options from a list of command-line arguments.
The supported options can be defined as a list of option descriptor
objects each of which is constructed by a call to the
.code opt
function. Each option can have a long name, a short name,
a type, and a description.
The
.code getopts
function takes a list of option descriptors, and a list of arguments,
producing a parse, or else throwing an exception of type
.code opt-error
if an error is detected. The returned object, an instance of struct type
.codn opts ,
can then be queried for specific option values, or for the remaining non-option
arguments.
The
.code opthelp
function takes a list of option descriptors and an output stream,
and generates help text on that stream. A program supporting a
.code --help
option can use this to generate that portion of its help text which
describes the available options, as well as the conventions that they use.
The
.code define-option-struct
macro provides a more streamlined, declarative mechanism built on the
same facility. The options are declared in a more condensed way, and
using symbols instead of strings. Furthermore, the parsed option values
become slot values of an object, named by the same symbols.
.NP* Command Line Option Conventions
A command line option can have a short or long name. A short name is always
one-character long, and treated specially in the command line syntax. Long
options have names two or more characters long. An option can have both a long
and short name. Options may not begin with the
.code -
(ASCII dash) character. A long option may not contain the
.code =
character.
Short options are invoked by specifying an argument with a single leading
.code -
followed by the option character. Multiple short options which take
no argument can be "clumped": combined into a single argument consisting of
a single
.code -
followed by multiple short option characters.
An option can take an argument, in which case the argument is required.
An option which takes no argument is Boolean, and a Boolean option
never takes an argument: "takes no argument" and "Boolean" effectively
mean the same thing.
Long options are invoked as an argument which begins with a
.code --
(double dash)
immediately followed by the name. When a long option takes an argument,
it is mandatory. It must be specified in the same argument, separated
from the name by the
.code =
character. If that is omitted, then the next command line argument
is taken as the argument. That argument is removed, and not recognized as
an option, even if it looks like one.
A Boolean long option can be explicitly specified as false using the
.code --no-
prefix rather than the
.code --
prefix.
Short options may be invoked using long name syntax; if
.code a
is a short option, then it may be referenced on the command line as
.code --a
and treated as a long option in all other ways, including the use
of
.code --no-
to explicitly specify false for a Boolean option.
If a short option takes an argument, it may not clump with other
short option. The following command line argument is taken as the
options argument. That argument is removed and is not recognized as
an option even if it looks like one.
If the command line argument
.code --
occurs in the command line where an option would otherwise be recognized,
it signifies the end of the options. The subsequent arguments are the
non-option arguments, even if they resemble options.
.NP* Command Line Processing Examples
The following example illustrates a complete \*(TL program which
parses command line options:
.verb
(defvarl options
(list (opt "v" "verbose" :dec
"Verbosity level. Higher values produce more chatter.")
(opt nil "help" :bool
"List this help text.")
(opt "x" nil :hex
"The X factor: a number with a mysterious\e \e
interpretation, affecting the program\e \e
behavior in strange ways.")
(opt "z" nil) ;; undocumented option
(opt nil "cee" :cint
"C style integer.")
(opt "g" "gravity" :float
"Gravitational constant. This gives\e \e
the gravitational field\e \e
strength at the Earth's surface.")
(opt "l" "lit" :str
"A character string given in TXR Lisp notation.")
(opt "c" nil 'upcase-str
"Custom treatment: ARG is converted to upper case.")
(opt "b" "bool" :bool
"A flag you can flip true.")))
(defvarl prog-name *load-path*)
(let ((o (getopts options *args*)))
(when [o "help"]
(put-line "Usage:\en")
(put-line ` @{prog-name} [options] arg*`)
(opthelp options)
(exit 0))
(put-line `args after opts are: @{o.out-args ", "}`))
.brev
The next example is equivalent to the previous, but using the
.code define-option-struct
macro:
.verb
(define-option-struct prog-opts nil
(v verbose :dec
"Verbosity level. Higher values produce more chatter.")
(nil help :bool
"List this help text.")
(x nil :hex
"The X factor: a number with a mysterious\e \e
interpretation, affecting the program\e \e
behavior in strange ways.")
;; undocumented Boolean:
(z nil)
(nil cee :cint
"C style integer.")
(g gravity :float
"Gravitational constant. This gives\e \e
the gravitational field\e \e
strength at the Earth's surface.")
(l lit :str
"A character string given in TXR Lisp notation.")
(c nil upcase-str
"Custom treatment: ARG is converted to upper case.")
(b bool :bool
"A flag you can flip true."))
(defvarl prog-name *load-path*)
(let ((o (new prog-opts)))
o.(getopts *args*)
(when o.help
(put-line "Usage:\en")
(put-line ` @{prog-name} [options] arg*`)
o.(opthelp)
(exit -1))
(put-line `args after opts are: @{o.out-args ", "}`))
.brev
.coNP Structure @ opt-desc
.synb
.mets (defstruct opt-desc
.mets \ \ short long helptext type
.mets \ \ ... < unspecified << slots )
.syne
.desc
The
.code opt-desc
structure describes a single command line option.
The
.code short
and
.code long
slots are either
.code nil
or else hold strings.
The
.code short
slot gives the option's short name: a one-character-long
string which may not be the ASCII dash character
.codn - .
The
.code long
slot gives the option's long name: a string two or more
characters long which doesn't begin with a dash.
An option must have at least one of these names.
The
.code helptext
slot provides a descriptive string. This string may be long. The
.code opthelp
function displays this text, formatting into multiple lines as necessary.
If
.code helptext
is
.codn nil ,
the option is considered undocumented.
The
.code type
slot may be a symbol naming a global function which takes one argument,
or it may be such a function object. Otherwise it must be one of the
following keyword symbols:
.RS
.coIP :bool
This indicates that the type of the option is Boolean. Such
an option doesn't take any argument. Its value is
.code t
or
.codn nil .
.coIP :dec
This indicates that the option requires an argument, which is a
decimal integer with an optional positive or negative sign.
This argument is converted to an integer object.
.coIP :hex
This type indicates that the option requires an argument consisting
of a hexadecimal integer with an optional positive or negative sign.
This is converted to an integer object.
.coIP :oct
This type indicates that the option requires an argument consisting
of a octal integer with an optional positive or negative sign.
This is converted to an integer object.
.coIP :cint
This type indicates that the option requires an integer argument
whose format conforms to one of three C language conventions in most respects,
other than that this integer may have an arbitrary range.
All forms may carry an optional positive or negative leading sign
at the very beginning.
The first convention consists of decimal digits, which must not have
a superfluous leading zero. The second convention consists of octal
digits which are introduced by an extra leading zero.
The third convention consists of hexadecimal digits introduced by the
.code 0x
prefix.
.coIP :float
This type indicates a decimal floating-point argument, which is converted to
a floating-point number. Its basic form is: an optional leading plus or
minus sign, followed by a sequence of one or more digits which may contain
a single decimal point anywhere, including the very beginning of the
sequence or at the end, optionally followed by the letter
.code e
or
.code E
followed by a decimal integer which may have a leading positive or negative
sign, and include leading zeros.
.coIP :text
This type indicates a simple textual argument. The argument is taken as
verbatim UTF-8 text, converted to a string without interpreting
the characters in any special way.
.coIP :str
This type indicates that the argument consists of the interior notation of
a TXR Lisp character string. It is processed by adding a double quote
at the beginning or end, and parsed as a string literal. This parsing must
successfully yield a string object, otherwise the argument is ill-formed.
.meIP (list << type )
If the type is specified as a compound form headed by the
.code list
symbol, it indicates that the command line option's argument is a list
of elements. The argument appears on the command line as a single string
contained within one argument. It may contain commas, and is split into pieces
using the comma character as a separator. The pieces are then individually
treated as of type
.meta type
and converted accordingly. The option's argument is then a list object
whose elements are the converted pieces. For instance
.code "(list :dec)"
will convert a list of comma-separated decimal integer tokens into
a list of integer objects. The
.code list
option type does not nest.
.meIP (cumul << type )
If the type is specified as a compound form headed by the
.code cumul
symbol, it indicates that if the option is specified multiple times,
the values coming from the multiple occurrences are accumulated into a list.
The
.meta type
argument may be a
.code list
type, exemplified by
.code "(cumul (list :dec))"
or a basic type, such as
.codn "(cumul :str)" .
However, this type specifier does not nest. Combinations such as
.code "(cumul (cumul ...)"
and
.code "(list (cumul ...))"
are invalid.
The option values are accumulated in reverse order, so that the rightmost
repetition becomes the first item in the list. For instance, if the
.code -x
option has type
.codn "(cumul :dec)" ,
and the arguments presented for parsing are
.codn "(\(dq-x\(dq \(dq1\(dq \(dq-x\(dq \(dq2\(dq)" ,
then the option's value will be
.codn "(2 1)" .
If a
.codn list -typed
option is cumulative, then the option value will be a list of lists.
Each repetition of the option produces a list, and the lists are accumulated.
.RE
.IP
If
.code type
is a function, then the option requires an argument. The argument string
is passed to the function, and the value is whatever the function returns.
The
.code opt-desc
structure may have additional slots which are not specified.
The
.code opt
convenience function is provided for constructing
.code opt-desc
objects.
.coNP Function @ opt
.synb
.mets (opt < short < long >> [ type <> [ helptext ]])
.syne
.desc
The
.code opt
function provides a slightly condensed syntax for constructing
an object of type
.codn opt-desc .
The required arguments
.meta short
and
.meta long
are strings, corresponding to
.code opt-desc
slots of the same name.
The optional parameter
.meta type
corresponds to the same-named slot and defaults to
.codn :bool .
The optional parameter
.meta helptext
corresponds to the same-named slot, and defaults to
.code nil
(no help text provided for the option).
The
.code opt
function follows this equivalence:
.verb
(opt a b c d) <--> (new opt-desc short a long b
type c helptext d)
.brev
.coNP Structure @ opts
.synb
.mets (defstruct opts nil
.mets \ \ in-args out-args
.mets \ \ ... < unspecified << slots )
.syne
.desc
The
.code opts
structure represents a parsed command line, containing decoded
information obtained from the options, and an indication where
the non-option arguments start.
The
.code opts
structure supports direct indexing for option retrieval.
That is the only documented interface for accessing the parsed
options; the implementation of the information set describing
the parsed options is unspecified.
The
.code in-args
slot holds the original argument list.
The
.code out-args
slot holds the tail of the argument list consisting of the non-option
arguments.
The mechanism by means of which
.code out-args
is calculated, and by means of which the information about the
options is populated, is unspecified. The only interface to that
mechanism is the
.code getopts
function.
The
.code opts
object supports indexing, including indexed assignment.
If
.code o
is an instance of
.code opts
returned by
.codn getopts ,
then the expression
.code "[o \(dqv\(dq]"
tests whether the option
.str v
is available in
.codn o ;
that is, whether it has been specified in the command line.
If so, then its associated value is returned, otherwise
.code nil
is returned. This
.code nil
is ambiguous: for a Boolean option it indicates that either
the option was not specified, or that it was explicitly
specified as false. For a Boolean option that was specified
(positively), the value
.code t
is returned.
The expression
.code "[o \(dqv\(dq dfl]"
yields the value of option
.str v
if that option has been specified. If the option hasn't
been specified, then the expression yields the value
.codn dfl .
Assigning to
.code "[o \(dqv\(dq]"
is possible. This replaces the value associated with option
.strn v .
The assignment is erroneous if no such option was parsed
from the command line, even if it is a valid option.
If an option is defined with both a long form and a short form,
and either form of that option occurs in the command line being
processed, then the option appears under both names in the index.
For instance if option
.str --verbose
has the short form
.strn -v ,
and either option occurs, then both the keys
.str "v"
and
.str "verbose"
will exist in the
.code opts
structure returned by
.codn getopts .
Note that this behavior is different from that of the structure produced
.code define-option-struct
macro. Under that approach, if an option is defined with a long and short name,
the structure will have only a single slot for that option, named after the
long name.
.coNP Function @ getopts
.synb
.mets (getopts < option-desc-list << arg-list )
.syne
.desc
The
.code getopts
function takes a list of
.code opt-desc
structures and a list of strings
.meta arg-list
representing command line arguments.
The
.meta arg-list
is parsed. If the parse is unsuccessful, an exception of type
.code opt-error
is thrown, derived from
.codn error .
If there are problems in
.code option-desc-list
itself, then an exception of type
.code error
is thrown.
If the parse is successful,
.code getopts
returns an instance of the
.code opts
structure describing the parsed opts, and listing the non-option
arguments.
.coNP Function @ opthelp
.synb
.mets (opthelp < opt-desc-list <> [ stream ])
.syne
.desc
The
.code opthelp
function processes the list of
.code opt-desc
structures
.meta opt-desc-list
and compiles a customized body of help text describing all of the
options, as well as general description of the command line option
conventions to guide the user in in the correct use of command
line options.
The text is formatted to fit within 79 columns, and begins and ends with a
blank line. Its format consists of headings which begin in the first column,
and paragraphs and tables which feature a two space left margin.
A blank line follows each section heading. The heading begins with a capital
letter. Its remaining words are uncapitalized, and it ends with a colon.
The text is sent to
.metn stream ,
if specified. This argument defaults to
.codn *stdout* .
If there are problems in
.code option-desc-list
itself, then an exception of type
.code error
is thrown.
.coNP Macro @ define-option-struct
.synb
.mets (define-option-struct < name < super << opt-specifier *)
.syne
.desc
The
.code define-option-struct
macro defines a struct type, instances of which provide command line option
parsing.
The
.meta name
and
.meta super
parameters are subject to the same requirements and have the same
semantics as the same-named parameters of
.codn defstruct .
The
.meta opt-specifier
arguments are lists of between two and four elements:
.meti >> ( short-symbol < long-symbol >> [ type <> [ help-text ]]).
The
.meta short-symbol
and
.meta long-symbol
must be symbols suitable for use as slot names. One of them may be
specified as
.code nil
indicating that the option has no long form, or no short form.
If a
.meta opt-specifier
specifies both a
.meta short-symbol
and a
.meta long-symbol
then only a slot named by
.meta long-symbol
shall exist in the structure.
The struct type defined by
.code define-option-struct
has two methods:
.code getopts
and
.codn opthelp .
It also has two slots:
.code in-args
and
.codn out-args ,
which function in a manner identical to their same-named
counterparts in the
.code opts
class.
The
.code getopts
method takes a single argument: the argument list to be processed.
When the argument list is successfully processed.
The
.code opthelp
method takes an optional stream argument.
Note: to encode the option names
.str "t"
or
.strn "nil" ,
or option names which clash with the slot names
.code in-args
and
.code out-args
or the methods
.code getopts
or
.codn opthelp ,
symbols with these names from a package other than
.code usr
must be used.
.SS* System Programming
.coNP Accessor @ errno
.synb
.mets (errno <> [ new-errno ])
.mets (set (errno) << new-value )
.syne
.desc
The
.code errno
function retrieves the current value of the C library error variable
.codn errno .
If the argument
.meta new-errno
is present and is not
.codn nil ,
then it
specifies a value which is stored into
.codn errno .
The value returned is the prior value.
The place form of
.code errno
does not take an argument.
.coNP Function @ strerror
.synb
.mets (strerror << errno-value )
.syne
.desc
The
.code strerror
returns a character string which provides the host platform's description
of the integer
.meta errno-value
obtained from the
.code errno
function.
If the host platform fails to provide a description, the function returns
.codn nil .
.coNP Function @ exit
.synb
.mets (exit <> [ status ])
.syne
.desc
The
.code exit
function terminates the entire process (running \*(TX image), specifying
the termination status to the operating system. Values of the optional
.meta status
parameter may be
.codn nil ,
.codn t ,
or an integer value. The value
.code nil
indicates an unsuccessful termination status, whereas
.code t
indicates a successful termination status.
An absence of the
.meta status
argument also specifies a successful termination status.
If
.meta status
is an integer value, it specifies a successful termination if it is
.code 0
otherwise the interpretation of the value is platform specific.
.coNP Variables @, e2big @, eacces @, eaddrinuse @, eaddrnotavail @, eafnosupport @, eagain @, ealready @, ebadf @, ebadmsg @, ebusy @, ecanceled @, echild @, econnaborted @, econnrefused @, econnreset @, edeadlk @, edestaddrreq @, edom @, edquot @, eexist @, efault @, efbig @, ehostunreach @, eidrm @, eilseq @, einprogress @, eintr @, einval @, eio @, eisconn @, eisdir @, eloop @, emfile @, emlink @, emsgsize @, emultihop @, enametoolong @, enetdown @, enetreset @, enetunreach @, enfile @, enobufs @, enodata @, enodev @, enoent @, enoexec @, enolck @, enolink @, enomem @, enomsg @, enoprotoopt @, enospc @, enosr @, enostr @, enosys @, enotconn @, enotdir @, enotempty @, enotrecoverable @, enotsock @, enotsup @, enotty @, enxio @, eopnotsupp @, eoverflow @, eownerdead @, eperm @, epipe @, eproto @, eprotonosupport @, eprototype @, erange @, erofs @, espipe @, esrch @, estale @, etime @, etimedout @, etxtbsy @ ewouldblock and @ exdev
.desc
These variables correspond to the POSIX
.cod2 \(dq errno
constants\(dq, namely
.codn E2BIG ,
.codn EACCES ,
.code EADDRINUSE
and so forth.
Variables corresponding to all of the
.code "<errno.h>"
constants from the Issue 6 2004 edition of POSIX are included.
The variables
.code eownerdead
and
.code enotrecoverable
from Issue 7 2018 are subject to the availability of the corresponding constants
in the host platform.
.coNP Function @ abort
.synb
.mets (abort)
.syne
.desc
The
.code abort
function terminates the entire process (running \*(TX image), specifying
an abnormal termination status to the process.
Note:
.code abort
calls the C library function
.code abort
which works by raising the
.code SIG_ABRT
signal, known in \*(TX as the
.code sig-abrt
variable. Abnormal termination of the process is this signal's
default action.
.coNP Functions @ at-exit-call and @ at-exit-do-not-call
.synb
.mets (at-exit-call << function )
.mets (at-exit-do-not-call << function )
.syne
.desc
The
.code at-exit-call
function registers
.meta function
to be called when the process terminates normally.
Multiple functions can be registered, and the same function
can be registered more than once. The registered
functions are called in reverse order of their
registrations.
The
.code at-exit-do-not-call
function removes all previous
.code at-exit-call
registrations of
.metn function .
The
.code at-exit-call
function returns
.metn function .
The
.code at-exit-do-not-call
function returns
.code t
if it removed anything,
.code nil
if no registrations of
.meta function
were found.
.coNP Function @ usleep
.synb
.mets (usleep << usec )
.syne
.desc
The
.code usleep
function suspends the execution of the program for at least
.meta usec
microseconds.
The return value is
.code t
if the sleep was successfully executed. A
.code nil
value indicates premature wakeup or complete failure.
Note: the actual sleep resolution is not guaranteed, and depends on granularity
of the system timer. Actual sleep times may be rounded up to the nearest 10
millisecond multiple on a system where timed suspensions are triggered by a 100
Hz tick.
.coNP Functions @ mkdir and @ ensure-dir
.synb
.mets (mkdir < path <> [ mode ])
.mets (ensure-dir < path <> [ mode ])
.syne
.desc
.code mkdir
tries to create the directory named
.meta path
using the POSIX
.code mkdir
function.
An exception of type
.code file-error
is thrown if the function fails. Returns
.code t
on success.
The
.meta mode
argument specifies the request numeric permissions
for the newly created directory. If omitted, the requested permissions are
.code #o777
(511): readable and writable to everyone. The requested permissions
are subject to the system
.codn umask .
The function
.code ensure-dir
also creates a directory named
.metn path .
Unlike
.codn mkdir ,
it also attempt to create all the necessary parent directories,
and does not throw an error if
.meta path
refers to an existing object, if that object is a directory or a symbolic
link to a directory. Rather, in that case it returns
.code nil
instead of
.codn t .
.coNP Function @ chdir
.synb
.mets (chdir << path )
.syne
.desc
.code chdir
changes the current working directory to
.metn path ,
and returns
.metn t ,
or else throws an exception of type
.codn file-error .
.coNP Function @ pwd
.synb
.mets (pwd)
.syne
.desc
The
.code pwd
function retrieves the current working directory.
If the underlying
.code getcwd
C library function fails with an
.code errno
other than
.codn ERANGE ,
an exception will be thrown.
.coNP Function @ rmdir
.synb
.mets (rmdir << path )
.syne
.desc
The
.code rmdir
function removes the directory named by
.codn path .
If successful, it returns
.metn t ,
otherwise it throws an exception of type
.codn file-error .
Note:
.code rmdir
calls the same-named POSIX function, which requires
.code path
to be the name of an empty directory.
.coNP Function @ remove-path
.synb
.mets (remove-path < path <> [ throw-on-error-p ])
.syne
.desc
The
.code remove-path
function tries to remove the filesystem object named
by
.metn path ,
which may be a file, directory or something else.
If successful, it returns
.codn t .
The optional Boolean parameter
.metn throw-on-error-p ,
which defaults to
.codn nil .
A failure to remove the object results in an exception of type
.code file-error
being thrown, unless the failure reason is that the object indicated by
.meta path
doesn't exist. In this non-existence case, the behavior is controlled by the
.meta throw-on-error
argument. If that argument is true, the exception is thrown. Otherwise,
the function returns normally, producing the value
.code nil
to indicate that it didn't perform a removal.
.coNP Function @ rename-path
.synb
.mets (rename-path < from-path << to-path )
.syne
.desc
The
.code rename-path
function tries to rename filesystem path
.metn from-path ,
which may refer to a file, directory or something else, to the path
.metn to-path .
If successful, it returns
.codn t .
A failure results in an exception of type
.codn file-error .
.coNP Functions @ sh and @ run
.synb
.mets (sh << system-command )
.mets (run < program <> [ argument-list ])
.syne
.desc
The
.code sh
function executes
.meta system-command
using the system command interpreter.
The run function spawns a
.metn program ,
searching for it using the
system PATH. Using either method, the executed process receives environment
variables from the parent.
\*(TX blocks until the process finishes executing. If the program terminates
normally, then its integer exit status is returned. The value zero indicates
successful termination.
The return value
.code nil
indicates an abnormal termination, or the inability
to run the process at all.
In the case of the
.code run
function, if the child process is created successfully
but the program cannot be executed, then the exit status will be an
.code errno
value from the failed
.code exec
attempt.
The standard input, output and error file descriptors of an executed
command are obtained from the streams stored in the
.codn *stdin* ,
.code *stdout*
and
.code *stderr*
special variables, respectively. For a detailed description of the
behavior and restrictions, see the
.code open-command
function, whose description of this mechanism applies to the
.code run
and
.code sh
function also.
Note: as of \*(TX 120, the
.code sh
function is implemented using
.code run
and not by means of the
.code system
C library function, as previously. The
.code run
function is used to invoke the system interpreter by name. On Unix-like
systems, the string
.code /bin/sh
is assumed to denote the system interpreter, which is expected to
support a pair of arguments
.mono
.meti -c < command
.onom
to specify the command to be executed. On MS Windows, the interpreter
is assumed to be the relative path name
.code cmd.exe
and expected to support
.mono
.meti /C < command
.onom
as a way of specifying a command to execute.
.SS* Unix Filesystem Manipulation
.coNP Structure @ stat
.synb
.mets (defstruct stat nil
.mets \ \ dev ino mod nlink uid gid
.mets \ \ rdev size blksize blocks
.mets \ \ atime atime-nsec mtime mtime-nsec
.mets \ \ ctime ctime-nsec path)
.syne
.desc
The
.code stat
structure defines the type of object which is returned
by the
.code stat
and
.code lstat
functions. Except for
.codn path ,
.codn atime-nsec ,
.code ctime-nsec
and
.codn mtime-nsec ,
the slots are the direct counterparts of the
members of POSIX C structure
.codn "struct stat" .
For instance the slot
.code dev
corresponds to
.codn st_dev .
The
.code path
slot is set by the functions
.code stat
and
.codn lstat .
Its value is
.code nil
when the path is not available.
The
.codn atime-nsec ,
.code ctime-nsec
and
.code mtime-nsec
fields give the fractional parts of
.codn atime ,
.code ctime
and
.codn mtime ,
respectively. They are derived from the newer style information
in which the POSIX function provides the timestamps in
.code "struct timespec"
format. If that is not available from the platform, these
fields take on values of zero.
.coNP Functions @, stat @ lstat and @ fstat
.synb
.mets (stat >> { path | < stream | << fd } <> [ struct ])
.mets (lstat << path )
.mets (fstat >> { path | stream | << fd } <> [ struct ])
.syne
.desc
The
.code stat
function retrieves information about a filesystem object whose pathname
is given by the string argument
.metn path ,
or else about a system object associated with the open stream
.metn stream ,
or one associated with the integer file descriptor
.metn fd .
If a
.meta stream
is specified, that stream must be of a kind from which the
.code fileno
function can retrieve a file descriptor, otherwise an exception of type
.code file-error
is thrown.
If the object is not found or cannot be
accessed, an exception is thrown.
Otherwise, if the
.meta struct
argument is missing, information is retrieved and returned, in the form of a
new structure of type
.codn stat .
If the
.meta struct
argument is present, it must be either: an instance of the
.code struct
structure type, or of a type derived from that type by inheritance, or
else structure type which has all the same slots as the
.code struct
type. The retrieved information is stored into
.meta struct
and that object is returned rather than a new object.
If
.meta path
refers to a symbolic link, the
.code stat
function retrieves information about the target of the link, if it exists,
or else throws an exception of type
.codn file-error .
The
.code lstat
function behaves the same as
.code stat
on objects which are not symbolic links. For a symbolic link, it retrieves
information about the link itself, rather than its target.
The
.code path
slot of the returned structure
holds a copy of their
.meta path
argument value.
When information is retrieved using a
.meta stream
or
.meta fd
argument, this slot is
.codn nil .
The
.code fstat
function is an alias for
.codn stat .
Note: until \*(TX 231,
.code stat
and
.code fstat
were distinct functions:
.code stat
accepted only
.meta path
arguments, whereas
.code fstat
function accepted only
.meta stream
or
.meta fd
arguments.
.coNP Variables @, s-ifmt @, s-iflnk @, s-ifreg @, s-ifblk ... , @ s-ixoth
.desc
The following variables exist, having integer values. These are bitmasks
which can be applied against the value given by the
.code mode
slot of the
.code stat
structure returned by the function
.codn stat :
.codn s-ifmt ,
.codn s-ifsock ,
.codn s-iflnk ,
.codn s-ifreg ,
.codn s-ifblk ,
.codn s-ifdir ,
.codn s-ifchr ,
.codn s-ififo ,
.codn s-isuid ,
.codn s-isgid ,
.codn s-isvtx ,
.codn s-irwxu ,
.codn s-irusr ,
.codn s-iwusr ,
.codn s-ixusr ,
.codn s-irwxg ,
.codn s-irgrp ,
.codn s-iwgrp ,
.codn s-ixgrp ,
.codn s-irwxo ,
.codn s-iroth ,
.code s-iwoth
and
.codn s-ixoth .
These variables correspond to the C language constants from POSIX:
.codn S_IFMT ,
.codn S_IFLNK ,
.code S_IFREG
and so forth.
The
.code logtest
function can be used to test these against values of mode.
For example
.code "(logtest mode s-irgrp)"
tests for the group read permission.
.coNP Function @ umask
.synb
.mets (umask <> [ mask ])
.syne
.desc
The
.code umask
function provides access to the Unix C library function of the same name,
which controls which permissions are denied
when files are newly created.
If
.code umask
is called with no argument, it returns the current value of the mask.
If the
.meta mask
argument is present, it must be an integer specifying the new mask to be
installed. The previous mask is returned.
If
.meta mask
is absent, then
.code umask
returns the previous mask.
Note: the value of the
.meta mask
argument may be calculated as a bitwise or of the following constants:
.codn s-irwxu ,
.codn s-irusr ,
.codn s-iwusr ,
.codn s-ixusr ,
.codn s-irwxg ,
.codn s-irgrp ,
.codn s-iwgrp ,
.codn s-ixgrp ,
.codn s-irwxo ,
.codn s-iroth ,
.code s-iwoth
and
.codn s-ixoth ,
which correspond to the POSIX C constants
.codn S_IRWXU ,
.codn S_IRUSR ,
.codn S_IWUSR ,
.codn S_IXUSR ,
.codn S_IRWXG ,
.codn S_IRGRP ,
.codn S_IWGRP ,
.codn S_IXGRP ,
.codn S_IRWXO ,
.codn S_IROTH ,
.code S_IWOTH
and
.codn S_IXOTH .
Implementation note: since the
.code umask
C library function provides no way to retrieve the current mask without
overwriting with a new one, the \*(TX
.code umask
function, when given no argument, simulates the pure retrieval of the mask
by calling the C function with an argument of
.code #o777
to temporarily install the maximally safe mask. The value returned is then
reinstated as the mask by another call to
.codn umask ,
and that value is also returned.
.coNP Functions @, makedev @ minor and @ major
.synb
.mets (makedev < minor << major )
.mets (minor << dev )
.mets (major << dev )
.syne
.desc
The parameters
.metn minor ,
.meta major
and
.meta dev
are all integers. The
.code makedev
function constructs a combined device number from a minor and major pair (by
calling the Unix
.code makedev
function). This device number is suitable as an
argument to the
.code mknod
function (see below). Device numbers also appear as values of the
.code dev
slot of the
.code stat
structure.
The
.code minor
and
.code major
functions extract the minor and major device number
from a combined device number.
.coNP Function @ chmod
.synb
.mets (chmod < target << mode )
.syne
.desc
The
.code chmod
function changes the permissions of the filesystem object
specified by
.metn target .
It is implemented in terms of the POSIX functions
.code chmod
and
.codn fchmod .
If
.meta mode
is a character string representing a symbolic mode, then the function
also makes use of
.code stat
or
.code fstat
and
.codn umask .
The permissions are specified by
.metn mode ,
which must be an integer or a string.
An integer
.meta mode
is a bitwise combination of permission mode bits. The value is passed
directly to the POSIX
.code chmod
or
.code fchmod
function.
Note: to construct a mode value, applications may use
.code logior
to combine the values
of the variables like
.code s-irusr
or
.code s-ixoth
or take advantage of the well-known numeric structure of POSIX
permissions to express them octal in octal notation. For instance the mode
.code #o750
denotes that the owner has read, write and execute permissions,
the group owner has read and execute, others have no permission.
This value may also be calculated using
.codn "(logior s-irwxu s-irgrp s-ixgrp)" .
If the argument to
.meta mode
is a string, it is interpreted according to the symbolic syntax
of the POSIX
.code chmod
utility. For instance, a
.meta mode
value of
.str a+w,-s
means to give all users (owner, group and others) write permission,
and remove the setuid and setgid bits.
The full syntax and semantics of symbolic
.meta mode
strings is given in the POSIX standard IEEE 1003.1.
The function throws a
.code file-error
exception if an error occurs, otherwise it returns
.codn t .
The
.meta target
argument may be a character string, in which case it specifies a pathname in
the filesystem. In this case, the POSIX function
.code chmod
is invoked.
The
.meta target
argument may also be an integer file descriptor, or a stream. In these two
cases, the POSIX
.code fchmod
function is invoked. For a stream
.metn target ,
the integer file descriptor is retrieved from the stream using
.code fileno
function.
.TP* Example:
.verb
;; Set permissions of foo.txt to "rw-r--r--"
;; (owner can read and write; group owner
;; and other users can only read).
;; numerically:
(chmod "foo.txt" #o644)
;; symbolically:
(chmod "foo.txt" (logior s-irusr s-iwusr
s-irgrp
s-iroth))
.brev
Implementation note: The implementation of the symbolic
.meta mode
processing is based on the descriptions given in IEEE 1003.1-2018,
Issue 7 and also on the
.code chmod
program from from GNU Coreutils 8.28: and experiments with its behavior,
and its documentation.
.coNP Functions @ chown and @ lchown
.synb
.mets (chown < target < id << gid )
.mets (lchown < target < id << gid )
.syne
.desc
The
.code chown
and
.code lchown
functions change the user and group ownership of the filesystem object
specified by
.metn target .
They implemented in terms of the POSIX functions
.codn chown ,
.code fchown
and
.codn lchown .
The ownership attributes are specified by
.meta uid
and
.metn gid ,
both integer arguments.
The existing ownership attributes may be obtained using the
.code stat
function.
These functions throw a
.code file-error
exception if an error occurs, otherwise they returns
.codn t .
The
.meta target
argument may be a character string, in which case it specifies a pathname in
the filesystem. In this case, the same-named POSIX function
.code chown
is invoked by
.codn chown ,
whereas
.code lchown
likewise invokes its respective same-named POSIX counterpart.
The difference is that if
.meta target
is a pathname denoting a symbolic link, then
.code lchown
operates on the symbolic link, whereas
.code chown
dereferences the symbolic link.
The
.meta target
argument may also be an integer file descriptor, or a stream. In these two
cases, the POSIX
.code fchown
function is invoked by either function. For a stream
.metn target ,
the integer file descriptor is retrieved from the stream using
.code fileno
function.
Note: in most POSIX systems, unprivileged processes may not change the user
ownership denoted by
.metn uid .
They may change the group ownership indicated in
.metn gid ,
if that value corresponds to the effective group ID of the calling
process or one of its ancillary group IDs.
To avoid trying to change the user ownership (and therefore failing),
the caller should specify a
.meta uid
value which matches the object's existing owner.
.coNP Functions @ utimes and @ lutimes
.synb
.mets (utimes < target < atime-s < atime-ns < mtime-s << mtime-ns )
.mets (lutimes < target < atime-s < atime-ns < mtime-s << mtime-ns )
.syne
.desc
The functions
.code utimes
and
.code lutimes
change the access and modification timestamps of a file indicated by the
.meta target
argument.
The difference between the two functions is that if
.meta target
is the path name of a symbolic link, then
.code lutimes
operates on the symbolic link itself, whereas
.code utimes
resolves the symbolic link.
Note: the full, complete functionality of these functions requires the
platform to provide the POSIX functions
.code futimens
and
.code utimensat
functions. If these functions are not available, then other functions are
relied on, with some reductions in functionality, that are documented below.
The
.meta target
argument specifies the file to operate on. It may be an integer file descriptor,
an open stream, or a character string representing a path name.
The
.meta atime-s
and
.meta mtime-s
parameters specify the whole seconds part of the new access and modification
times, expressed as seconds since the epoch.
The
.meta atime-ns
and
.meta mtime-ns
parameters specify the fractional part of the access and modification
times, expressed in nanoseconds. If an integer argument is given to these
parameters, it must lie in the range 0 to 999999999, or else the symbols
.code nil
or
.code t
may be passed as arguments.
If the symbol
.code nil
is passed as the nanoseconds part of the access or modification time,
then the access or modification time, respectively, shall not be modified
by the operation. The corresponding seconds argument is ignored.
If the symbol
.code t
is passed as the nanoseconds part of the access or modification time,
then the access or modification time, respectively, shall be obtained
from the current system time. The corresponding seconds argument is ignored.
If the
.code utimensat
and
.code futimens
functions are not available from the host system, then the above
.code nil
and
.code t
convention in the nanoseconds arguments is not supported; the function
will fail by throwing an exception if an attempt is made to pass these
arguments.
If the
.code utimensat
and
.code futimens
functions are not available from the host system, then operating on
a symbolic link with
.code lutimes
is only possible if the system provides the
.code lutimes
C library function, otherwise the operation fails by throwing an exception
(if given a path argument for
.metn target ,
even if that path isn't a symbolic link).
If the implementation falls back on the
.codn utimes ,
.codn futimes ,
and
.code lutimes
functions, then the nanoseconds arguments are truncated to microsecond
precision.
If the implementation falls back on
.codn utime ,
then the nanoseconds arguments are ignored; the times are effectively
truncated to whole seconds.
.coNP Function @ mknod
.synb
.mets (mknod < path < mode <> [ dev ])
.syne
.desc
The
.code mknod
function tries to create an entry in the filesystem: a file,
FIFO, or a device special file, under the name
.metn path .
If it is successful,
it returns
.codn t ,
otherwise it throws an exception of type
.codn file-error .
The
.meta mode
argument is a bitwise or combination of the requested permissions,
and the type of object to create: one of the constants
.codn s-ifreg ,
.codn s-ififo ,
.codn s-ifchr ,
.code s-ifblk
or
.codn s-ifsock .
The permissions are subject to the system
.codn umask .
If a block or character special device
.cod2 ( s-ifchr
or
.codn s-ifblk )
is being
created, then the
.meta dev
argument specifies the major and minor numbers
of the device. A suitable value can be constructed from a major and minor
pair using the
.code makedev
function.
.TP* Example:
.verb
;; make a character device (8, 3) called /dev/foo
;; requesting rwx------ permissions
(mknod "dev/foo" (logior #o700 s-ifchr) (makedev 8 3))
.brev
.coNP Function @ mkfifo
.synb
.mets (mkfifo < path << mode )
.syne
.desc
The
.code mkfifo
function creates a POSIX FIFO object.
If it is successful,
it returns
.codn t ,
otherwise it throws an exception of type
.codn file-error .
The
.meta mode
argument is a bitwise or combination of the requested permissions,
and is subject to the system
.codn umask .
Note: the
.code mknod
function can also create FIFOs, specified via the bitwise combination
of the
.code s-ififo
type and the permission mode bits.
.coNP Functions @ symlink and @ link
.synb
.mets (symlink < target << path )
.mets (link < target << path )
.syne
.desc
The
.code symlink
function creates a symbolic link called
.meta path
whose contents
are the absolute or relative path
.metn target .
.meta target
does not actually have to exist.
The link function creates a hard link. The object at
.meta target
is installed
into the filesystem at
.meta path
also.
If these functions succeed, they return
.codn t .
Otherwise they throw an exception
of type
.codn file-error .
.coNP Function @ readlink
.synb
.mets (readlink << path )
.syne
.desc
If
.meta path
names a filesystem object which is a symbolic link, the
.code readlink
function reads the contents of that symbolic link and returns it
as a string. Otherwise, it fails by throwing an exception of type
.codn file-error .
.coNP Function @ realpath
.synb
.mets (realpath << path )
.syne
.desc
The
.code realpath
function provides access to the same-named POSIX function.
It processes the input string
.meta path
by expanding all symbolic links, removes all superfluous
.str ".."
and
.str "."
path components, and extra path-separating slash characters,
to produce a canonical absolute path name.
If the underlying POSIX function indicates failure, then
.code nil
is returned. In that situation the
.code errno
value is available using the
.code errno
function.
.SS* Unix Filesystem Complex Operations
Functions in this category are complex functionality implemented using
a combination of multiple calls into the host system's POSIX API.
.coNP Functions @ copy-file and @ copy-files
.synb
.mets (copy-file < from-path < to-path >> [ perms-p <> [ times-p ]])
.mets (copy-file < from-list < to-dir >> [ perms-p <> [ times-p ]])
.syne
.desc
The
.code copy-file
function creates a replica of the file
.code from-path
at the destination path
.metn to-path .
Both paths are opened using
.code open-file
in binary mode, as if using
.mono
.meti (open-file < from-path "b")
.onom
and
.mono
.meti (open-file < to-path "wb")
.onom
respectively. Then bytes are read from one stream and written to the other,
in blocks which whose size is a power of two at least as large as 16834.
If the optional Boolean parameter
.meta perms-p
is specified, and is true, then the permissions of
.meta from-path
are propagated to
.metn to-path .
If the optional Boolean parameter
.meta times-p
is specified, and is true, then the access and modification timestamps of
.meta from-path
are propagated to
.metn to-path .
The
.code copy-file
function returns
.code nil
if it is successful, and throws an exception derived from
.code file-error
on failure.
The
.code copy-files
function copies multiple files, whose pathnames are given by the list argument
.meta from-list
into the target directory whose path is given by
.metn to-dir .
The target directory must exist.
For source each path in
.metn from-list ,
the
.code copy-files
function forms a target path by combining the base name of the
source path with
.metn target-dir .
(See the
.code base-name
and
.code path-cat
functions).
Then, the source path is copied to the resulting target path, as if by the
.code copy-file
function.
The
.code copy-files
function returns
.code nil
if it is successful, and throws an exception derived from
.code file-error
on failure.
Additionally,
.code copy-files
provides an internal catch for the
.code retry
and
.code skip
restart exceptions. If the caller, using a handler frame established by
.codn handle ,
catches an error emanating from the
.code copy-files
function, it can retry the failed operation by throwing the
.code retry
exception, or continue copying with the next file by throwing the
.code skip
exception.
.TP* Example:
.verb
;; Copy all "/mnt/cdrom/*.jpg" files into "images" directory,
;; preserving their time stamps,
;; continuing the operation in the face of
;; file-error exceptions.
(handle
(copy-files (glob "/mnt/cdrom/*.jpg") "images" nil t)
(file-error (throw 'skip)))
.brev
.coNP Function @ copy-path-rec
.synb
.mets (copy-path-rec < from-path < to-path << option *)
.syne
.desc
The
.code copy-path-rec
function replicates a file system object identified by the path name
.metn from-path ,
creating a similar object named
.metn to-path .
If
.code from-path
is a directory, it is recursively traversed and its structure and content
is replicated under
.codn to-path .
The
.meta option
arguments are keywords, which may be the following:
.RS
.IP :perms
Propagate the permissions of all objects under
.meta from-path
onto their
.meta to-path
counterparts. In the absence of this option, the copied objects
receive permissions with are calculated by applying the
.code umask
of the calling process to the maximally liberal.
.IP :times
Propagate the modification and access time stamps of all objects under
.meta from-path
onto their
.meta to-path
counterparts.
.IP :symlinks
Copy symbolic links literally rather than dereferencing them.
Symbolic links are not altered in any way; their exact content
is preserved. Thus, relative symlinks which point outside of the
.meta from-path
tree may turn into dangling symlinks in the
.meta to-path
tree.
.IP :owner
Propagate the ownership of all objects under
.meta from-path
to their
.meta to-path
counterparts. Ownership refers to the owner user ID and group ID.
Without this option, the ownership of the copied objects is derived
from the effective user ID and group ID of the calling process.
Note that it is assumed that the host system may requires superuser
privileges to set both ownerships IDs of an object, and to set them to an
arbitrary value. An unprivileged process may not change the user ID of a file,
and may only change the group ID of a file which they own, to one of the groups
of which that process is a member, either via the effective GID, or the
ancillary list. The
.code copy-path-rec
function tests whether the application is running under superuser privileges;
if not, then it only honors the
.code :owner
option for those objects under
.meta from-path
which are owned by the caller, and owned by a group to
which the caller belongs.
Other objects are copied as if the
.code :owner
option were not in effect, avoiding an attempt to set their ownership
that is likely to fail.
.IP :all
The
.code :all
keyword is a shorthand representing all of the options being applied:
permissions, times, symlinks and ownership are replicated.
.RE
.IP
The
.code copy-path-rec
function creates all necessary path name components required for
.meta to-path
to come into existence, as if by using the
.code ensure-dir
function.
Whenever an object under
.meta from-path
has a counterpart in
.meta to-path
which already exists, the situation is handled as follows:
.RS
.IP 1.
If a directory object is copied to an existing directory object,
then that existing directory object is accepted as the copy, and
the operation continues recursively within that directory. If any options are
specified, then the requested attributes are propagated to that existing
directory.
.IP 2.
If a non-directory object is copied to a directory object, the
situation throws an exception: the
.code copy-path-rec
function refuses to delete an entire directory or subdirectory in order
to make way for a file, symbolic link, special device or any other kind
of non-directory object.
.IP 3.
If any object is copied to an existing non-directory object,
that target object is removed first, then the copy operation proceeds.
.RE
Copying of files takes place similarly as what is described for the
.code copy-file
function.
Special objects such as FIFOs, character devices, block devices and sockets
are copied by creating a new, similar objects at the destination path.
In the case of devices, the major and minor numbers of the copy are
derived from the original, so that the copy refers to the same device.
However, the copy of a socket or a FIFO is effectively a new, different
endpoint because these objects are identified by their path name.
Processes using the copy of a socket or a FIFO will not connect to
processes which are working with the original.
The
.code copy-path-rec
function returns
.code nil
if it is successful. It throws an exception derived from
.code file-error
when encountering failures.
Additionally
.code copy-path-rec
provides an internal catch for the
.code retry
and
.code skip
restart exceptions. If the caller, using a handler frame established by
.codn handle ,
catches an error emanating from the
.code copy-files
function, it can retry the failed operation by throwing the
.code retry
exception, or continue copying with the next object by throwing the
.code skip
exception.
.coNP Function @ remove-path-rec
.synb
.mets (remove-path-rec << path )
.syne
.desc
The
.code remove-path-rec
function attempts to remove the filesystem object named by
.metn path .
If
.meta path
refers to a directory, that directory is recursively traversed
to remove all of its contents, and is then removed.
The
.code remove-path-rec
function returns
.code nil
if it is successful. It throws an exception derived from
.code file-error
when encountering failures.
Additionally
.code remove-path-rec
provides an internal catch for the
.code retry
and
.code skip
restart exceptions. If the caller, using a handler frame established by
.codn handle ,
catches an error emanating from the
.code copy-files
function, it can retry the failed operation by throwing the
.code retry
exception, or continue removing other objects by throwing the
.code skip
exception. Skipping a failed remove operation may cause subsequent
operations to fail. Notably, the failure to remove an item inside
a directory means that removal of that directory itself will fail,
and ultimately,
.meta path
will still exist when
.code remove-path-rec
completes and returns.
.coNP Functions @ chmod-rec and @ chown-rec
.synb
.mets (chmod-rec < path << mode )
.mets (chown-rec < path < uid << gid )
.syne
.desc
The
.code chmod-rec
and
.code chown-rec
functions are recursive counterparts of
.code chmod
and
.codn lchown .
The filesystem object given by
.meta path
is recursively traversed, and each of its constituent objects
is subject to a permission change in the case of
.codn chown-rec ,
or an ownership change in the case of
.codn chown-rec .
The
.code chmod-rec
function alters the permission of each object that is not a symbolic link
using the
.code chmod
function, and
.meta mode
is interpreted accordingly: it may be an integer or string.
Each object which is a symbolic link is ignored.
The
.code chown-rec
function alters the permission of each object encountered, including
symbolic links, using the
.code lchown
function.
These functions establish restart catches, similarly to
.code remove-path-rec
and
.codn copy-path-rec ,
allowing the caller to retry individual failed operations or skip the objects
on which operations have failed.
.coNP Function @ touch
.synb
.mets (touch < path <> [ ref-path ])
.syne
.desc
The
.code touch
function updates the modification timestamp of the filesystem object
named by
.metn path .
If the object doesn't exist, it is created as a regular file.
If
.meta ref-path
is specified, then the modification timestamp of the object denoted by
.meta path
is updated to be equivalent to the modification timestamp of
the object denoted by
.metn ref-path .
Otherwise
.meta ref-path
being absent, the modification timestamp of
.meta path
is set to the current time.
If
.meta path
is a symbolic link, it is dereferenced;
.code touch
operates on the target of the link.
.SS* Unix Filesystem Object Existence, Type and Access Tests
Functions in this category perform various tests on the attributes of
filesystem objects.
The functions all have a
.meta path
parameter, which accepts three types of arguments. If a character
string is specified, it denotes a filesystem path to
be probed for properties such as ownership and permissions.
The object is probed using the
.code stat
function except in the case of
.code path-symlink-p
which uses
.codn lstat .
If instead a stream is specified as
.metn path ,
then the associated filesystem descriptor is probed for these properties.
If an integer value is specified, it is treated as a POSIX
open file descriptor that is to be probed.
Otherwise, a
.code stat
structure, for example one returned by the
.code stat
or
.code lstat
function may be specified, in which case no system object
is probed. The properties to be tested are those given in the
.code stat
object.
Note: in a situation when it is necessary to use any of these functions to
probe the properties of a symbolic link itself (other than the function
.code path-symlink-p
which does so implicitly) it is necessary to first invoke
.code lstat
on the symlink's path, and then pass the resulting
.code stat
structure to that function instead of the path.
Some of the accessibility tests (functions which determine whether the
calling process has certain access rights) may not be perfectly accurate, since
they are based strictly on portable information available via
.codn stat ,
together with the basic, portable POSIX APIs for inquiring about
security credentials, such as
.codn geteuid .
They ignoring any special permissions which may exist such as operating system
and file system specific extended attributes (for example, file immutability
connected to a "secure level" and such) and special process capabilities
not reflected in the basic credentials.
.coNP Function @ path-exists-p
.synb
.mets (path-exists-p << path )
.syne
.desc
The
.code path-exists-p
function returns
.code t
if
.meta path
is a string which resolves to a filesystem object.
Otherwise it returns
.codn nil .
If the
.meta path
names a dangling symbolic link, it is considered nonexistent.
If
.meta path
is an object returned by
.code stat
or
.codn lstat ,
.code path-exists-p
unconditionally returns
.codn t .
.coNP Functions @, path-file-p @, path-dir-p @, path-symlink-p @, path-blkdev-p @, path-chrdev-p @ path-sock-p and @ path-pipe-p
.synb
.mets (path-file-p << path )
.mets (path-dir-p << path )
.mets (path-symlink-p << path )
.mets (path-blkdev-p << path )
.mets (path-chrdev-p << path )
.mets (path-sock-p << path )
.mets (path-pipe-p << path )
.syne
.desc
.code path-file-p
tests whether
.meta path
exists and is a regular file.
.code path-dir-p
tests whether
.meta path
exists and is a directory.
.code path-symlink-p
tests whether
.meta path
exists and is a symbolic link.
Similarly,
.code path-blkdev-p
tests for a block device,
.code path-chrdev-p
for a character device,
.code path-sock-p
for a socket and
.code path-pipe-p
for a named pipe.
.coNP Function @ path-dir-empty
.synb
.mets (path-dir-empty << path )
.syne
.desc
The
.code path-dir-empty
function returns
.code t
if
.meta path
is an empty directory.
Implementation note: this function performs a test similar to
.codn path-dir-p ;
then, if it is confirmed that
.meta path
is a directory, a directory stream is opened and entries are read.
If an entry is seen which has a name other than
.str .
or
.str ..
then it is concluded that the directory is not empty and
.code nil
is returned. If no such entry is seen, then the directory is deemed empty and
.code t
is returned.
.coNP Functions @, path-setgid-p @ path-setuid-p and @ path-sticky-p
.synb
.mets (path-setgid-p << path )
.mets (path-setuid-p << path )
.mets (path-sticky-p << path )
.syne
.desc
.code path-setgid-p
tests whether
.meta path
exists and has the set-group-ID permission set.
.code path-setuid-p
tests whether
.meta path
exists and has the set-user-ID permission set.
.code path-sticky-p
tests whether
.meta path
exists and has the "sticky" permission bit set.
.coNP Functions @ path-mine-p and @ path-my-group-p
.synb
.mets (path-mine-p << path )
.mets (path-my-group-p << path )
.syne
.desc
.code path-mine-p
tests whether
.meta path
exists, and is effectively owned by the calling process; that is,
it has a user ID equal to the effective user ID of the process.
.code path-my-group-p
tests whether
.meta path
exists, and is effectively owned by a group to which the calling process
belongs. This means that the group owner is either the same as the
effective group ID of the calling process, or else is among the
supplementary group IDs of the calling process.
.coNP Function @ path-readable-to-me-p
.synb
.mets (path-readable-to-me-p << path )
.syne
.desc
.code path-readable-to-me-p
tests whether the calling process can read the
object named by
.metn path .
If necessary, this test examines the effective user ID of the
calling process, the effective group ID, and the list of supplementary groups.
.coNP Function @ path-writable-to-me-p
.synb
.mets (path-writable-to-me-p << path )
.syne
.desc
.code path-writable-to-me-p
tests whether the calling process can write the
object named by
.metn path .
If necessary, this test examines the effective user ID of the
calling process, the effective group ID, and the list of supplementary groups.
.coNP Function @ path-read-writable-to-me-p
.synb
.mets (path-read-writable-to-me-p << path )
.syne
.desc
.code path-readable-to-me-p
tests whether the calling process can both read and write the
object named by
.metn path .
If necessary, this test examines the effective user ID of the
calling process, the effective group ID, and the list of supplementary groups.
.coNP Function @ path-executable-to-me-p
.synb
.mets (path-executable-to-me-p << path )
.syne
.desc
.code path-executable-to-me-p
tests whether the calling process can execute the
object named by
.metn path ,
or perform a search (name lookup, not implying sequential readability) on it,
if it is a directory.
If necessary, this test examines the effective user ID of the
calling process, the effective group ID, and the list of supplementary groups.
.coNP Functions @ path-private-to-me-p and @ path-strictly-private-to-me-p
.synb
.mets (path-private-to-me-p << path )
.mets (path-strictly-private-to-me-p << path )
.syne
.desc
The
.code path-private-to-me-p
and
.code path-strictly-private-to-me-p
functions report whether the calling process can rely on the
object indicated by
.code path
to be, respectively, private or strictly private to the security context
implied by its effective user ID.
"Private" means that beside the effective user ID of the calling process and
the superuser, no other user ID has write access to the object, and thus its
contents may be trusted to be be free from tampering by any other user.
"Strictly private" means that not only is the object private, as above,
but users other than the effective user ID of the calling process
and superuser also not not have read access.
The rules which the function applies are as follows:
A file to be examined is initially assumed to be strictly private.
If the file is not owned by the effective user ID of the caller, or
else by the superuser, then it is not private.
If the file grants write permission to "others", then it is not private.
If the file grants read permission to "others", then it is not strictly
private.
If the file grants write permission to the group owner, then it is not
private if the group contains names other than that of the file owner or the
superuser.
If the file grants read permission to the group owner, then it is not
strictly private if the group contains names other than that of the file owner
or the superuser.
Note that this interpretation of "private" and "strictly private" is vulnerable
to the following time-of-check to time-of-use race condition with regard to the
group check. At the time of the check, the group might be empty or contain
only the caller as a member. But by the time the file is subsequently accessed,
the group might have been innocently extended by the system administrator to
include additional users, who can maliciously modify the file.
Also note that the function is vulnerable to a time-of-check to time-of-use
race if
.meta path
is a string rather than a
.code stat
structure. If any components of the
.meta path
are symbolic links or directories that can be manipulated by other
users, then the object named by
.meta path
file can pass the check, but can later
.meta path
can be subverted to refer to a different object.
One way to guard against this race is to open the file, then use
.code fstat
on the stream to obtain a
.code stat
structure which is then used as an argument to
.code path-private-to-me-p
or
.codn path-strictly-private-to-me-p .
.coNP Functions @ path-newer and @ path-older
.synb
.mets (path-newer < left-path << right-path )
.mets (path-older < left-path << right-path )
.syne
.desc
The
.code path-newer
function compares two paths or stat results by modification time.
It returns
.code t
if
.meta left-path
exists, and either
.meta right-path
does not exist, or has a modification time stamp in the past
relative to
.metn left-path .
The
.code path-older
function is equivalent to
.code path-newer
with the arguments reversed.
Note:
.code path-newer
takes advantage of sub-second timestamp resolution information,
if available. The implementation is based on using the
.code mtime-nsec
field of the
.code stat
structure, if it isn't
.codn nil .
.coNP Function @ path-same-object
.synb
.mets (path-same-object < left-path << right-path )
.syne
.desc
The
.code path-same-object
function returns
.code t
if
.meta left-path
and
.meta right-path
resolve to the same filesystem object: the same inode number on the same
device.
.SS* Unix Credentials
.coNP Functions @, getuid @, geteuid @ getgid and @ getegid
.synb
.mets (getuid)
.mets (geteuid)
.mets (getgid)
.mets (getegid)
.syne
.desc
These functions directly correspond to the POSIX C library functions
of the same name. They retrieve the real user ID, effective user ID,
real group ID and effective group ID, respectively, of the calling
process.
.coNP Functions @, setuid @, seteuid @ setgid and @ setegid
.synb
.mets (setuid << uid )
.mets (seteuid << uid )
.mets (setgid << gid )
.mets (setegid << gid )
.syne
.desc
These functions directly correspond to the POSIX C library functions
of the same name. They set the real user ID, effective user ID,
real group ID and effective group ID, respectively, of the calling
process.
On success, they return
.codn t .
On failure, they throw an exception of type
.codn system-error .
.coNP Function @ getgroups
.synb
.mets (getgroups)
.syne
.desc
The
.code getgroups
function retrieves the list of supplementary group IDs of the calling
process by calling the same-named POSIX C library function.
Whether or not the effective group ID retrieved by
.code getegid
is included in this list is system-dependent. Programs should not
depend on its presence or absence.
.coNP Function @ setgroups
.synb
.mets (setgroups << gid-list )
.syne
.desc
The
.code setgroups
function corresponds to a C library function found in some Unix
operating systems, complementary to the
.code getgroups
function. The argument to
.meta gid-list
must be a list of numeric group IDs.
If the function is successful, this list is installed as the list of
supplementary group IDs of the calling process, and the value
.code t
is returned.
On failure, it throws an exception of type
.codn system-error .
.coNP Functions @ getresuid and @ getresgid
.synb
.mets (getresuid)
.mets (getresgid)
.syne
.desc
These functions directly correspond to the POSIX C library functions
of the same names available in some Unix operating systems.
Each function retrieves a three element list of numeric IDs.
The
.code getresuid
function retrieves the real, effective and saved user ID of
the calling process.
The
.code getresgid
function retrieves the real, effective and saved group ID of
the calling process.
.coNP Functions @ setresuid and @ setresgid
.synb
.mets (setresuid < real-uid < effective-uid << saved-uid )
.mets (setresgid < real-gid < effective-gid << saved-gid )
.syne
.desc
These functions directly correspond to the POSIX C library functions of the
same names available in some Unix operating systems. They change the real,
effective and saved user ID or group ID, respectively, of the calling process.
A value of -1 for any of the IDs specifies that the ID is not to be changed.
Only privileged processes may arbitrarily change IDs to different values.
Unprivileged processes are restricted in the following way:
each of the new IDs that is replaced must have a new value which is equal to
one of the existing three IDs.
.SS* Unix Password Database
.coNP Structure @ passwd
.synb
.mets (defstruct passwd nil
.mets \ \ name passwd uid gid
.mets \ \ gecos dir shell)
.syne
.desc
The
.code passwd
structure corresponds to the C type
.codn "struct passwd" .
Objects of this struct are produced by the password database
query functions
.codn getpwent ,
.codn getpwuid ,
and
.codn getpwnam .
.coNP Functions @, getpwent @ setpwent and @ endpwent
.synb
.mets (getpwent)
.mets (setpwent)
.mets (endpwent)
.syne
.desc
The first time
.code getpwent
function is called, it returns the first password database entry.
On subsequent calls it returns successive entries.
Entries are returned as instances of the
.code passwd
structure. If the function cannot retrieve an entry for any reason,
it returns
.codn nil .
The
.code setpwent
function rewinds the database scan.
The
.code endpwent
function releases the resources associated with the scan.
.coNP Function @ getpwuid
.synb
.mets (getpwuid << uid )
.syne
.desc
The
.code getpwuid
searches the password database for an entry whose user ID field
is equal to the numeric
.metn uid .
If the search is successful, then a
.code passwd
structure representing the database entry is returned.
If the search fails,
.code nil
is returned.
.coNP Function @ getpwnam
.synb
.mets (getpwnam << name )
.syne
.desc
The
.code getpwnam
searches the password database for an entry whose user name
is equal to
.metn name .
If the search is successful, then a
.code passwd
structure representing the database entry is returned.
If the search fails,
.code nil
is returned.
.SS* Unix Group Database
.coNP Structure @ group
.synb
.mets (defstruct group nil
.mets \ \ name passwd gid mem)
.syne
.desc
The
.code group
structure corresponds to the C type
.codn "struct group" .
Objects of this struct are produced by the password database
query functions
.codn getgrent ,
.codn getgrgid ,
and
.codn getgrnam .
.coNP Functions @, getgrent @ setgrent and @ endgrent
.synb
.mets (getgrent)
.mets (setgrent)
.mets (endgrent)
.syne
.desc
The first time
.code getgrent
function is called, it returns the first group database entry.
On subsequent calls it returns successive entries.
Entries are returned as instances of the
.code passwd
structure. If the function cannot retrieve an entry for any reason,
it returns
.codn nil .
The
.code setgrent
function rewinds the database scan.
The
.code endgrent
function releases the resources associated with the scan.
.coNP Function @ getgrgid
.synb
.mets (getgrgid << gid )
.syne
.desc
The
.code getgrgid
searches the group database for an entry whose group ID field
is equal to the numeric
.metn gid .
If the search is successful, then a
.code group
structure representing the database entry is returned.
If the search fails,
.code nil
is returned.
.coNP Function @ getgrnam
.synb
.mets (getgrnam << name )
.syne
.desc
The
.code getgrnam
searches the group database for an entry whose group name
is equal to
.metn name .
If the search is successful, then a
.code group
structure representing the database entry is returned.
If the search fails,
.code nil
is returned.
.SS* Unix Password Hashing
.coNP Function @ crypt
.synb
.mets (crypt < key << salt )
.syne
.desc
The
.code crypt
function is a wrapper for the Unix C library function of the same name.
It calculates a hash over the
.meta key
and
.meta salt
arguments, which are strings. The hash is returned as a string.
The
.meta key
and
.meta salt
arguments are converted into UTF-8 prior to being passed into the underlying
platform function. The hash value is assumed to be UTF-8 and converted to
Unicode characters, though it is not expected to contain anything but 7
bit ASCII characters.
Note: the underlying C library function uses a static buffer for its return
value. The return value of the \*(TL function is a copy of that buffer.
.SS* Unix Signal Handling
On platforms where certain advanced features of POSIX signal handling are
available at the C API level, \*(TX exposes signal-handling functionality.
A \*(TX program can install a \*(TL function (such as an anonymous.
.codn lambda ,
or the function object associated with a named function) as the handler for
a signal.
When that signal is delivered, \*(TX will intercept it with its own safe,
internal handler, mark the signal as deferred (in a \*(TX sense) and then
dispatch the registered function at a convenient time.
Handlers currently are not permitted to interrupt the execution of most
\*(TX internal code. Immediate, asynchronous execution of handlers is
currently enabled only while \*(TX is blocked on I/O operations or sleeping.
Additionally, the
.code sig-check
function can be used to dispatch and clear deferred
signals. These handlers are then safely called if they were subroutines of
.codn sig-check ,
and not asynchronous interrupts.
.coNP Variables @, sig-hup @, sig-int @, sig-quit @, sig-ill @, sig-trap @, sig-abrt @, sig-bus @, sig-fpe @, sig-kill @, sig-usr1 @, sig-segv @, sig-usr2 @, sig-pipe @, sig-alrm @, sig-term @, sig-chld @, sig-cont @, sig-stop @, sig-tstp @, sig-ttin @, sig-ttou @, sig-urg @, sig-xcpu @, sig-xfsz @, sig-vtalrm @, sig-prof @, sig-poll @, sig-sys @, sig-winch @, sig-iot @, sig-stkflt @, sig-io @ sig-lost and @ sig-pwr
.desc
These variables correspond to the C signal constants
.codn SIGHUP ,
.code SIGINT
and so forth.
The variables
.codn sig-winch ,
.codn sig-iot ,
.codn sig-stkflt ,
.codn sig-io ,
.code sig-lost
and
.code sig-pwr
may not be available since a system may lack the corresponding signal
constants. See notes for the function
.codn log-authpriv .
The highest signal number is 31.
.coNP Functions @ set-sig-handler and @ get-sig-handler
.synb
.mets (set-sig-handler < signal-number << handling-spec )
.mets (get-sig-handler << signal-number )
.syne
.desc
The
.code set-sig-handler
function is used to specify the handling for a signal, such
as the installation of a handler function. It updates the signal handling for
a signal whose number is
.meta signal-number
(usually one of the constants like
.codn sig-hup ,
.code sig-int
and so forth), and returns the previous value. The
.code get-sig-handler
function returns the current value.
The
.meta signal-number
must be an integer the range 1 to 31.
Initially, all 31 signal handling specifications are set to the value
.codn t .
The
.meta handling-spec
parameter may be a function. If a function is specified,
then the signal is enabled and connected to that function until another
call to
.code set-sig-handler
changes the handling for that signal.
If
.meta handling-spec
is the symbol
.codn nil ,
then the function previously associated
with the signal, if any, is removed, and the signal is disabled. For a signal
to be disabled means that the signal is set to the
.code SIG_IGN
disposition (refer to the C API).
If
.meta handling-spec
is the symbol
.codn t ,
then the function previously associated
with the signal, if any, is removed, and the signal is set to its default
disposition. This means that it is set to
.code SIG_DFL
(refer to the C API).
Some signals terminate the process if they are generated while the
handling is configured to the default disposition.
Note that the certain signals like
.code sig-quit
and
.code sig-kill
cannot be ignored or handled.
Please observe the signal documentation in the IEEE POSIX standard, and your
platform.
A signal handling function must take two arguments. It is of the form:
.mono
.mets (lambda >> ( signal << async-p ) ...)
.onom
The
.meta signal
argument is an integer indicating the signal number for which the
handler is being invoked. The
.meta asyncp-p
argument is a Boolean value.
If it is
.codn t ,
it indicates that the handler is being invoked
asynchronously\(emdirectly in a signal handling context. If it is
.codn nil ,
then it
is a deferred call. Handlers may do more things in a deferred call, such
as terminate by throwing exceptions, and perform I/O.
The return value of a handler is normally ignored. However if it invoked
asynchronously (the
.meta async-p
argument is true), then if the handler returns
a
.cod2 non- nil
value, it is understood that the handler
requesting that it be deferred. This means that the signal will be marked
as deferred, and the handler will be called again at some later
time in a deferred context, whereby
.meta async-p
is
.codn nil .
This is not guaranteed, however;
it's possible that another signal will arrive before that happens,
possibly resulting in another async call, so the handler must
be prepared to deal with an async call at any time.
If a handler is invoked synchronously, then its return value is ignored.
In the current implementation, signals do not queue. If a signal is delivered
to the process again, while it is marked as deferred, it simply stays deferred;
there is no counter associated with a signal, only a Boolean flag.
.coNP Function @ sig-check
.synb
.mets (sig-check)
.syne
.desc
The
.code sig-check
function tests whether any signals are deferred, and for each
deferred signal in turn, it executes the corresponding handler. For a signal to
be deferred means that the signal was caught by an internal handler in
\*(TX and the event was recorded by a flag. If a handler function is removed
while a signal is deferred, the deferred flag is cleared for that signal.
Calls to the
.code sig-check
function may be inserted into CPU-intensive code that
has no opportunity to be interrupted by signals, because it doesn't invoke any
I/O functions.
.coNP Function @ raise
.synb
.mets (raise << signal )
.syne
.desc
The
.code raise
function sends
.meta signal
to the process.
It is a wrapper for the C function of the same name.
The return value is
.code t
if the function succeeds, otherwise
.codn nil .
.coNP Function @ kill
.synb
.mets (kill < process-id <> [ signal ])
.syne
.desc
The
.code kill
function is used for sending a signal to a process group or process.
It is a wrapper for the POSIX
.code kill
function.
If the
.meta signal
argument is omitted, it defaults to the same value as
.codn sig-term .
The return value is
.code t
if the function succeeds, otherwise
.codn nil .
.coNP Function @ strsignal
.synb
.mets (strsignal << signal )
.syne
.desc
The
.code strsignal
function returns a character string describing the specified signal number.
It is based on the same-named POSIX C library function.
.SS* Unix Processes
.coNP Functions @ fork and @ wait
.synb
.mets (fork)
.mets (wait >> [ pid <> [ flags ]])
.syne
.desc
The
.code fork
and
.code wait
functions are interfaces to the Unix functions
.code fork
and
.codn waitpid .
The
.code fork
function creates a child process which is a replica of the parent. Both
processes return from the function. In the child process, the return value is
zero. In the parent, it is an integer representing the process ID of the child.
If the function fails to create a child, it returns
.code nil
rather than an integer. In this case, the
.code errno
function can be used to inquire about the cause.
The
.code wait
function, if successful, returns a cons cell consisting of a pair of integers.
The
.code car
of the cons is the process ID of the process or group which was successfully
waited on, and the
.code cdr
is the status. If
.code wait
fails, it returns
.codn nil .
The
.code errno
function can be used to inquire about the cause.
The
.meta process-id
argument, if not supplied, defaults to -1, which means that
.code wait
waits for any process, rather than a specific process. Certain other
values have special meaning, as documented in the POSIX standard
for the
.code waitpid
function.
The
.meta flags
argument defaults to zero. If it is specified as nonzero, it should be
a bitwise combination (via the
.code logior
function) of the variables
.codn w-nohang ,
.code w-untraced
and
.codn w-continued .
If
.code w-nohang
is used, then
.code wait
returns a cons cell whose
.code car
specifies a process ID value of zero in the situation that at least
one of the processes designated by
.code process-id
exist and are children of the calling process, but have not changed state.
In this case, the status value in the
.code cdr
is unspecified.
Status values may be inspected with the functions
.codn w-ifexited ,
.codn w-exitstatus ,
.codn w-ifsignaled ,
.codn w-termsig ,
.codn w-coredump ,
.codn w-ifstopped ,
.code w-stopsig
and
.codn w-ifcontinued .
.coNP Functions @, w-ifexited @, w-exitstatus @, w-ifsignaled @, w-termsig @, w-coredump @ w-ifstopped and @ w-stopsig
.synb
.mets (w-ifexited << status )
.mets (w-exitstatus << status )
.mets (w-ifsignaled << status )
.mets (w-termsig << status )
.mets (w-coredump << status )
.mets (w-ifstopped << status )
.mets (w-stopsig << status )
.mets (w-ifcontinued << status )
.syne
.desc
These functions analyze process exit values produced by the
.code wait
function.
They are closely based on the
POSIX macros
.codn WIFEXITED ,
.codn WEXITSTATUS ,
and so on.
The
.meta status
value is either an integer, or a cons cell. In this case, the cons
cell is expected to have an integer in its
.code cdr
which is used as the status.
The
.codn w-ifexited ,
.codn w-ifsignaled ,
.codn w-coredump ,
.code w-ifstopped
and
.code w-ifcontinued
functions have Lisp Boolean return semantics, unlike their C language
counterparts: they return
.code t
or
.codn nil ,
rather than zero or nonzero. The others return integer values.
.coNP Function @ exec
.synb
.mets (exec < file <> [ args ])
.syne
.desc
The exec function replaces the process image with the executable specified
by string argument
.metn file .
The executable is found by searching the system path.
The
.meta file
argument becomes the first argument of the executable, argument zero.
If
.meta args
is specified, it is a list of strings. These are passed as the additional
arguments of the executable.
If
.code exec
fails, an exception of type
.code file-error
is thrown.
.coNP Function @ exit*
.synb
.mets (exit* << status )
.syne
.desc
The
.code exit*
function terminates the entire process (running \*(TX image), specifying
the termination status to the operating system. The
.meta status
argument is treated exactly like that of the
.code exit
function. Unlike that function, this one exits the process immediately,
cleaning up only low-level operating system resources such as closing file
descriptors and releasing memory mappings, without performing user-space
cleanup.
.code exit*
is implemented using a call to the POSIX function
.codn _exit .
.coNP Functions @ getpid and @ getppid
.synb
.mets (getpid)
.mets (getppid)
.syne
.desc
These functions retrieve the current process ID and the parent process ID
respectively. They are wrappers for the POSIX functions
.code getpid
and
.codn getppid .
.coNP Function @ daemon
.synb
.mets (daemon < nochdir-p << noclose-p )
.syne
.desc
This is a wrapper for the function
.code daemon
which originated in BSD Unix.
It returns
.code t
if successful,
.code nil
otherwise, and the
.code errno
variable is set in that case.
.SS* Unix File Descriptors
.coNP Function @ open-fileno
.synb
.mets (open-fileno < file-descriptor <> [ mode-string ])
.syne
.desc
The
.code open-fileno
function creates a \*(TX stream over a file descriptor. The
.meta file-descriptor
argument must be an integer denoting a valid file descriptor.
For a description of
.metn mode-string ,
see the
.code open-file
function.
.coNP Function @ fileno
.synb
.mets (fileno << stream )
.syne
.desc
The
.code fileno
function returns the underlying file descriptor of
.metn stream ,
if it has one. Otherwise, it returns
.codn nil .
This is equivalent to querying the stream using
.code stream-get-prop
for the
.code :fd
property.
.coNP Function @ dupfd
.synb
.mets (dupfd < old-fileno <> [ new-fileno ])
.syne
.desc
The
.code dupfd
function provides an interface to the POSIX functions
.code dup
or
.codn dup2 ,
when called with one or two arguments, respectively.
.coNP Function @ pipe
.synb
.mets (pipe)
.syne
.desc
The
.code pipe
function, if successful, returns a pair of integer file descriptors
as a cons cell pair. The descriptor in the
.code car
field of the pair is the read end of the pipe.
The
.code cdr
holds the write end.
If the function fails, it throws an exception of type
.codn file-error .
.coNP Function @ close
.synb
.mets (close < fileno <> [ throw-on-error-p ])
.syne
.desc
The
.code close
function passes the integer descriptor
.meta fileno
to the POSIX
.code close
function. If the operation is successful, then
.code t
is returned. Otherwise an exception of type
.code file-error
is thrown, unless the
.meta throw-on-error-p
argument is present, with a true value. In that case,
.code close
indicates failure by returning
.codn nil .
.coNP Function @ poll
.synb
.mets (poll < poll-list <> [ timeout ])
.syne
.desc
The
.code poll
function suspends execution while monitoring one or more file descriptors
for specified events. It is a wrapper for the same-named POSIX function.
The
.meta poll-list
argument is a list of
.code cons
pairs. The
.code car
of each pair is either an integer file descriptor, or else a stream
object which has a file descriptor (the
.code fileno
function can be applied to that stream to retrieve a descriptor).
The
.code cdr
of each pair is an integer bit mask specifying the events, whose
occurrence the file descriptor is to be monitored for. The variables
.codn poll-in ,
.codn poll-out ,
.code poll-err
and several others are available which hold bitmask values corresponding
to the constants
.codn POLLIN ,
.codn POLLOUT ,
.code POLLERR
used with the C language
.code poll
function.
The
.meta timeout
argument, if absent, defaults to the value -1, which specifies an indefinite
wait. A nonnegative value specifies a wait with a timeout, measured in
milliseconds.
The function returns a list of pairs representing the descriptors or streams
which were successfully polled. If the function times out, it returns an
empty list. If an error occurs, an exception is thrown.
The returned list is similar in structure to the input list. However, it holds
only entries which polled positive. The
.code cdr
of every pair now holds a bitmask of the events which were to have occurred.
.coNP Function @ isatty
.synb
.mets (isatty << stream )
.mets (isatty << fileno )
.syne
.desc
The
.code isatty
function provides access to the underlying POSIX function of the same name.
If the argument is a
.meta stream
object which has a
.code :fd
property, then the file descriptor number is retrieved. The behavior is
then as if that descriptor number were passed as the
.meta fileno
argument.
If the argument is not a
.metn stream ,
it must be a
.metn fileno :
an integer in the representation range of the C type
.codn int .
The POSIX
.code isatty
is invoked on this integer. If it that returns 1, then
.code t
is returned, otherwise
.codn nil .
.SS* Unix File Control
.coNP Variables @, o-accmode @, o-rdonly @, o-wronly @, o-rdwr @, o-creat @, o-noctty @, o-trunc @, o-append @, o-nonblock @, o-sync @, o-async @, o-directory @, o-nofollow @, o-cloexec @, o-direct @ o-noatime and @ o-path
.desc
These variables correspond to the POSIX file mode constants
.codn O_ACCMODE ,
.codn O_RDONLY ,
.codn O_WRONLY ,
.codn O_RDWR ,
.codn O_CREAT ,
.codn O_NOCTTY ,
and so forth.
The availability of the variables
.codn o-async ,
.codn o-directory ,
.codn o-nofollow ,
.codn o-cloexec ,
.codn o-direct ,
.code o-noatime
and
.code o-path
depends on the host platform.
Some of these flags may be set or cleared on an existing file descriptor
using the
.code f-setfl
command of the
.code fcntl
function, in accordance with POSIX and the host platform documentation.
.coNP Variables @, seek-set @ seek-cur and @ seek-end
.desc
These variables correspond to the ISO C constants
.codn SEEK_SET ,
.code SEEK_CUR
and
.codn SEEK_END .
These values, usually associated with the ISO C
.code fseek
function, are also used in the
.code fcntl
file locking interface as values of the
.code whence
member of the
.code flock
structure.
.coNP Variables @, f-dupfd @, f-dupfd-cloexec @, f-getfd @, f-setfd @, f-getfl @, f-setfl @, f-getlk @ f-setlk and @ f-setlkw
.desc
These variables correspond to the POSIX
.code fcntl
command constants
.codn F_DUPFD ,
.codn F_GETFD ,
.codn F_SETFD ,
and so forth. Availability of the
.code f-dupfd-cloexec
depends on the host platform.
.coNP Variable @ fd-cloexec
.desc
The
.code fd-cloexec
variable corresponds to the POSIX
.code FD_CLOEXEC
constant. It denotes the flag which may be set by the
.code fd-setfd
command of the
.code fcntl
function.
.coNP Variables @, f-rdlck @ f-wrlck and @ f-unlck
.desc
These variables correspond to the POSIX lock type constants
.codn F_RDLCK ,
.code F_WRLCK
and
.codn F_UNLCK .
They specify the possible values of the
.code type
field of the
.code flock
structure.
.coNP Structure @ flock
.synb
.mets (defstruct flock nil
.mets \ \ type whence
.mets \ \ start len
.mets \ \ pid)
.syne
.desc
The
.code flock
structure corresponds to the POSIX structure of the same name.
An instance of this structure must be specified as the third
argument of the
.code fcntl
function when the
.meta command
argument is one of the values
.codn f-getlk ,
.code f-setlk
or
.codn f-setlkw .
All slots must be initialized with appropriate values before
calling
.code fcntl
with the exception that the
.code f-getlk
command does not access the existing value of the
.code pid
slot.
.coNP Function @ fcntl
.synb
.mets (fcntl < fileno < command <> [ arg ])
.syne
.desc
The
.code fcntl
function corresponds to the same-named POSIX function.
The
.meta fileno
and
.meta command
arguments must be integers.
The \*(TL
.code fileno
restricts the
.meta command
argument to the supported values for which symbolic variable names are provided.
Other integer
.meta command
values are rejected by returning -1 and setting the
.code errno
variable to
.codn EINVAL .
Whether the third argument is required, and what type it must be, depends on the
.meta command
value. Commands not requiring the third argument ignore it if it is passed.
.code fcntl
commands for which POSIX requires an argument of type
.code long
require
.meta arg
to be an integer.
The file locking commands
.codn f-getlk ,
.code f-setlk
and
.code f-setlkw
require
.meta arg
to be a
.code flock
structure.
The
.code fcntl
function doesn't throw an error if the underlying POSIX function indicates
failure; the underlying function's return value is converted to a Lisp integer
and returned.
.SS* Unix Itimers
Itimers ("interval timers") can be used in combination with signal handling to
execute asynchronous actions. Itimers deliver delayed, one-time signals,
and also periodically recurring signals. For more information, consult the
POSIX specification.
.coNP Variables @, itimer-real @ itimer-virtual and @ itimer-prof
.desc
These variables correspond to the POSIX constants
.codn ITIMER_REAL ,
.code ITIMER_VIRTUAL
and
.codn ITIMER_PROF .
Their values are suitable as the
.meta timer
argument of the
.code getitimer
and
.code setitimer
functions.
.coNP Functions @ getitimer and @ setitimer
.synb
.mets (getitimer << timer )
.mets (setitimer < timer < interval << value )
.syne
.desc
The
.code getitimer
function returns the current value of the specified timer,
which must be
.codn itimer-real ,
.code itimer-virtual
or
.codn itimer-prof .
The current value consists of a list of two integer values, which
represents microseconds. The first value is the timer interval,
and the second value is the timer's current value.
Like
.codn getitimer ,
the
.code setitimer
function also retrieves the specified timer.
In addition, it stores a new value in the timer,
which is given by the two arguments, expressed in microseconds.
.SS* Unix Syslog
On platforms where a Unix-like syslog API is available, \*(TX exports this
interface. \*(TX programs can configure logging via the
.code openlog
function,
control the logging mask via
.code setlogmask
and generate logs via
.codn syslog ,
or using special syslog streams.
.coNP Variables @, log-pid @, log-cons @, log-ndelay @, log-odelay @ log-nowait and @ log-perror
.desc
These variables take on the values of the corresponding C preprocessor
constants from the
.code <syslog.h>
header:
.codn LOG_PID ,
.codn LOG_CONS ,
etc.
These integer values represent logging options used in the
.meta options
argument to the
.code openlog
function.
Note:
.code LOG_PERROR
is not in POSIX, and so
.code log-perror
might not be available.
See notes about
.code LOG_AUTHPRIV
in the documentation for
.codn log-authpriv .
.coNP Special variables @, log-user @, log-daemon @ log-auth and @ log-authpriv
.desc
These variables take on the values of the corresponding C preprocessor
constants from the
.code <syslog.h>
header:
.codn LOG_USER ,
.codn LOG_DAEMON ,
.code LOG_AUTH
and
.codn LOG_AUTHPRIV .
These are the integer facility codes specified in the
.code openlog
function.
Note:
.code LOG_AUTHPRIV
is not in POSIX, and so
.code log-authpriv
might not be available.
For portability use code like
.code "(or (symbol-value 'log-authpriv) 0)"
to evaluate to 0 if
.code log-authpriv
doesn't exist, or else check for its existence
using
.codn "(boundp 'log-authpriv)" .
.coNP Variables @, log-emerg @, log-alert @, log-crit @, log-err @, log-warning @, log-notice @ log-info and @ log-debug
.desc
These variables take on the values of the corresponding C preprocessor
constants from the
.code <syslog.h>
header:
.codn LOG_EMERG ,
.codn LOG_ALERT ,
etc.
These are the integer priority codes specified in the
.code syslog
function.
.coNP The @ *stdlog* special variable
.desc
The
.code *stdlog*
variable holds a special kind of stream: a syslog stream. Each
newline-terminated line of text sent to this stream becomes a log message.
The stream internally maintains a priority value that is applied
when it generates messages. By default, this value is that of
.codn log-info .
The stream holds the priority as the value of the
.code :prio
stream property, which may be changed with the
.code stream-set-prop
function.
The latest priority value which has been configured on the stream is used
at the time the newline character is processed and the log message
is generated, not necessarily the value which was in effect at the time the
accumulation of a line began to take place.
Messages sent to
.code *stdlog*
are delimited by newline characters. That is to say, each line of
text written to the stream is a new log.
.coNP Function @ openlog
.synb
.mets (openlog < id-string >> [ options <> [ facility ]])
.syne
.desc
The
.code openlog
function is a wrapper for the
.code openlog
C function, and the
arguments have the same semantics. It is not necessary to use
.code openlog
in order
to call the
.code syslog
function or to write data to
.codn *stdlog* .
The call is necessary in order to override the default identifying string, to
set options, such as having the PID (process ID) recorded in log messages, and
to specify the facility.
The
.meta id-string
argument is mandatory.
The
.meta options
argument is a bitwise mask (see the logior function) of option
values such as
.code log-pid
and
.codn log-cons .
If it is missing, then a value of 0 is
used, specifying the absence of any options.
The
.meta facility
argument is one of the values
.codn log-user ,
.code log-daemon
or
.codn log-auth .
If it is missing, then
.code log-user
is assumed.
.coNP Function @ closelog
.synb
.mets (closelog)
.syne
.desc
The
.code closelog
function is a wrapper for the C function
.codn closelog .
.coNP Function @ setlogmask
.synb
.mets (setlogmask << bitmask-integer )
.syne
.desc
The
.code setlogmask
function interfaces to the corresponding C function, and has the
same argument and return value semantics. The
.meta bitmask-integer
argument is a mask of priority
values to enable. The return value is the prior value. Note that if the
argument is zero, then the function doesn't set the mask to zero; it only
returns the current value of the mask.
Note that the priority values like
.code log-emerg
and
.code log-debug
are integer
enumerations, not bitmasks. These values cannot be combined directly to create
a bitmask. Rather, the
.code mask
function should be used on these values.
.TP* Example:
.verb
;; Enable LOG_EMERG and LOG_ALERT messages,
;; suppressing all others
(setlogmask (mask log-emerg log-alert))
.brev
.coNP Function @ syslog
.synb
.mets (syslog < priority < format << format-arg *)
.syne
.desc
The
.code syslog
function is the interface to the
.code syslog
C function. The
.code printf
formatting capabilities of the function are not used;
the
.meta format
argument follows the conventions of the \*(TL
.code format
function instead. Note in particular that
the
.code %m
convention for interpolating the value of strerror(errno) which is
available in some versions of the
.code syslog
C function is currently not supported.
Note that syslog messages are not newline-terminated.
.SS* Unix Path Globbing
On platforms where the POSIX
.code glob
function is available \*(TX provides this functionality in
the form of a like-named function, and some numeric constants.
\*(TX also provides access the
.code fnmatch
function, where available.
.coNP Variables @, glob-err @, glob-mark @, glob-nosort @, glob-nocheck @, glob-noescape @, glob-period @, glob-altdirfunc @, glob-brace @, glob-nomagic @, glob-tilde @ glob-tilde-check and @ glob-onlydir
.desc
These variables take on the values of the corresponding C preprocessor
constants from the
.code <glob.h>
header:
.codn GLOB_ERR ,
.codn GLOB_MARK ,
.codn GLOB_NOSORT ,
etc.
These values are passed as the optional second argument of the
.code glob
function. They are bitmasks and so multiple values can be combined
using the
.code logior
function.
Note that the
.codn glob-period ,
.codn glob-altdirfunc ,
.codn glob-brace ,
.codn glob-nomagic ,
.codn glob-tilde ,
.code glob-tilde-check
and
.code glob-onlydir
variables may not be available. They are extensions in the GNU C library
implementation of
.codn glob .
.coNP Function @ glob
.synb
.mets (glob < pattern >> [ flags <> [ errfun ]])
.syne
.desc
The
.code glob
function is a interface to the Unix function of the same name.
The
.meta pattern
argument must be a string, which holds a glob pattern: a pattern which
matches zero or more path names, similar to a regular expression.
The function tries to expand the pattern and return a list of strings
representing the matching path names in the file system.
If there are no matches, then an empty list is returned.
The optional
.meta flags
argument defaults to zero. If given, it may be a bitwise combination of the
values of the variables
.codn glob-err ,
.codn glob-mark ,
.code glob-nosort
and others.
If the
.meta errfun
argument is specified, it gives a callback function which is invoked
when
.code glob
encounters errors accessing paths. The function takes two arguments:
the pathname and the
.code errno
value which occurred for that pathname. The function's return value is
Boolean. If the function returns true, then
.code glob
will terminate.
The
.meta errfun
may terminate the traversal by a nonlocal exit, such as by throwing
an exception or performing a block return.
The
.meta errfun
may not re-enter the
.code glob
function. This situation is detected and diagnosed by an exception.
The
.meta errfun
may not capture a continuation across the error boundary. That is to say,
code invoked from the error may not capture a continuation up to a prompt
which surrounds the
.code glob
call. Such an attempt is detected and diagnosed by an exception.
Details of the semantics of the
.code glob
function, and the meaning of all the
.meta flags
arguments are given in the documentation for the C function.
.coNP Variables @, fnm-pathname @, fnm-noescape @, fnm-period @, fnm-leading-dir @ fnm-casefold and @ fnm-extmatch
.desc
These variables take on the values of the corresponding C preprocessor
constants from the
.code <fnmatch.h>
header:
.codn FNM_PATHNAME ,
.codn FNM_NOESCAPE ,
.codn FNM_PERIOD ,
etc.
These values are bit masks which may be combined with the
.code logior
function to form the optional third
.meta flags
argument of the
.code fnmatch
function.
Note that the
.codn fnm-leading-dir ,
.code fnm-case-fold
and
.code fnm-extmatch
may not be available. They are GNU extensions, found in the GNU C library.
.coNP Function @ fnmatch
.synb
.mets (fnmatch < pattern < string <> [ flags ]])
.syne
.desc
The
.code fnmatch
function, if available, provides access
to the like-named POSIX C library function.
The
.meta pattern
argument specifies a POSIX-shell-style file pattern matching expression.
Its exact features and dialect are controlled by
.metn flags .
If
.meta string
matches
.meta pattern
then
.code t
is returned. If there is no match, then
.code nil
is returned. If the C function indicates that an error has occurred,
an exception is thrown.
.SS* Unix Filesystem Traversal
On platforms where the POSIX
.code nftw
function is available \*(TX provides this functionality in
the form of the analogous Lisp function
.codn ftw ,
accompanied by some numeric constants.
Likewise, on platforms where the POSIX functions
.code opendir
and
.code readdir
are available, \*(TX provides the functionality in the form of same-named
Lisp functions, a structure type named
.code dirent
and some accompanying numeric constants.
.coNP Variables @, ftw-phys @, ftw-mount @, ftw-chdir @ ftw-depth and @ ftw-actionretval
.desc
These variables hold numeric values that may be combined into a single
bitmask bitmask value using the
.code logior
function. This value is suitable as the
.meta flags
argument of the
.code ftw
function.
These variables corresponds to the C constants
.codn FTW_PHYS ,
.codn FTW_MOUNT ,
.IR "et cetera" .
Note that
.code ftw-actionretval
is a GNU extension that is not available on all platforms. If the platform's
.code nftw
function doesn't have this feature, then this variable is not defined.
.coNP Variables @, ftw-f @, ftw-d @, ftw-dnr @, ftw-ns @, ftw-sl @ ftw-dp and @ ftw-sln
.desc
These variables provide symbolic names for the integer values that are
passed as the
.code type
argument of the callback function called by
.codn ftw .
This argument classifies the kind of file system node visited, or
error condition encountered.
These variables correspond to the C constants
.codn FTW_F ,
.codn FTW_D ,
.IR "et cetera" .
Not all of them are present. If the underlying platform doesn't have
a given constant, then the corresponding variable doesn't exist in \*(TX.
.coNP Variables @, ftw-continue @, ftw-stop @ ftw-skip-subtree and @ ftw-skip-siblings
.desc
These variables are defined if the variable
.code ftw-actionretval
is defined.
If the value of
.code ftw-actionretval
is included in the
.meta flags
argument of
.codn ftw ,
then the callback function can use the values of these variables
as return codes. Ordinarily, the callback returns zero to continue
the search and nonzero to stop.
These variables correspond to the C constants
.codn FTW_CONTINUE ,
.codn FTW_STOP ,
.IR "et cetera" .
.coNP Function @ ftw
.synb
.mets (ftw < path-or-list < callbackfun >> [ flags <> [ nopenfd ]])
.mets >> [ callbackfun < path < type < stat-struct < level << base ]
.syne
.desc
The
.code ftw
function provides access to the
.code nftw
POSIX C library function.
Note that the
.meta flags
and
.meta nopenfd
arguments are reversed with respect to the C language interface.
They are both optional;
.meta flags
defaults to zero, and
.meta nopenfd
defaults to 20.
The
.meta path-or-list
argument may be a string specifying the top-level path name that
.code ftw
shall visit. Or else,
.meta path-or-list
may be a list. If it is a list, then
.code ftw
recursively invokes itself over each of the elements, taking
that element as the
.meta path-or-name
argument of the recursive call, passing down all other argument
values as-is.
The traversal stops when any recursive invocation of
.code ftw
returns a value other than
.code t
or
.codn nil ,
and that value is returned. If
.code t
or
.code nil
is returned, the traversal continues with the
application of
.code ftw
to the next list element, if any.
If the list is completely traversed, and some recursive
invocations of
.code ftw
return
.codn t ,
then the return value is
.codn t .
If all recursive invocations return
.code nil
then
.code nil
is returned.
If the list is empty,
.code t
is returned.
The
.code ftw
function walks the filesystem, as directed by the
.meta path-or-list
argument and
.meta flags
bitmask arguments.
For each visited entry, it calls the supplied
.meta callbackfun
function, which receives five arguments. If this function returns
normally, it must return either
.codn nil ,
.codn t ,
or an integer value in the range of the C type
.codn int .
The
.code ftw
function can continue the traversal by returning any non-integer value,
or the integer value zero.
If
.code ftw-actionretval
is included in the
.meta flags
bitmask, then the only integer code which continues the traversal without
any special semantics is
.code ftw-continue
and only
.code ftw-stop
stops the traversal. (Non-integer return values behave like
.codn ftw-continue ).
The
.meta path
argument of
.meta callbackfun
gives the path of the
visited filesystem object.
The
.meta type
argument is an integer code which indicates the kind of
object that is visited, or an error situation in visiting
that filesystem entry. See the documentation for
.code ftw-f
and
.code ftw-d
for possible values.
The
.meta stat-struct
argument provides information about the filesystem object
as a
.code stat
structure, the same kind of object as what is returned by the
.code stat
function.
The
.meta level
argument is an integer value representing the directory level
depth. This value is obtained from the C structure
.code FTW
in the
.code nftw
C API.
The
.meta base
argument indicates the length of the directory part of the
.code path
argument. Characters in excess of this length are thus the base name of the
visited object, and the expression
.mono
.meti >> [ path << base ..:]
.onom
calculates the base name.
The
.code ftw
function returns either
.code t
upon successful completion, or an integer value returned by
.metn callbackfun ,
as described below.
On failure it throws an exception derived from
.codn file-error ,
whose specific type is based on analyzing the POSIX
.code errno
value.
The
.meta callbackfun
may return a value of any type. If it returns a value that is not of integer
type, then zero is returned to the
.code nftw
function and traversal continues. Similarly, traversal continues
if the function returns an integer zero.
If
.meta callbackfun
returns an integer value, that value must be in the range of the C type
.codn int .
That
.code int
value is returned to
.codn nftw .
If the value is not zero, and is not -1, then
.code nftw
will terminate, and return that value, which
.code ftw
then returns. If the value is -1, then
.code nftw
is deemed to have failed, and
.code ftw
will thrown an exception of type
.codn file-error ,
whose specific type is based on analyzing the POSIX
.code errno
value. If the value is zero, then the traversal continues.
The
.meta callbackfun
may also terminate the traversal by a nonlocal exit, such as by throwing
an exception or performing a block return.
The
.meta callbackfun
may not re-enter the
.code ftw
function. This situation is detected and diagnosed by an exception.
The
.meta callbackfun
may not capture a continuation across the callback boundary. That is to say,
code invoked from the callback may not capture a continuation up to a prompt
which surrounds the
.code ftw
call. Such an attempt is detected and diagnosed by an exception.
.coNP Structure @ dirent
.synb
.mets (defstruct dirent nil
.mets \ \ name ino type)
.syne
.desc
Objects of the
.code dirent
structure type are returned by the
.code readdir
function.
The
.code name
slot is a character string giving the name of the directory entry.
If the
.code opendir
function's
.meta prefix-p
argument is specified as true,
then
.code readdir
operations produce
.code dirent
structures whose
.code name
slot is a path formed by combining the directory path with the directory
entry name.
The
.code ino
slot is an integer giving the inode number of the object named by the
directory entry.
The
.code type
slot indicates the type of the object, which is an integer code. Support for
this member is platform-dependent. If the directory traversal doesn't provide
the information, then this slot takes on the
.code nil
value. In this situation, the
.code dirstat
function may be used to back-fill the missing information.
.coNP Variables @, dt-blk @, dt-chr @, dt-dir @, dt-fifo @, dt-lnk @, dt-reg @ dt-sock and @ dt-unknown
.desc
These variables give the possible type code values exhibited by the
.code type
slot of the
.code dirent
structure.
If the underlying host platform does not feature a
.code d_type
field in the
.code dirent
C structure, then almost all these variables are defined anyway using the values that they
have on GNU/Linux.
These definitions are useful in conjunction with the
.code dirstat
function below.
If the host platform does does not feature a
.code d_type
field in the
.code dirent
structure, then the variable
.code dt-unknown
is not defined. Note: the application can take advantage of this this to detect
the situation, in order to conditionally define code in such a way that some
run-time checking is avoided.
.coNP Function @ opendir
.synb
.mets (opendir < dir-path <> [ prefix-p ])
.syne
.desc
The
.code opendir
function initiates a traversal of the directory object named by the
string argument
.metn dir-path ,
which must be the name of a directory. If
.code opendir
is not able to open the directory traversal, it throws an exception of type
.codn system-error .
Otherwise an object of type
.code dir
is returned, which is a directory traversal handle suitable as an argument
for the
.code readdir
function.
If the
.meta prefix-p
argument is specified and has a true value, then it indicates that
the subsequent
.code readdir
operations should produce the value of the
.code name
slot of the
.code dirent
structure by combining
.meta dir-path
with the directory entry name using the
.code path-cat
function.
.coNP Function @ readdir
.synb
.mets (readdir < dir-handle <> [ dirent-struct ])
.syne
.desc
The
.code readdir
function returns the next available directory entry from the directory
traversal controlled by
.metn dir-handle ,
which must be a
.code dir
object returned by
.codn opendir .
If no more directory entries remain, then
.code readdir
returns
.codn nil .
In this situation, the
.meta dir-handle
is also closed, as if by a call to
.codn closedir .
Otherwise, the next available directory entry is returned as a
structure object of type
.codn dirent .
The
.code readdir
function internally skips and does not report the
.str .
(dot)
and
.str ..
(dotdot) directory entries.
If the
.meta dirent-struct
argument is specified, then it must be a
.code dirent
structure, or one which has all of the required slots.
In this case,
.code readdir
stores values in that structure and returns it. If
.meta dirent-struct
is absent, then
.code readdir
allocates a fresh
.code dirent
structure.
.coNP Function @ closedir
.synb
.mets (opendir << dir-handle )
.syne
.desc
The
.code closedir
function terminates the directory traversal managed by
.metn dir-handle ,
releasing its resources.
If this has already been done before,
.code closedir
returns
.codn nil ,
otherwise it returns
.codn t .
Further
.code readdir
calls on the same
.meta dir-handle
return
.codn nil .
Note: the
.code readdir
function implicitly closes
.meta dir-handle
when the handle indicates that no more directory entries remain to be traversed.
.coNP Function @ dirstat
.synb
.mets (dirstat < dirent-struct >> [ dir-path <> [ struct ]])
.syne
.desc
The
.code dirstat
function invokes
.code lstat
on the object represented by the
.code dirent
structure
.metn dirent-struct ,
sets the
.code type
slot of the
.meta dirent-struct
accordingly, and then returns the value that
.code lstat
returned.
If the
.meta struct
argument is specified, it is passed to
.codn lstat .
The
.meta dir-path
parameter must be specified, if the
.code name
slot of
.meta dirent-struct
is a simple directory entry name, rather than the full path to the object.
In that case, the slot's value gives the effective path.
If the
.code name
slot is already a path (due to, for instance, a true value of
.meta prefix-p
having been passed to
.codn opendir )
then
.meta dir-path
must not be specified.
If
.meta dir-path
is specified, then its value is combined with the
.meta name
slot of
.meta dirent-struct
using
.code path-cat
to form the effective path.
The
.code lstat
function is invoked on the effective path, and if it succeeds,
then type information is obtained from the resulting
structure to set the value of the
.code type
slot of
.metn dirent-struct .
The same structure that was returned by
.code lstat
is then returned.
.SS* Unix Sockets
On platforms where the underlying system interface is available, \*(TX provides
a sockets library for communicating over Internet networks, or over Unix
sockets.
Stream as well as datagram sockets are supported.
The classic Version 4 of the Internet protocol is supported, as well
as IP Version 6.
Sockets are mapped to \*(TX streams. The
.code open-socket
function creates a socket of a specified type, in a particular address family.
This socket is actually a stream (always, even if it isn't used for
data transfer, but only as a passive contact point).
The functions
.codn sock-connect ,
.codn sock-bind ,
.codn sock-listen ,
.code sock-accept
and
.code sock-shutdown
are used for enacting socket communication scenarios.
Stream sockets use ordinary streams, re-using the same underlying framework
that is used for file I/O and process types.
Datagram socket streams are implemented using special datagram socket streams.
Datagram socket streams eliminate the need for operations analogous to the
.code sendto
and
.code recvfrom
socket API functions, even in server programs which handle multiple
clients. An overview of datagrams is treated in the following section,
Datagram Socket Streams.
The
.code getaddrinfo
function is provided for resolving host names and services to IPv4 and IPv6
addresses.
Several structure types are provided for representing socket addresses,
and options for
.codn getaddrinfo .
Various numeric constants are also provided:
.codn af-unix ,
.codn af-inet ,
.codn af-inet6 ,
.codn sock-stream ,
.code sock-dgram
and others.
.NP* Datagram Socket Streams
Datagram socket streams are a new paradigm unique to \*(TX which
attempts to unify the programming model of stream and datagram
sockets.
A datagram socket stream is created by the
.code open-socket
function, when the
.code sock-dgram
socket type is specified. Another way in which a datagram socket
is created is when
.code sock-accept
is invoked on a datagram socket, and returns a new socket.
I/O is performed on datagram sockets using the regular I/O functions.
None of the functions take or return peer addresses. There are no I/O
functions which are analogous to the C library
.code recvfrom
and
.code sendto
functions which are usually used for datagram programming.
Datagram I/O assumes that the datagram datagram socket is connected to a
specific remote peer, and that peer is implicitly used for all I/O.
Datagram streams solve the message framing problem by
considering a single datagram to be an entire stream. On input, a datagram
stream holds an entire datagram in a buffer. The stream ends
(experiences the EOF condition) after the last byte of this buffer
is removed by an input operation. Another datagram will be received and
buffered if the EOF condition is first explicitly cleared with the
.code clear-error
function, and then another input operation is attempted.
On output, a datagram stream gathers data into an ever-growing output buffer
which isn't subject to any automatic flushing. An explicit
.code flush-stream
operation sends the buffer contents to the connected peer as a new
datagram, and empties the buffer. Subsequent output operations prepare
data for a new datagram. The
.code close-stream
function implicitly flushes the stream in the same way, and thus also
potentially generates a datagram.
A client-style datagram stream can be explicitly connected to a peer with the
.code sock-connect
function. This is equivalent to connecting a
datagram socket using the C library
.code connect
function. Writes on the stream will be transmitted using the C library function
.codn send .
A client-style datagram stream can also be "soft-connected" to a
peer using the
.code sock-set-peer
function. Writes on the stream will transmit data using the C library function
.code sendto
to the peer address.
A datagram server program which needs
to communicate using multiple peers is implemented by means of the
.code sock-accept
function which, unlike the C library
.code accept
function, works with datagram sockets as well as stream sockets.
The server creates a datagram socket, and uses
.code sock-bind
to bind it to a local address. Optionally, it may also call
.code sock-listen
which is a no-op on datagram sockets. Supporting this function on datagram
sockets allows program code to be more easily changed between datagram and
stream operation.
The server then uses
.code sock-accept
to accept new clients. Note that this is not possible with the C
library function
.codn accept ,
which only works with stream sockets.
The
.code sock-accept
function receives a datagram from a client, and creates a new datagram
socket stream which is connected to that client, and whose input buffer
contains the received datagram. Input operations on this stream consume
the datagram. Note that clearing the EOF condition and trying to receive
another datagram is not recommended on datagram streams returned
by
.codn sock-accept ,
since they share the same underlying operating system socket, which is
not actually connected to a specific peer. The receive operation could
receive a datagram from any peer, without any indication which peer that is.
Datagram servers should issue a new
.code sock-accept
call should be issued for each client datagram, treating it as a new
stream.
Datagram sockets ignore almost all aspects of the
.meta mode-string
passed in
.code open-socket
and
.codn sock-accept .
The only attribute not ignored is the buffer size specified
with a decimal digit character; however, it cannot be the
only item in the mode string. The string must be syntactically
valid, as described under the
.code open-file
function. The buffer size attribute controls the size used by
the datagram socket for receiving a datagram: the capture size.
A datagram socket has obtains a default capture size if one isn't
specified by the
.metn mode-string .
The default capture size is 65536 bytes for a datagram socket created by
.codn open-socket .
If a size is not passed to
.code sock-accept
via its
.meta mode-string
argument when it is invoked on a datagram socket,
that socket's size is used as the capture size of the
newly created datagram socket which is returned.
.coNP Structure @ sockaddr
.synb
.mets (defstruct sockaddr nil
.mets \ \ (:static family nil))
.syne
.desc
The
.code sockaddr
structure represents the abstract base class for socket addresses, from which
several other types are derived:
.codn sockaddr-in ,
.code sockaddr-in6
and
.codn sockaddr-un .
It has a single slot called
.code family
which is static, and initialized to
.codn nil .
.coNP Structure @ sockaddr-in
.synb
.mets (defstruct sockaddr-in sockaddr
.mets \ \ (addr 0) (port 0) (prefix 32)
.mets \ \ (:static family af-inet))
.syne
.desc
The
.code sockaddr-in
address represents a socket address used in the context of networking over
IP Version 4. It may be used with sockets in the
.code af-inet
address family.
The
.code addr
slot holds an integer denoting an abstract IPv4 address. For instance the hexadecimal
integer literal constant
.code #x7F000001
or its decimal equivalent
.code 2130706433
represents the loopback address, whose familiar "dot notation" is
.codn 127.0.0.1 .
Conversion of the abstract IP address to four bytes in network order, as
required, is handled internally.
The
.code port
slot holds the TCP or UDP port number, whose value ranges from 0 to 65535.
Zero isn't a valid port; the value is used for requesting an ephemeral port number
in active connections. Zero also appears in situations when the port number isn't required:
for instance, when the
.code getaddrinfo
function is used with the aim of looking up the address of a host, without
caring about the port number.
The
.code prefix
field is set by the function
.codn inaddr-str ,
when it recognizes and parses a prefix field in the textual representation.
The
.code family
static slot holds the value
.codn af-inet .
.coNP Structure @ sockaddr-in6
.synb
.mets (defstruct sockaddr-in6 sockaddr
.mets \ \ (addr 0) (port 0) (flow-info 0) (scope-id 0)
.mets \ \ (prefix 128)
.mets \ \ (:static family af-inet6))
.syne
.desc
The
.code sockaddr-in6
address represents a socket address used in the context of networking over
IP Version 6. It may be used with sockets in the
.code af-inet6
address family.
The
.code addr
slot holds an integer denoting an abstract IPv6 address. IPv6 addresses are
pure binary integers up to 128 bits wide.
The
.code port
slot holds the TCP or UDP port number, whose value ranges from 0 to 65535.
In IPv6, the port number functions similarly to IPv6; see
.codn sockaddr-in .
The
.code flow-info
and
.code scope-id
are special IPv6 parameters corresponding to the
.code sin6_flowinfo
and
.code sin6_scope_id
slots of the
.code sockaddr_in6
C language structure. Their meaning and use are beyond the scope of this document.
The
.code prefix
field is set by the function
.codn in6addr-str ,
when it recognizes and parses a prefix field in the textual representation.
The
.code family
static slot holds the value
.codn af-inet6 .
.coNP Structure @ sockaddr-un
.synb
.mets (defstruct sockaddr-un sockaddr
.mets \ \ path
.mets \ \ (:static family af-unix))
.syne
.desc
The
.code sockaddr-un
address represents a socket address used for inter-process communication
within a single operating system node, using the "Unix domain" sockets
of the
.code af-unix
address family.
This structure has only one slot,
.code path
which holds the rendezvous name for connecting pairs of socket endpoints.
This name appears in the filesystem.
When the
.code sockaddr-un
structure is converted to the C structure
.codn "struct sockaddr_un" ,
the
.code path
slot undergoes conversion to UTF-8. The resulting bytes are stored in the
.code sun_path
member of the C structure. If the resulting UTF-8 byte string
is larger than the
.code sun_path
array, it is silently truncated.
Note: Linux systems have support for "abstract" names which do not appear in
the filesystem. These abstract names are distinguished by starting with a null
byte. For more information, consult Linux documentation.
This convention is supported in the
.code path
slot of the
.code sockaddr-un
structure. If
.code path
contains occurrences of the pseudo-null character U+DC00, these translate
to null bytes in the
.code sun_path
member of the corresponding C structure
.codn "struct sockaddr_un" .
For example, the path
.str "\exDC00;foo"
is valid and represents an abstract address consisting of the three bytes
.str "foo"
followed by null padding bytes.
The
.code family
static slot holds the value
.codn af-unix .
.coNP Structure @ addrinfo
.synb
.mets (defstruct addrinfo nil
.mets \ \ (flags 0) (family 0) (socktype 0))
.syne
.desc
The
.code addrinfo
structure is used in conjunction with the
.code getaddrinfo
function. If that function's
.meta hints
argument is specified, it is of this type.
The purpose of the argument is to narrow down
or possibly alter the selection of addresses which
are returned.
The
.code flags
slot holds a bitwise or combination (see the
.code logior
function) of
.code getaddrinfo
flags: values given by the variables.
.codn ai-passive ,
.codn ai-numerichost ,
.codn ai-v4mapped ,
.codn ai-all ,
.code ai-addrconfig
and
.codn ai-numericserv .
These correspond to the C constants
.codn AI_PASSIVE ,
.code AI_NUMERICHOST
and so forth.
The
.code family
slot holds an address family, which may be the value of
.codn af-unspec ,
.codn af-unix ,
.code af-inet
or
.codn af-inet6 .
The
.code socktype
slot holds, a socket type. Socket types are given
by the variables
.code sock-dgram
and
.codn sock-stream .
.coNP Function @ getaddrinfo
.synb
.mets (getaddrinfo >> [ node >> [ service <> [ hints ]]])
.syne
.desc
The
.code getaddrinfo
returns a list of socket addresses based on search criteria expressed
in its arguments.
That is to say, the returned list, unless empty, contains objects of type
.code sockaddr-in
and
.codn sockaddr-in6 .
The function is implemented directly in terms of the like-named C library
function. All parameters are optional. Omitting any argument causes a null
pointer to be passed for the corresponding parameter of the C library function.
The
.meta node
and
.meta service
parameters may be character strings which specify a host name, and service.
The contents of these strings may be symbolic, like
.str www.example.com
and
.str ssh
or numeric, like
.str 10.13.1.5
and
.strn 80 .
If an argument is given for the
.code hints
parameter, it must be of type
.codn addrinfo .
The
.meta node
and
.meta service
parameters may also be given integer arguments.
An integer argument value in either of these parameters is converted to a null
pointer when calling the C
.code getaddrinfo
function. The integer values are then simply installed into every returned
address as the IP address or port number, respectively. However, if both
arguments are numeric, then no addresses are returned, since the C library
function is then called with a null node and service.
.coNP Variables @, af-unix @ af-inet and @ af-inet6
.desc
These variables hold integers which give the values of address
families. They correspond to the C constants
.codn AF_UNIX ,
.code AF_INET
and
.codn AF_INET6 .
Address family values are used in the
.meta hints
argument of the
.code getaddrinfo
function, and in the
.code socket-open
function.
Note that unlike the C language socket addressing structures,
the \*(TX socket addresses do not contain an address family slot.
That is because they indicate their family via their type.
That is to say, an object of type
.code sockaddr-in
is an address which is implicitly associated with the
.code af-inet
family via its type.
.coNP Variables @ sock-stream and @ sock-dgram
.desc
These variables hold integers which give the values of address
families. They correspond to the C constants
.code SOCK_STREAM
and
.codn SOCK_DGRAM .
.coNP Variables @, ai-passive @, ai-numerichost @, ai-v4mapped @, ai-all @ ai-addrconfig and @ ai-numericserv
.desc
These variables hold integers which are bitmasks that combine
together via bitwise or, to express the
.code flags
slot of the
.code addrinfo
structure. They correspond to the C constants
.codn AI_PASSIVE ,
.codn AI_NUMERICHOST ,
.code AI_V4MAPPED
and so forth. They influence the behavior of the
.code getaddrinfo
function.
.coNP Variables @, inaddr-any @, inaddr-loopback @ in6addr-any and @ in6addr-loopback
.desc
These integer-valued variables provide constants for commonly used IPv4
and IPv6 address values.
The value of
.code inaddr-any
and
.code in6addr-any
is zero. This address is used in binding a passive socket to all of the
external interfaces of a host, so that it can accept connections or datagrams
from all attached networks.
The
.code inaddr-loopback
variable is IPv4 loopback address, the same integer as the hexadecimal
constant
.code #x7F000001.
The
.code in6addr-loopback
is the IPv6 loopback address. Its value is 1.
.TP* Example:
.verb
;; Construct an IPv6 socket address suitable for binding
;; a socket to the loopback network, port 1234:
(new sockaddr-in6 addr in6addr-loopback port 1234)
;; Mistake: IPv4 address used with IPv6 sockaddr.
(new sockaddr-in6 addr inaddr-loopback)
.brev
.coNP Function @ open-socket
.synb
.mets (open-socket < family < type <> [ mode-string ])
.syne
.desc
The
.code open-socket
function creates a socket, which is a kind of stream.
The
.meta family
parameter specifies the address family of the socket. One of the
values
.codn af-inet ,
.code af-inet
or
.code af-inet6
should be used to create a Unix domain, Internet IPv4 or Internet IPv6
socket, respectively.
The
.meta type
parameter specifies the socket type, either
.code sock-stream
(stream socket) or
.code sock-dgram
(datagram socket).
The
.meta mode-string
specifies several properties of the stream; for a description of
.meta mode-string
parameters, refer to the
.code open-file
function. Note that the defaulting behavior for an omitted
.meta mode-string
argument is different under
.code open-socket
from other functions. Because sockets are almost always used for bidirectional
data flow, the default mode string is
.str r+b
rather than the usual
.strn r .
Rationale for including the
.str b
flag in the default mode string is that network protocols are usually defined
in a way that is independent of machine and operating system, down to the byte
level, even when they are textual. It doesn't make sense for the same \*(TX
program to see a network stream differently based on what platform it is
running on. Line ending conversion has to do with how a platform locally stores
text files, whereas network streams are almost always external formats.
Like other stream types, stream sockets are buffered and marked as no
non-real-time streams. Specifying the
.str i
mode in
.meta mode-string
marks a socket as a real-time-stream, and, if it is opened for writing
or reading and writing, changes it to use line buffering.
.coNP Function @ open-socket-pair
.synb
.mets (open-socket-pair < family < type <> [ mode-string ])
.syne
.desc
The
.code open-socket-pair
function provides an interface to the functionality of the
.code socketpair
C library function.
If successful, it creates and returns a list of two stream objects,
which are sockets that are connected together.
Note: the Internet address families
.code af-inet
and
.code af-inet6
are not supported.
The
.code mode-string
is applied to each stream. For a description, see
.code open-socket
and
.codn open-file .
.coNP Functions @ sock-family and @ sock-type
.synb
.mets (sock-family << socket )
.mets (sock-type << socket )
.syne
.desc
These functions retrieve the integer values representing the address family
and type of a socket. The argument to the
.meta socket
parameter must be a socket stream or a file or process stream. For a file stream,
both functions return
.codn nil .
An exception of type
.code type-error
is thrown for other stream types.
.coNP Accessor @ sock-peer
.synb
.mets (sock-peer << socket )
.mets (set (sock-peer << socket ) << address )
.syne
.desc
The
.code sock-peer
function retrieves the peer address
has most recently been assigned to
.metn socket .
Sockets which are not connected initially
have a peer address value of
.codn nil .
A socket which is connected to a remote peer
receives that peer's address as its
.codn sock-peer .
If a socket is connected to a remote peer via
a successful use of the
.code sock-connect
function, then its
.code sock-peer
address is set to match that of the peer.
Sockets returned by the
.code sock-accept
function are connected, and have the remote endpoint address as their
.code sock-peer
address.
Assigning an address to a
.code sock-peer
form is equivalent to using
.code sock-set-peer
to set the address.
Implementation note: the
.code sock-peer
function does not use the
.code getpeername
C library function; the association between a stream and
.code sockaddr
struct is maintained by \*(TX.
.coNP Function @ sock-set-peer
.synb
.mets (sock-set-peer < socket << address )
.syne
.desc
The
.code sock-set-peer
function stores
.meta address
into
.meta socket
as that socket's peer.
Subsequently, the
.code sock-peer
function will retrieve that address.
If
.meta address
is not an appropriate address object in the address family of
.metn socket ,
the behavior is unspecified.
.coNP Function @ sock-connect
.synb
.mets (sock-connect < socket < address <> [ timeout-usec ])
.syne
.desc
The
.code sock-connect
function connects a socket stream to a peer address.
The
.meta address
argument must be a
.code sockaddr
object of type matching the address family of the socket.
If the operation fails, an exception of type
.code socket-error
is thrown. Otherwise, the function returns
.metn socket .
If the
.meta timeout-usec
argument is specified, it must be a fixnum integer.
It denotes a connection timeout period in microseconds.
If the connection doesn't succeed within the specified timeout,
an exception of type
.code timeout-error
is thrown.
.coNP Function @ sock-bind
.synb
.mets (sock-bind < socket << address )
.syne
.desc
The
.code sock-bind
function binds a socket stream to a local address.
The
.meta address
argument must be a
.code sockaddr
object of type matching the address family of the socket.
If the operation fails, an exception of type
.code socket-error
is thrown. Otherwise, the function returns
.codn t .
Returns
.code t
if successful.
.coNP Function @ sock-listen
.synb
.mets (sock-listen < socket <> [ backlog ])
.syne
.desc
The
.code sock-listen
function prepares
.meta socket
for listening for connections. The
.meta backlog
parameter, if specified, requires an integer
argument. The default value is 16.
.coNP Function @ sock-accept
.synb
.mets (sock-accept < socket >> [ mode-string <> [ timeout-usec ]])
.syne
.desc
The
.code sock-accept
function waits for a client connection on
.metn socket ,
which must have been prepared for listening for
connections using
.code sock-bind
and
.codn sock-listen .
If the operation fails, an exception of type
.code socket-error
is thrown. Otherwise, the function returns a new socket
which is connected to the remote peer.
The peer's address may be retrieved from this socket using
.codn sock-peer .
The
.code mode-string
parameter is applied to the new socket just like the
similar argument in
.codn socket-open .
It defaults to
.strn r+ .
If the
.meta timeout-usec
argument is specified, it must be a fixnum integer.
It denotes a timeout period in microseconds.
If no peer connects for the specified timeout,
.code sock-accept
throws an exception of type
.codn timeout-error .
.coNP Variables @, shut-rd @ shut-wr and @ shut-rdwr
.desc
The values of these variables are useful as the second argument to the
.code sock-shutdown
function.
.coNP Function @ sock-shutdown
.synb
.mets (sock-shutdown < sock <> [ direction ])
.syne
.desc
The
.code sock-shutdown
function indicates that no further communication is to take place on
.meta socket
in the specified direction(s).
If the operation fails, an exception of type
.code socket-error
is thrown. Otherwise, the function returns
.codn t .
The
.code direction
parameter is one of the values given by the variables
.codn shut-rd ,
.code shut-wr
or
.codn shut-rdwr .
These values shut down communication in the read direction, write direction,
or both directions, respectively.
If the argument is omitted,
.code sock-shutdown
defaults to closing the write direction.
Notes: shutting down is most commonly requested in the write direction, to perform
a "half close". The communicating process thereby indicates that it has written
all the data which it intends to write. When the shutdown action is processed on the
remote end, that end is unblocked from waiting on any further data, and
effectively experiences an "end of stream" condition on its own socket or
socket-like endpoint, while continuing to be able to transmit data.
Shutting down in the reading direction is potentially abrupt. If it is executed
before an "end of stream" indication is received from a peer, it results in an
abortive close.
.coNP Functions @ sock-recv-timeout and @ sock-send-timeout
.synb
.mets (sock-recv-timeout < sock << usec )
.mets (sock-send-timeout < sock << usec )
.syne
.desc
The
.code sock-recv-timeout
and
.code sock-send-timeout
functions configure, respectively, receive and send timeouts on socket
.metn sock .
The
.meta usec
parameter specifies the value, in microseconds. It must be a
.code fixnum
integer.
When a receive timeout is configured on a socket, then an
exception of type
.code timeout-error
is thrown when an input operation waits for at least
.code usec
microseconds without receiving input.
Similarly, when a send timeout is configured, then an
exception of type
.code timeout-error
is thrown when an output operation waits for at least
.code usec
microseconds for the availability of buffer space in the socket.
.coNP Functions @ str-inaddr and @ str-in6addr
.synb
.mets (str-inaddr address <> [ port ])
.mets (str-in6addr address <> [ port ])
.syne
.desc
The
.code str-inaddr
and
.code str-in6addr
functions convert an IPv4 and IPv6 address, respectively, to textual
notation which is returned as a character string.
The conversion is done in conformance with RFC 5952, section 4.
IPv6 addresses representing IPv6-mapped IPv4 addresses are printed
in the hybrid notation exemplified by
.codn ::ffff:192.168.1.1 .
The
.meta address
parameter must be a non-negative integer in the appropriate range
for the address type.
If the
.meta port
number argument is supplied, it is included in the returned character string,
according to the requirements in section 6 of RFC 5952 pertaining to IPv6
addresses (including IPv6-mapped IPv6 addresses) and section 3.2.3 of RFC 3986
for IPv4 addresses. In brief, IPv6 addresses with ports are expressed as
.code [address]:port
and IPv6 addresses follow the traditional
.code address:port
pattern.
.coNP Functions @ str-inaddr-net and @ str-in6addr-net
.synb
.mets (str-inaddr-net < address <> [ width ])
.mets (str-in6addr-net < address <> [ width ])
.syne
.desc
The functions
.code str-inaddr-net
and
.code str-in6addr-net
convert, respectively, IPv4 and IPv6 network prefix addresses to
the "slash notation". For IPv6 addresses, the requirements of section
2.3 of RFC 4291 are implemented. For IPv4, section 3.1 of RFC 4632 is followed.
The condensed portion of the IP address is always determined by measuring
the contiguous extent of all-zero bits in the least significant position
of the address. For instance an IPv4 address which has at least 24 zero bits
in the least significant position, so that the only nonzero bits are in the
highest octet, is always condensed to a single decimal number: the value of
the first octet.
If the
.meta width
parameter is specified, then its value is incorporated into the returned
textual notation as the width. No check is made whether this width
large enough to span all of the nonzero bits in the address.
If
.meta width
is omitted, then it is calculated as the number of bits in the address,
excluding the contiguous all-zero bits in the least significant position:
how many times the address can be shifted to the right before a 1 appears
in the least significant bit.
.coNP Functions @ inaddr-str and @ in6addr-str
.synb
.mets (inaddr-str << string )
.mets (in6addr-str << string )
.syne
.desc
The
.code inaddr-str
and
.code in6addr-str
functions recover an IPv4 or IPv6 address from a textual representation.
If the parse is successful, the address is returned as, respectively, a
.code sockaddr-in
or
.code sockaddr-in6
structure.
If
.meta string
is a malformed address, due to any issue such as invalid syntax or
a numeric value being out of range, an exception is thrown.
The
.code inaddr-str
function recognizes the dot notation consisting of four decimal numbers
separated by period characters. The numbers must be in the range 0 to 255.
Note: superfluous leading zeros are permitted, though this is a nonstandard
extension; not all implementations of this notations support this.
A prefix may be specified in the notation as a slash followed by a decimal
number, in the range 0 to 32. In this case, the integer value of the
prefix appears as the
.code prefix
member of the returned
.code sockaddr-in
structure. Furthermore, the address is masked, so that any bits not
included in the prefix are zero. For instance, the address
.str 255.255.255.255/1
is equivalent to
.strn 128.0.0.0 ,
except that the
.code prefix
if the returned structure is 1 rather than 32.
When a prefix is not specified, the
.code prefix
member of the structure retains its default value of 32.
When the prefix is specified, the address part need not contain all four
octets; it may contain between one and four octets. Thus,
.str 192.168/16
is a valid address, equivalent to
.strn 192.168.0.0/16 .
A port number may be specified in the notation as a colon, followed by a
decimal number in the range 0 to 65535. The integer value of this port
number appears as the
.code port
member of the returned structure. An example of this notation is
.strn 127.0.0.1:23 .
A prefix and port number may both be specified; in this case the prefix must
appear first, followed by the port number. For example,
.strn "127/8:23" .
The
.code in6addr-str
function recognizes the IPv6 notation consisting of 16-bit hexadecimal pieces
separated by colons. If the operation is successful, it returns a
.code sockaddr-in6
structure. Each piece must be a value in the range 0 to FFFF.
The hexadecimal digits may be any mixture of upper and lower case. Leading
zeros are permitted.
Up to eight such pieces must be specified. If fewer pieces are specified,
then the token
.code ::
(double colon)
must appear in the address exactly once. That token denotes the condensation of
a sufficient number of zero-valued pieces to make eight pieces.
The token must be in one of three positions: it may be the leftmost element of
the address, immediately followed by a hexadecimal piece; it may be the rightmost element
of the address, preceded by a hexadecimal piece; or else, it may be in the
middle of the address, flanked on both sides by hexadecimal pieces.
The
.code in6addr-str
also recognizes the special notation for IPv6-mapped IPv4 addresses. This
notation consists of the address string
.str ::FFFF
which may appear in any upper/lower case mixture, possibly with leading
zeros, followed by an IPv4 address given in the four-octet dot notation.
For example,
.strn ::FFFF:127.0.0.1 .
A prefix may be specified using a slash, followed by a decimal number in the
range 0 to 128. The handling of the prefix is similar to that of
.code inaddr-str
except that pieces of the address may not be omitted. Condensing the
pieces of the IPv6 address is always done by means of the
.code ::
token, whether or not a prefix is present. Furthermore, the octets specified in
the IPv6-mapped IPv4 notation must all be present, regardless of the prefix.
A port number may be specified in the notation as follows: the entire address,
including any slash-separated prefix, must appear surrounded in square
brackets. The closing square bracket must be followed by a colon and one or
more digits denoting a decimal number in the range 0 to 65535. For instance
.strn "[1:2:3::4/64]:1234".
.SS* Unix Terminal Control
\*(TX provides access to the terminal control "termios" interfaces defined by
POSIX, and some of the extensions to it in Linux. By using termios, programs
can control serial devices, consoles and virtual terminals. Terminal control
in POSIX revolves around a C language structure called
.codn "struct termios" .
This is mirrored in a \*(TL structure also called
.codn termios .
Like-named \*(TL functions are provided which correspond to the C functions
.codn tcgetattr ,
.codn tcsetattr ,
.codn tcsendbreak ,
.codn tcdrain ,
.code tcflush
and
.codn tcflow .
These have somewhat different argument conventions. The TTY device is specified last,
so that it can conveniently default to the
.code *stdin*
stream. A TTY device can be specified as either a stream object or a numeric
file descriptor.
The functions
.codn cfgetispeed ,
.codn cfgetospeed ,
.code cfsetispeed
and
.code cfsetospeed
are not provided, because they are unnecessary. Device speed (informally, "baud rate")
is specified directly as a integer value in the
.code termios
structure. The \*(TL termios functions automatically convert between integer
values and the speed constants (like
.codn B38400 )
used by the C API.
All of the various termios-related constants are provided, including some non-standard
ones. They appear in lower case. For instance
.code IGNBRK
and
.code PARENB
are simply known as the predefined \*(TL variables
.code ignbrk
and
.codn parenb .
.coNP Structure @ termios
.synb
.mets (defstruct termios nil
.mets \ \ iflag oflag cflag lflag
.mets \ \ cc ispeed ospeed)
.syne
.desc
The
.code termios
structure represents the kernel level terminal device configuration.
It holds hardware related setting such as serial line speed, parity
and handshaking. It also holds software settings like translations,
and settings affecting input behaviors. The structure closely corresponds
to the C language
.code termios
structure which exists in the POSIX API.
The
.codn iflag ,
.codn oflag ,
.code cflag
and
.code lflag
slots correspond to the
.codn c_iflag ,
.codn c_oflag ,
.code c_cflag
and
.code c_lflag
members of the C structure. They hold integer values representing
bit fields.
The
.code cc
slot corresponds to the
.code c_cc
member of the C structure. Whereas the
C structure's
.code c_cc
member is an array of the C type
.codn cc_t ,
the
.code cc
slot is a vector of integers, whose values must have the same range as the
.code cc_t
type.
.coNP Variables @, ignbrk @, brkint @, ignpar @, parmrk @, inpck @, istrip @, inlcr @, igncr @, icrnl @, iuclc @, ixon @, ixany @, ixoff @ imaxbel and @ iutf8
.desc
These variables specify bitmask values for the
.code iflag
slot of the
.code termios
structure. They correspond to the C language preprocessor symbols
.codn IGNBRK ,
.codn BRKINT ,
.code IGNPAR
and so forth.
The
.code imaxbel
and
.code iutf8
variables are specific to Linux and may not be present.
Portable code should test for their presence with
.codn boundp .
The
.code iuclc
variable is a legacy feature not found on all systems.
Note: the
.code termios
methods
.code set-iflags
and
.code clear-iflags
provide a convenient means for setting and clearing combinations of
these flags.
.coNP Variables @, opost @, olcuc @, onlcr @, ocrnl @, onocr @, onlret @, ofill @, ofdel @, vtdly @, vt0 @, vt1 @, nldly @, nl0 @, nl1 @, crdly @, cr0 @, cr1 @, cr2 @, cr3 @, tabdly @, tab0 @, tab1 @, tab2 @, tab3 @, bsdly @, bs0 @, bs1 @, ffdly @ ff0 and @ ff1
.desc
These variables specify bitmask values for the
.code oflag
slot of the
.code termios
structure. They correspond to the C language preprocessor symbols
.codn OPOST ,
.codn OLCUC ,
.code ONLCR
and so forth.
The variable
.code ofdel
is Linux-specific. Portable programs should test for its presence using
.codn boundp .
The
.code olcuc
variable is a legacy feature not found on all systems.
Likewise, whether the following groups of symbols are present is
platform-specific:
.codn nldly ,
.code nl0
and
.codn nl1 ;
.codn crdly ,
.codn cr0 ,
.codn cr1 ,
.code cr2
and
.codn cr3 ;
.codn tabdly ,
.codn tab0 ,
.codn tab1 ,
.code tab2
and
.codn tab3 ;
.codn bsdly ,
.code bs0
and
.codn bs1 ;
and
.codn ffdly ,
.code ff0
and
.codn ff1 .
Note: the
.code termios
methods
.code set-oflags
and
.code clear-oflags
provide a convenient means for setting and clearing combinations of
these flags.
.coNP Variables @, csize @, cs5 @, cs6 @, cs7 @, cs8 @, cstopb @, cread @, parenb @, parodd @, hupcl @, clocal @, cbaud @, cbaudex @ cmspar and @ crtscts
.desc
These variables specify bitmask values for the
.code cflag
slot of the
.code termios
structure. They correspond to the C language preprocessor symbols
.codn CSIZE ,
.codn CS5 ,
.code CS6
and so forth.
The following are present on Linux, and may not be available
on other platforms. Portable code should test for them using
.codn boundp :
.codn cbaud ,
.codn cbaudex ,
.code cmspar
and
.codn crtscts .
Note: the
.code termios
methods
.code set-cflags
and
.code clear-cflags
provide a convenient means for setting and clearing combinations of
these flags.
.coNP Variables @, isig @, icanon @, echo @, echoe @, echok @, echonl @, noflsh @, tostop @, iexten @, xcase @, echoctl @, echoprt @, echoke @, flusho @ pendin and @ extproc
.desc
These variables specify bitmask values for the
.code lflag
slot of the
.code termios
structure. They correspond to the C language preprocessor symbols
.codn ISIG ,
.codn ICANON ,
.code ECHO
and so forth.
The following are present on Linux, and may not be available
on other platforms. Portable code should test for them using
.codn boundp :
.codn iexten ,
.codn xcase ,
.codn echoctl ,
.codn echoprt ,
.codn echoke ,
.codn flusho ,
.code pendin
and
.codn extproc .
Note: the
.code termios
methods
.code set-lflags
and
.code clear-lflags
provide a convenient means for setting and clearing combinations of
these flags.
.coNP Variables @, vintr @, vquit @, verase @, vkill @, veof @, vtime @, vmin @, vswtc @, vstart @, vstop @, vsusp @, veol @, vreprint @, vdiscard @, vwerase @ vlnext and @ veol2
.desc
These variables specify integer offsets into the vector stored in the
.code cc
slot of the
.code termios
structure. They correspond to the C language preprocessor symbols
.codn VINTR ,
.codn VQUIT ,
.code VERASE
and so forth.
The following are present on Linux, and may not be available
on other platforms. Portable code should test for them using
.codn boundp :
.codn vswtc ,
.codn vreprint ,
.codn vdiscard ,
.code vlnext
and
.codn veol2 .
.coNP Variables @, tcooff @, tcoon @ tcioff and @ tcion
.desc
These variables hold integer values suitable as the
.meta action
argument of the
.code tcflow
function. They correspond to the C language preprocessor symbols
.codn TCOOFF ,
.codn TCOON ,
.code TCIOFF
and
.codn TCION .
.coNP Variables @, tciflush @ tcoflush and @ tcioflush
.desc
These variables hold integer values suitable as the
.meta queue
argument of the
.code tcflush
function. They correspond to the C language preprocessor symbols
.codn TCIFLUSH ,
.code TCOFLUSH
and
.codn TCIOFLUSH .
.coNP Variables @, tcsanow @ tcsadrain and @ tcsaflush
.desc
These variables hold integer values suitable as the
.meta actions
argument of the
.code tcsetattr
function. They correspond to the C language preprocessor symbols
.codn TCSANOW ,
.code TCSADRAIN
and
.codn TCSAFLUSH .
.coNP Functions @ tcgetattr and @ tcsetattr
.synb
.mets (tcgetattr <> [ device ])
.mets (tcsetattr < termios >> [ actions <> [ device ]])
.syne
.desc
The
.code tcgetattr
and
.code tcsetattr
functions, respectively, retrieve and install the configuration
of the terminal driver associated with the specified device.
These functions are wrappers for the like-named POSIX C library functions,
but with different argument conventions, and operating using
a \*(TL structure.
The
.code tcgetattr
function, if successful, returns a new instance of the
.code termios
structure.
The
.code tcsetattr
function requires an instance of a
.code termios
structure as an argument to its
.meta termios
parameter.
A program may alter the settings of a terminal device by
retrieving them using
.codn tcgetattr ,
manipulating the structure returned by this function, and
then using
.code tcsetattr
to install the modified structure into the device.
The
.meta actions
argument of
.code tcsetattr
may be given as the value of one of the variables
.codn tcsanow ,
.code tcsadrain
or
.codn tcsaflush .
If it is omitted, the default is
.codn tcsadrain .
If an argument is given for
.meta device
it must be either a stream, or an integer file descriptor.
In either case, it is expected to be associated with a
terminal (TTY) device.
If the argument is omitted, it defaults to the stream currently
stored in the
.code *stdin*
stream special variable, expected to be associated with
a terminal device.
.TP* Notes:
The C
.code termios
structure usually does not have members for representing the input
and output speed. \*(TL does not use such members, in any case, even
if they are present. The speeds are encoded in the
.code cc_iflag
and
.code cc_lflag
bitmasks. When retrieving the settings, the
.code tcgetattr
function uses the POSIX functions
.code cfgetispeed
and
.code cfgetospeed
to retrieve the speed values from the C structure. These values
are installed as the
.code ispeed
and
.code ospeed
slots of the Lisp structure. A reverse conversion takes place
when setting are installed using
.codn tcsetattr :
the speed values are taken from the slots, and installed into
the C structure using
.code cfsetispeed
and
.code cfsetospeed
before the structure is passed to the C
.code tcsetattr
function.
On Linux, TTY devices do not have a separate input and output speed.
The C
.code termios
structure stores only one speed which is taken as both the input
and output speed, with a special exception. The input speed may be
programmed as zero. In that case, it is independently represented.
speed may be programmed as zero.
.coNP Function @ tcsendbreak
.synb
.mets (tcsendbreak >> [ duration <> [ device ]])
.syne
.desc
The
.code tcsendbreak
function generates a break signal on serial devices. The
.meta duration
parameter specifies the length of the break signal in milliseconds.
If the argument is omitted, the value 500 is used.
The
.meta device
parameter is exactly the same as that of the
.code tcsetattr
function.
.coNP Function @ tcdrain
.synb
.mets (tcdrain <> [ device ])
.syne
.desc
The
.code tcdrain
function waits until all queued output on a terminal
device has been transmitted. It is a direct wrapper
for the like-named POSIX C function.
The
.meta device
parameter is exactly the same as that of the
.code tcsetattr
function.
.coNP Function @ tcflush
.synb
.mets (tcflush < queue <> [ device ])
.syne
.desc
The
.code tcflush
function discards either untransmitted output data,
or received and yet unread input data, depending on the
value of the
.meta queue
argument. It is a direct wrapper for the like-named
POSIX C function.
The
.meta queue
argument should be the value of one of the variables
.codn tciflush ,
.code tcoflush
and
.codn tcioflush ,
which specify the flushing of input data, output
data or both.
The
.meta device
parameter is exactly the same as that of the
.code tcsetattr
function.
.coNP Function @ tcflow
.synb
.mets (tcflow < action <> [ device ])
.syne
.desc
The
.code tcflow
function provides bi-directional flow control on the
specified terminal device. It is a direct wrapper
for the like-named POSIX C function.
The
.meta action
argument should be the value of one of the
variables
.codn tcooff ,
.codn tcoon ,
.code tcioff
and
.codn tcion .
The
.meta device
parameter is exactly the same as that of the
.code tcsetattr
function.
.coNP Methods @, set-iflags @, set-oflags @, set-cflags @, set-lflags @, clear-iflags @, clear-oflags @ clear-cflags and @ clear-lflags
.synb
.mets << termios .(set-iflags << flags *)
.mets << termios .(set-oflags << flags *)
.mets << termios .(set-cflags << flags *)
.mets << termios .(set-lflags << flags *)
.mets << termios .(clear-iflags << flags *)
.mets << termios .(clear-oflags << flags *)
.mets << termios .(clear-cflags << flags *)
.mets << termios .(clear-lflags << flags *)
.syne
.desc
These methods of the
.code termios
structure set or clear multiple flags of the four bitmask flag fields.
The
.meta flags
arguments specify zero or more integer values. These values
are combined together bitwise, as if by the
.code logior
function to form a single effective mask.
If there are no
.meta flags
arguments, then the effective mask is zero.
The
.code set-iflags
method sets, in the
.code iflag
slot of the
.meta termios
structure, all of the bits which
are set in the effective mask. That is to say,
the effective mask is combined with the value in
.code iflag
by a
.code logior
operation, and the result is stored back into
.codn iflag .
Similarly, the
.codn set-oflags ,
.code set-cflags
and
.code set-lflags
methods operate on the
.codn oflag ,
.code cflag
and
.code lflag
slots of the structure.
The
.code clear-iflags
method clears, in the
.code iflag
slot of the
.meta termios
structure, all of the bits which are
set in the effective mask. That is to say,
the effective mask is bitwise inverted as if
by the
.code lognot
function, and then combined with the
existing value of the
.code iflag
slot using
.codn logand .
The resulting value is stored back into the
.code iflag
slot.
Similarly, the
.codn clear-oflags ,
.code clear-cflags
and
.code clear-lflags
methods operate on the
.codn oflag ,
.code cflag
and
.code lflag
slots of the structure.
Note: the methods
.codn go-raw ,
.code go-cbreak
and
.code go-canon
are provided for changing the settings to raw, "cbreak" and canonical mode.
These methods should be preferred to directly manipulating the flag and
.code cc
slots.
.TP* Example
In this example,
.code tio
is assumed to be a variable holding an instance of a
.code termios
struct:
.verb
;; clear the ignbrk, brkint, and various other flags:
tio.(clear-iflags ignbrk brkint parmrk istrip
inlcr igncr icrnl ixon)
;; set the csize and parenb flags:
tio.(set-cflags csize parenb)
.brev
.coNP Methods @ go-raw and @ go-cbreak
.synb
.mets << termios .(go-raw)
.mets << termios .(go-cbreak)
.syne
.desc
The
.code go-raw
and
.code go-cbreak
methods of the
.code termios
structure manipulate the flag slots, as well as certain elements
of the
.code cc
slot, in order to prepare the terminal settings for, respectively,
"raw" and "cbreak" mode, described below.
Note that manipulating the
.code termios
structure doesn't actually put these settings into effect in
the terminal device; the settings represented by the structure must
be installed into the device using
.codn tcsetattr .
There is no way to reverse the effect of these methods.
To precisely restore the previous terminal settings, the program
should retain a copy of the original
.code termios
structure.
"Raw" mode refers to a configuration of the terminal device driver in which input
and output is passed transparently and without accumulation, conversion or
interpretation. Input isn't buffered into lines; as soon as a single byte is
received, it is available to the program. No special input characters such as
commands for generating an interrupt or process suspend request are processed
by the terminal driver; all characters are treated as input data. Input isn't
echoed; the only output which takes place is that generated by program
output requests to the device.
"Cbreak" mode is named after a concept and function in the "curses" terminal
control library. It refers to a configuration of the terminal device driver
which is less transparent than "raw" mode. Input isn't buffered into lines,
and line editing commands are ordinary input characters, allowing
character-at-a-time input. However, most input translations are preserved,
except that the conversion of CR characters to NL is disabled. The
signal-generating characters are processed in this mode. This latter feature of
the configuration is the likely inspiration for the word "cbreak". Unless
otherwise configured, the interrupt character corresponds to the Ctrl-C key,
and "break" is another term for an interactive interruption.
.coNP Methods @ string-encode and @ string-decode
.synb
.mets << termios .(string-encode)
.mets << termios .(string-decode << string )
.syne
.desc
The
.code string-encode
method converts the terminal state stored in a
.code termios
structure into a textual format, returning that representation
as a character string.
The
.code string-decode
method parses the character representation produced by
.code string-encode
and populates the
.meta termios
structure with the settings are encoded in that string.
If a string is passed to
.code string-decode
which wasn't produced by
.codn string-encode ,
the behavior is unspecified. An exception may or may not be
thrown, and the contents of
.meta termios
may or may not be affected.
Note: the textual representation produced by
.code string-encode
is intended to be identical to that produced by the
.code -g
option of the GNU Coreutils version of the
.code stty
utility, on the same platform. That is to say, the output of
.code "stty -g"
may be used as input into
.codn string-decode ,
and the output of
.code string-encode
may be used as an argument to
.codn stty .
.SS* Unix System Identification
.coNP Structure @ utsname
.synb
.mets (defstruct utsname nil
.mets \ \ sysname nodename release
.mets \ \ version machine domainname)
.syne
.desc
The
.code utsname
structure corresponds to the POSIX structure of the same name.
An instance of this structure is returned by the
.code uname
function.
.coNP Function @ uname
.synb
.mets (uname)
.syne
.desc
The
.code uname
function corresponds to the POSIX
function of the same name. It returns an instance of the
.code utsname
structure. Each slot of the returned structure is
initialized with a character string that identifies the corresponding attribute
of the host system.
The host system might not support the reporting of the
NIS domain name. In this case, the
.code domainname
slot of the returned
.code utsname
structure will have the value
.codn nil .
.SS* Web Programming Support
.coNP Functions @ url-encode and @ url-decode
.synb
.mets (url-encode < string <> [ space-plus-p ])
.mets (url-decode < string <> [ space-plus-p ])
.syne
.desc
These functions convert character strings to and from a form which is suitable
for embedding into the request portions of URL syntax.
Encoding a string for URL use means identifying in it certain characters that
might have a special meaning in the URL syntax and representing it using
"percent encoding": the percent character, followed by the ASCII value of the
character. Spaces and control characters are also encoded, as are all byte
values greater than or equal to 127 (7F hex). The printable ASCII characters
which are percent-encoded consist of this set:
.verb
:/?#[]@!$&'()*+,;=%
.brev
More generally, strings can consists of Unicode characters, but the URL
encoding consists only of printable ASCII characters. Unicode characters in the
original string are encoded by expanding into UTF-8, and applying
percent-encoding the UTF-8 bytes, which are all in the range
.codn \exx80-\exxFF .
Decoding is the reverse process: reconstituting the UTF-8 byte sequence
specified by the URL-encoding, and then decoding the UTF-8 sequence into the
string of Unicode characters.
There is an additional complication: whether or not to encode spaces as plus,
and to decode plus characters to spaces. In encoding, if spaces are not encoded
to the plus character, then they are encoded as
.codn %20 ,
since spaces are reserved
characters that must be encoded. In decoding, if plus characters are not
decoded to spaces, then they are left alone: they become plus characters in the
decoded string.
The
.code url-encode
function performs the encoding process. If the
.code space-plus-p
argument is omitted or specified as
.codn nil ,
then spaces are encoded as
.codn %20 .
If the argument is a value other than
.codn nil ,
then spaces are encoded as the
character
.code +
.codn (plus) .
The
.code url-decode
function performs the decoding process. If the
.code space-plus-p
argument is omitted or specified as
.codn nil ,
then
.code +
.code (plus)
characters in the
encoded data are retained as
.code +
characters in the decoded strings. Otherwise,
plus characters are converted to spaces.
.coNP Functions @, html-encode @ html-encode* and @ html-decode
.synb
.mets (html-encode << text-string )
.mets (html-decode << html-string )
.syne
.desc
The
.code html-encode
and
.code html-decode
functions convert between an HTML and raw
representation of text.
The
.code html-encode
function returns a string which is based on the content of
.metn text-string ,
but in which all characters which have special meaning in HTML
have been replaced by HTML codes for representing those characters literally.
The returned string is the HTML-encoded verbatim representation of
.metn text-string .
The
.code html-decode
function converts
.metn html-string ,
which may contain HTML
character encodings, into a string which contains the actual characters
represented by those encodings.
The function composition
.code "(html-decode (html-encode text))"
returns a string which is equal to
.codn text .
The reverse composition
.code "(html-encode (html-decode html))"
does not necessarily return a string equal to
.codn html .
For instance if html is the string
.strn "<p>Hello, world!</p>" ,
then
.code html-decode
produces
.strn "<p>Hello, world!</p>" .
From this,
.code html-encode
produces
.strn "<p>Hello, world!</p>" .
The
.code html-encode*
function is similar to
.code html-encode
except that it does not encode the single and double quote characters
(ASCII 39 and 34, respectively). Text prepared by this function may not
be suitable for insertion into a HTML template, depending on the
context of its insertion. It is suitable as text placed between
tags but not necessarily as tag attribute material.
.coNP Functions @, base64-encode @ base64-decode and @ base64-decode-buf
.synb
.mets (base64-encode >> [ string | << buf ] <> [ column-width ])
.mets (base64-decode < string)
.mets (base64-decode-buf < string)
.syne
.desc
The
.code base64-encode
function converts the UTF-8 representation of
.metn string ,
or the contents of
.metn buf ,
to Base64 and returns that representation as a string.
The Base64 encoding is described in RFC 4648, section 5.
The second argument must either be a character string, or
a buffer object.
The
.code base64-decode
functions performs the opposite conversion; it extracts the
bytes encoded in a Base64 string, and decodes them as UTF-8
to return a character string.
The
.code base64-decode-buf
extracts the bytes encoded in a Base64 string, and returns
a new buffer object containing these bytes.
The Base64 encoding divides the UTF-8 representation of
.meta string
or the bytes contained in
.meta buf
into groups of six bits, each representing the values 0 to 63. Each value is
then mapped to the characters
.code A
to
.codn Z ,
.code a
to
.codn z ,
the digits
.code 0
to
.code 9
and the characters
.code +
and
.codn / .
One or two consecutive occurrences of the character
.code =
are added as padding so that the number of
non-whitespace characters is divisible by four. These characters map to
the code 0, but are understood not to contribute to the length of the
encoded message. The
.code base64-encode
function enforces this convention, but
.code base64-decode
doesn't require these padding characters.
Base64-encoding an empty string or zero-length buffer results in an empty
string.
If the
.meta column-width
argument is passed to
.codn base64-encode ,
then the Base64 encoded string, unless empty, contains newline
characters, which divide it into lines which are
.meta column-width
long, except possibly for the last line.
.coNP Functions @ base64-stream-enc and @ base64-stream-dec
.synb
.mets (base64-stream-enc < out < in >> [ nbytes <> [ column-width ]])
.mets (base64-stream-dec < out << in )
.syne
.desc
The
.code base64-stream-enc
and
.code base64-stream-dec
perform, respectively, bulk Base64 encoding and decoding between streams.
This format is described in RFC 4648, section 5.
The
.meta in
and
.meta out
arguments must be stream objects.
The
.meta out
stream must support output. In the decode operation, it must support
byte output.
The
.meta in
stream must support input. In in the encode operation it must support
byte input.
The
.code base64-stream-enc
function reads a sequence of bytes from the
.meta in
stream and writes characters to the
.meta out
stream comprising the Base64 encoding of that sequence. If the
.meta nbytes
argument is specified, it must be a non-negative integer. At most
.meta nbytes
bytes will be read from the
.meta in
stream. If
.meta nbytes
is omitted, then the operation will read from the
.meta in
stream without limit, until that stream indicates that no more bytes
are available.
The optional
.meta column-with
argument influences the formatting of Base64 output, in the same manner
as documented for the
.code base64-encode
function.
The
.code base64-stream-dec
function reads the characters of a Base64 encoding from the
.meta in
stream and writes the corresponding byte sequence to the
.meta out
stream. It keeps reading and decoding until it encounters the end of the
stream, or a character not used in Base64: a character that is not whitespace
according to
.codn chr-isspace ,
isn't any of the Base64 coding characters (not an alphanumeric character,
and not one of the characters
.codn + ,
.code /
or
.codn = .
If the function stops due to a non-Base64 character, that character is
pushed back into the
.meta in
stream.
The
.code base64-stream-enc
function returns the number of bytes encoded;
the
.code base64-stream-dec
function returns the number of bytes decoded.
.coNP Functions @, base64url-encode @ base64url-decode and @ base64url-decode-buf
.synb
.mets (base64url-encode >> [ string | << buf ] <> [ column-width ])
.mets (base64url-decode < string)
.mets (base64url-decode-buf < string)
.syne
.desc
The
.codn base64url-encode ,
.code base64url-decode
and
.code base64url-decode-buf
functions conform, in nearly every respect, to the descriptions of,
respectively,
.codn base64-encode ,
.code base64-decode
and
.codn base64-decode-buf .
The difference is that these functions use the encoding described in
section 6 of RFC 4648, rather than section 5. This means that, in the
encoding alphabet, instead of the symbols
.code +
(plus)
and
.code /
(slash)
the symbols
.code -
(minus)
and
.code _
(underline) are used.
.coNP Functions @ base64url-stream-enc and @ base64url-stream-dec
.synb
.mets (base64url-stream-enc < out < in >> [ nbytes <> [ column-width ]])
.mets (base64url-stream-dec < out << in )
.syne
.desc
The
.code base64url-stream-enc
and
.code base64url-stream-dec
functions conform, in nearly every respect, to the descriptions of,
respectively,
.code base64-stream-enc
and
.codn base64-stream-dec .
The difference is that these functions use the encoding described in
section 6 of RFC 4648, rather than section 5. This means that, in the
encoding alphabet, instead of the symbols
.code +
(plus)
and
.code /
(slash)
the symbols
.code -
(minus)
and
.code _
(underline) are used.
.SS* Filter Module
The filter module provides a trie (pronounced "try") data structure,
which is suitable for representing dictionaries for efficient filtering.
Dictionaries are unordered collections of keys, which are strings, which
have associated values, which are also strings. A trie can be used to filter
text, such that keys appearing in the text are replaced by the corresponding
values. A trie supports this filtering operation by providing an efficient
prefix-based lookup method which only looks at each input character ones, and
which does not require knowledge of the length of the key in advance.
.coNP Function @ make-trie
.synb
.mets (make-trie)
.syne
.desc
The
.code make-trie
function creates an empty trie. There is no special data type for
a trie; a trie is some existing type such as a hash table.
.coNP Function @ trie-add
.synb
.mets (trie-add < trie < key << value )
.syne
.desc
The
.code trie-add
function adds the string
.meta key
to the trie, associating
it with
.metn value .
If
.meta key
already exists in
.metn trie ,
then the value is updated with
.metn value .
The
.meta trie
must not have been compressed with
.metn trie-compress .
A trie can contain keys which are prefixes of other keys. For instance
it can contain
.str dog
and
.strn dogma .
When a trie is used for matching
and substitution, the longest match is used. If the input presents
the text
.strn doggy ,
then the match is
.strn dog .
If the input is
.strn dogmatic ,
then
.str dogma
matches.
.coNP Function @ trie-compress
.synb
.mets (trie-compress << trie )
.syne
.desc
The
.code trie-compress
function changes the representation of
.meta trie
to a representation which occupies less space and supports faster lookups.
The new representation is returned.
The compressed representation of a trie does not support the
.code trie-add
function.
The
.code trie-compress
function destructively manipulates
.metn trie ,
and may return an object
that is the same object as
.codn trie ,
or it may return a different object,
while at the same time still modifying the internals of
.metn trie .
Consequently, the program should not retain the input object
.codn trie ,
but use the returned object in its place.
.coNP Function @ trie-lookup-begin
.synb
.mets (trie-lookup-begin << trie )
.syne
.desc
The
.code trie-lookup-begin
function returns a context object for performing
an open-coded lookup traversal of a trie. The
.meta tri
argument
is expected to be a trie that was created by the
.code make-trie
function.
.coNP Function @ trie-lookup-feed-char
.synb
.mets (trie-lookup-feed-char < trie-context << char )
.syne
.desc
The
.code trie-lookup-feed-char
function performs a one character step in a trie
lookup. The
.meta trie-context
argument must be a trie context returned
by
.metn trie-lookup-begin ,
or by some previous call to
.codn trie-lookup-feed-char .
The
.meta char
argument is the next character to match.
If the lookup is successful (the match through the trie can continue
with the given character) then a new trie context object is returned.
The old trie context remains valid.
If the lookup is unsuccessful,
.code nil
is returned.
Note: determining whether a given string is stored in a trie can be
performed looking up every character of the string successively
with
.codn trie-lookup-feed-char ,
using the newly returned context
for each successive operation. If every character is found, it means
that either that exact string is found in the trie, or a prefix.
The ambiguity can be resolved by testing whether the trie has a value
at the last node using
.codn tree-value-at .
For instance, if
.str catalog
is inserted into an empty trie with value
.strn foo ,
then
.str cat
will look up successfully, being a prefix of
.strn catalog ;
however, the value at
.str cat
is
.codn nil ,
indicating that
.str cat
is only a prefix of one or more entries in the trie.
.coNP Function @ tree-value-at
.synb
.mets (trie-value-at << trie-context )
.syne
.desc
The
.code trie-value-at
function returns the value stored at the node in
in the trie given by
.metn trie-context .
Nodes which have not been given
a value hold the value
.codn nil .
.coNP Function @ filter-string-tree
.synb
.mets (filter-string-tree < filter << obj )
.syne
.desc
The
.code filter-string-tree
a tree structure similar to
.metn obj ,
in which all of the
string atoms have been filtered through
.metn filter .
The
.meta obj
argument is a string tree structure: either the symbol
.codn nil ,
denoting an empty structure; a string; or a list of tree structures. If
.meta obj
is
.codn nil ,
then
.code filter-string-tree
returns
.codn nil .
The
.meta filter
argument is a filter: it is either a trie, a function, or nil.
If
.meta filter
is
.codn nil ,
then
.code filter-string-trie
just returns
.metn obj .
If
.meta filter
is a function, it must be a function that can be called
with one argument. The strings of the string tree are filtered by passing
each one into the function and substituting the return value into the
corresponding place in the returned structure.
Otherwise if
.meta filter
is a trie, then this trie is used for filtering,
the string elements similarly to a function. For each string, a new
string is returned in which occurrences of the keys in the trie are
replaced by the values in the trie.
.coNP Function @ filter-equal
.synb
.mets (filter-equal < filter-1 < filter-2 < obj-1 << obj-2 )
.syne
.desc
The
.code filter-equal
function tests whether two string trees are equal
under the given filters.
The precise semantics can be given by this expression:
.mono
.mets (equal (filter-string-tree < filter-1 << obj-1 )
.mets \ \ \ \ \ \ (filter-string-tree < filter-2 << obj-2 ))
.onom
The string tree
.meta obj-1
is filtered through
.metn filter-1 ,
as if by the
.code filter-string-tree
function, and similarly,
.meta obj-2
is
filtered through
.metn filter-2 .
The resulting structures are compared
using
.codn equal ,
and the result of that is returned.
.coNP Function @ regex-from-trie
.synb
.mets (regex-from-trie << trie )
.syne
.desc
The
.code regex-from-trie
function returns a representation of
.meta trie
as regular expression abstract syntax, suitable for
processing by the
.code regex-compile
function.
The values stored in the trie nodes are not represented in
the regular expression.
The
.meta trie
may be one that has been compressed via
.codn trie-compress ;
in fact, a compressed
.meta trie
results in more compact syntax.
Note: this function is useful for creating a compact, prefix-compressed
regular expression which matches a list of strings.
.coNP Special variable @ *filters*
.desc
The
.code *filters*
special variable holds a hash table which associates symbols with
filters. This hash table defines the named filters used in the
\*(TX pattern language. The names are the hash table keys, and filter
objects are the values. Filter objects are one of three representations.
The value
.code nil
represents a null filter, which performs no filtering, passing the input
string through. A filter object may be a raw or compressed trie.
It may also be a Lisp function, which must be callable with one argument
of string type, and must return a string.
The application may define new filters by associating symbolic keys in
.code *filters*
with values which conform to the above representation of filters.
The behavior is unspecified if any of the predefined filters
are removed or redefined, and are subsequently used, or if the
.code *filters*
variable is replaced or rebound with a hash table value which omits
those keys, or associates them with different values.
Note that functions
.codn html-encode ,
.code html-encode*
and
.code html-decode
use, respectively, the HTML-related
.codn :tohtml ,
.code :tohtml*
and
.codn :fromhtml .
.SS* Access To TXR Pattern Language From Lisp
It is useful to be able to invoke the abilities of the \*(TX pattern Language
from \*(TL. An interface for doing this provided in the form of the
.code match-fun
function, which is used for invoking a \*(TX pattern function.
The
.code match-fun
function has a cumbersome interface which requires the \*(TL program to
explicitly deal with the variable bindings emerging from the pattern match
in the form of an association list.
To make it the interface easier to use, \*(TX provides
the macros
.codn txr-if ,
.code txr-when
and
.codn txr-case .
.coNP Function @ match-fun
.synb
.mets (match-fun < name < args >> [ input <> [ files ]])
.syne
.desc
The
.code match-fun
function invokes a \*(TX pattern function whose name is
given by
.metn name ,
which must be a symbol.
The
.meta args
argument is a list of expressions. The expressions may be symbols
which will be interpreted as pattern variables, and may be bound or unbound.
If they are not symbols, then they are treated as expressions (of the
pattern language, not \*(TL) and evaluated accordingly.
The
.meta input
argument is a list of strings, which may be lazy. It represents the
lines of the text stream to be processed. If omitted, it defaults to
.codn nil .
The
.meta files
argument is a list of filename specifications, which follow
the same conventions as files given on the \*(TX command line. If the pattern
function uses the
.code @(next)
directive, it can process these additional files. If this argument is
omitted, it defaults to
.codn nil .
The
.code match-fun
function's return value falls into three cases. If there is a
match failure, it returns
.codn nil .
Otherwise it returns a cons cell. The
.code car
field
of the cons cell holds the list of captured bindings. The
.code cdr
of the cons cell is one of two values. If the entire input was processed, the
cdr field holds the symbol
.codn t .
Otherwise it holds another cons cell whose
.code car
is the remainder of the list of lines which were not matched, and whose
.code cdr
is the line number.
.TP* Example:
.verb
@(define foo (x y))
@x:@y
@line
@(end)
@(do
(format t "~s\en"
(match-fun 'foo '(a b)
'("alpha:beta" "gamma" "omega") nil)))
Output:
(((a . "alpha") (b . "beta")) ("omega") . 3)
.brev
In the above example, the pattern function
.code foo
is called with arguments
.codn "(a b)" .
These are unbound variables, so they correspond to parameters
.code x
and
.code y
of the function. If
.code x
and
.code y
get bound, those values propagate to
.code a
and
.codn b .
The data being matched consists of the lines
.strn alpha:beta ,
.str gamma
and
.strn omega .
Inside
.codn foo ,
.code x
and
.code y
bind to
.str alpha
and
.strn beta ,
and then the line variable binds to
.strn gamma .
The input stream is left with
.strn omega .
Hence, the return value consists of the bindings of
.code x
and
.code y
transferred to
.code a
and
.codn b ,
and the second cons cell which gives information about the rest of the
stream: it is the part starting at
.strn omega ,
which is line 3. Note that the binding for the
.code line
variable does not propagate
out of the pattern function
.codn foo ;
it is local inside it.
.coNP Macro @ txr-if
.synb
.mets (txr-if < name <> ( argument *) < input
.mets \ \ \ \ \ \ \ < then-expr <> [ else-expr ])
.syne
.desc
The
.code txr-if
macro invokes the \*(TX pattern matching function
.meta name
on some input given by the
.meta input
parameter, which is a list of strings, or a single string.
If
.meta name
succeeds, then
.meta then-expr
is evaluated, and if it fails,
.meta else-expr
is evaluated instead.
In the successful case,
.meta then-expr
is evaluated in a scope in which the bindings emerging from the
.meta name
function are turned into \*(TL variables.
The result of
.code txr-if
is that of
.metn then-expr .
In the failed case,
.meta else-expr
is evaluated in a scope which does not have any new bindings.
The result of
.code txr-if
is that of
.metn else-expr .
If
.meta else-expr
is missing, the result is
.codn nil .
The
.meta argument
forms supply arguments to the pattern function
.metn name .
There must be as many of these arguments as the function
has parameters.
Any argument which is a symbol is treated, for the purposes
of calling the pattern function, as an unbound pattern variable.
The function may or may not produce a binding for that variable.
Also, every argument which is a symbol also denotes a local variable
that is established around
.meta then-expr
if the function succeeds. For any such pattern variable for which the function
produces a binding, the corresponding local variable will be initialized
with the value of that pattern variable. For any such pattern variable
which is left unbound by the function, the corresponding local variable
will be set to
.codn nil .
Any
.meta argument
can be a form other than a symbol. In this situation, the argument is
evaluated, and will be passed to the pattern function as the value of
the binding for the corresponding argument.
.TP* Example:
.verb
@(define date (year month day))
@{year /\ed\ed\ed\ed/}-@{month /\ed\ed/}-@{day /\ed\ed/}
@(end)
@(do
(each ((date '("09-10-20" "2009-10-20"
"July-15-2014" "foo")))
(txr-if date (y m d) date
(put-line `match: year @y, month @m, day @d`)
(put-line `no match for @date`))))
Output:
no match for 09-10-20
match: year 2009, month 10, day 20
no match for July-15-2014
no match for foo
.brev
.coNP Macro @ txr-when
.synb
.mets (txr-when < name <> ( argument *) < input << form *)
.syne
.desc
The
.code txr-when
macro is based on
.codn txr-if .
It is equivalent to
.mono
.meti \ \ (txr-if < name <> ( argument *) < input (progn << form *))
.onom
If the pattern function
.meta name
produces a match, then each
.meta form
is evaluated in the scope of the variables established by the
.meta argument
expressions. The result of the
.code txr-when
form is that of the last
.metn form .
If the pattern function fails then the forms are not evaluated,
and the result value is
.codn nil .
.coNP Macro @ txr-case
.synb
.mets (txr-case < input-form
.mets \ \ >> {( name <> ( argument *) << form *)}*
.mets \ \ >> [( t << form *)])
.syne
.desc
The
.code txr-case
macro evaluates
.meta input-form
and then uses the value as an input to zero or more test clauses.
Each test clause invokes the pattern function named by that clause's
.meta name
argument.
If the function succeeds, then each
.meta form
is evaluated, and the value of the last
.meta form
is taken to be the result value of
.codn txr-case ,
which terminates. If there are no forms, then
.code txr-case
terminates with a
.code nil
result.
The forms are evaluated in an environment in which variables are bound
based on the
.meta argument
forms, with values depending on the result of the
invocation of the
.meta name
pattern function, in the same manner as documented in detail for the
.code txr-if
macro.
If the function fails, then the forms are not evaluated, and control passes to
the next clause.
A clause which begins with the symbol
.code t
executes unconditionally and causes
.code txr-case
to terminate. If it has no forms, then
.code txr-case
yields
.codn nil ,
otherwise the forms are evaluated in order and the value of the last
one specifies the result of
.codn txr-case .
.coNP Function @ txr-parse
.synb
.mets (txr-parse >> [ source >> [ error-stream
.mets \ \ \ \ \ \ \ \ \ \ \ >> [ error-retval <> [ name ]]]])
.syne
.desc
The
.code txr-parse
function converts textual \*(TX query syntax into a Lisp data
structure representation.
The
.meta source
argument may be either a character
string, or a stream. If it is omitted, then
.code *stdin*
is used as the stream.
The
.meta source
must provide the text representation of one complete \*(TX query.
The optional
.meta error-stream
argument can be used to specify a stream to which
parse errors diagnostics are sent. If absent, the diagnostics are suppressed.
The optional
.meta name
argument can be used to specify the file name which is used for reporting
errors. If this argument is missing, the name is taken from the name
property of the
.meta source
argument if it is a stream, or else the word
.code string
is used as the name if
.meta source
is a string.
If there are no parse errors, the function returns the parsed data
structure. If there are parse errors, and the
.meta error-retval
parameter is
present, its value is returned. If the
.meta error-retval
parameter
is not present, then an exception of type
.code syntax-error
is thrown.
.SS* Debugging Functions
.coNP Functions @ source-loc and @ source-loc-str
.synb
.mets (source-loc << form )
.mets (source-loc-str < form <> [ alternative ])
.syne
.desc
These functions map an expression in a \*(TX program to the file name and
line number of the source code where that form came from.
The
.code source-loc
function returns the raw information as a cons cell
whose
.cod3 car / cdr
consist of the line number, and file name.
The
.code source-loc-str
function formats the information as a string.
Forms which were parsed from a file have source location info
tracking to their origin in that file. Forms which are the result
of macro-expansion are traced to the form whose evaluation produced
them. That is to say, they inherit that form's source location info.
More precisely, when a form is produced by macro-expansion,
it usually consists of material which was passed to the macro as arguments,
plus some original material allocated by the macro, and possibly
literal structure material which is part of the macro code.
After the expansion is produced, any of its constituent material
which already has source location info keeps that info. Those nodes
which are newly allocated by the macro-expansion process inherit
their source location info from the form which yields the expansion.
If
.meta form
is not a piece of the program source code that was constructed by the
\*(TX parser or by a macro, and thus it was neither attributed with
source location info, nor has it inherited such info, then
.code source-loc
returns
.codn nil .
In the same situation, and if its
.meta alternative
argument is missing, the
.code source-loc-str
returns a string whose text conveys that the source location is not
available. If the
.meta alternative
argument is present, it is returned.
.coNP Functions @ rlcp and @ rlcp-tree
.synb
.mets (rlcp < dest-form << source-form )
.mets (rlcp < dest-tree << source-form )
.syne
.desc
The
.code rlcp
function copies the source code location info ("rl" means "read location")
from the
.meta source-form
object to the
.meta dest-form
object. These objects
are pieces of list-based syntax.
If
.meta dest-form
already has source code location info, then no copying
takes place.
The
.code rlcp-tree
function copies the source code location info from
.code rlcp
into every cons cell in the
.meta dest-tree
tree structure which doesn't already have location info.
It may be regarded as a recursive application of
.code rlcp
via
.cod3 car / cdr
recursion on the tree structure. However, the traversal performed by
.code rlcp-tree
gracefully handles circular structures.
Note: these functions are intended to be used in certain kinds of macros. If a
macro transforms
.meta source-form
to
.metn dest-form ,
this function can be used to propagate the
source code location info also, so that when the \*(TL evaluator
encounters errors in transformed code, it can give diagnostics which refer
to the original untransformed source code.
The macro expander already performs this transfer. If a macro call form
has location info, the expander propagates that info to that form's
expansion. In some situations, it is useful for a macro or other code
transformer to perform this action explicitly.
.coNP Special variable @ *rec-source-loc*
.desc
The Boolean special variable
.code *rec-source-loc*
controls whether the
.code read
and
.code iread
functions record source location info. The variable is
.code nil
by default, so that these functions do not record source location info.
If it is true, then these functions record source location info.
Regardless of the value of this variable, source location info is
recorded for Lisp forms which are read from files or streams under the
.code load
function or specified on the \*(TX command line. Source location
info is also always recorded when reading the \*(TX pattern language syntax.
Note: recording and propagating location info incurs a memory and performance
penalty. The individual cons cells and certain other literal objects in the
structure which emerges from the parser are associated with source location
info via a global weak hash table.
.coNP Function @ macro-ancestor
.synb
.mets (macro-ancestor << form )
.syne
.desc
The
.code macro-ancestor
function returns information about the macro-expansion ancestor of
.metn form .
The ancestor is the original form whose expansion produced
.metn form .
If
.meta form
is not the result of macro-expansion, or the ancestor information
is unavailable, the function returns
.codn nil .
.SS* Profiling
.coNP Operator @ prof
.synb
.mets (prof << form *)
.syne
.desc
The
.code prof
operator evaluates the enclosed forms from left to right similarly
to
.codn progn ,
while determining the memory allocation requests and time
consumed by the evaluation of the forms.
If there are no forms, the prof operator measures the smallest measurable
operation of evaluating nothing and producing
.codn nil .
If the evaluation terminates normally (not abruptly by a non-local
control transfer), then
.code prof
yields a list consisting of:
.mono
.mets >> ( value < malloc-bytes < gc-bytes << milliseconds )
.onom
where
.meta value
is the value returned by the rightmost
.metn form ,
or
.code nil
if there are no forms,
.meta malloc-bytes
is the total number of bytes of all memory allocation
requests (or at least those known to the \*(TX runtime, such as those of all
internal objects),
.meta gc-bytes
is the total number of bytes drawn from the
garbage-collected heaps, and
.meta milliseconds
is the total processor time
consumed over the execution of those forms.
Notes:
The bytes allocated by the garbage collector from the C function
.code malloc
to create
heap areas are not counted as
.metn malloc-bytes .
.meta malloc-bytes
includes storage
such as the space used for dynamic strings, vectors and bignums (in addition to
their gc-heap-allocated nodes), and the various structures used by the
.code cobj
type objects such as streams and hashes. Objects in external libraries that use
uninstrumented allocators are not counted: for instance the C
.code "FILE *"
streams.
.coNP Macro @ pprof
.synb
.mets (pprof << form *)
.syne
.desc
The
.code pprof
(pretty-printing
.codn prof )
macro is similar to
.codn progn .
It evaluates
.metn form -s,
and returns the rightmost one, or
.code nil
if there are no forms.
Over the evaluation of
.metn form -s,
it counts memory allocations, and measures
CPU time. If
.metn form -s
terminate normally, then just prior to returning,
.code pprof
prints these statistics in a concise report on the
.codn *stdout* .
The
.code pprof
macro relies on the
.code prof
operator.
.SS* Garbage Collection
.coNP Function @ sys:gc
.synb
.mets (sys:gc <> [ full ])
.syne
.desc
The
.code gc
function triggers garbage collection. Garbage collection means
that unreachable objects are identified and reclaimed, so that their
storage can be re-used.
The function returns
.code nil
if garbage collection is disabled (and consequently nothing is done), otherwise
.codn t .
The Boolean
.meta full
argument, defaulting to
.codn nil ,
indicates whether a full garbage collection should be requested.
Even if this argument is
.codn nil ,
a full garbage collection may occur due to having been scheduled.
.coNP Function @ sys:gc-set-delta
.synb
.mets (sys:gc-set-delta << bytes )
.syne
.desc
The
.code gc-set-delta
function sets the GC delta parameter.
Note: This function may disappear in a future release of \*(TX or suffer
a backward-incompatible change in its syntax or behavior.
When the amount of new dynamic memory allocated since the last garbage
collection equals or exceeds the GC delta, a garbage collection pass is
triggered. From that point, a new delta begins to be accumulated.
Dynamic memory is used for allocating heaps of small garbage-collected objects
such as cons cells, as well as the satellite data attached to some objects:
like the storage arrays of vectors, strings or bignum integers. Most garbage
collector behaviors are based on counting objects in the heaps.
Sometimes a program works with a small number of objects which are very large,
frequently allocating new, large objects and turning old ones into garbage.
For instance a single large integer could be many megabytes long. In such a
situation, a small number of heap objects therefore control a large amount of
memory. This requires garbage collection to be triggered much more often than
when working with small objects, such as conses, to prevent runaway allocation
of memory. It is for this reason that the garbage collector uses the GC delta.
There is a default GC delta of 64 megabytes. This may be overridden in
special builds of \*(TX for small systems.
.coNP Function @ finalize
.synb
.mets (finalize < object < function <> [ reverse-order-p ])
.syne
.desc
The
.code finalize
function registers
.meta function
to be invoked in the situation when
.meta object
is identified by the garbage collector as unreachable.
A function registered in this way is called a finalizer.
If and when this situation occurs, the finalizer
.meta function
will be called with
.meta object
as its only argument.
Multiple finalizer functions can be registered for the same object.
They are all called when the object becomes unreachable.
Finalizers registered against an object may also be invoked
and removed using the
.code call-finalizers
function.
If the
.meta reverse-order-p
argument isn't specified, or is
.codn nil ,
then finalizer is registered at the end of the list.
If
.meta reverse-order-p
is true, then the finalizer is registered at the front of
the list.
Finalizers which are activated in the same finalization processing phase
are called in the order in which they appear in the
registration list.
After a finalization call takes place, its registration is removed. However,
neither
.meta object
nor
.meta function
are reclaimed immediately; they are treated as if they were reachable objects
until at least the next garbage collection pass.
It is therefore safe for
.meta function
to store somewhere a persistent reference to
.meta object
or to itself, thereby reinstating these objects as reachable.
A finalizer is itself permitted to call
.code finalize
to register the original
.code object
or any other object for finalization. Such registrations made during
finalization execution are not eligible for the current phase of finalization
processing; they will be processed in a later garbage collection pass.
.coNP Function @ call-finalizers
.synb
.mets (call-finalizers << object )
.syne
.desc
The
.code call-finalizers
function invokes and removes the finalizers, if any, registered against
.metn object .
If any finalizers are called, it returns
.codn t ,
otherwise
.codn nil .
It is permissible for a finalizer function itself to call
.codn call-finalizers .
Such a call can happen in two possible contexts: during actual
reclamation driven by garbage collection, or under the scope of a
.code call-finalizers
invocation from application code.
Under the scope of garbage-collection-driven reclamation, the
order of finalizer calls may not be what the application logic
expects. For instance even though a finalizer registered for some object
.code A
itself invokes
.codn "(call-finalizers B)" ,
it may be the case during GC reclamation that both
.code A
and
.code B
are identified as unreachable objects at the same time, and some or all
finalizers registered against
.code B
have already been called before the given
.code A
finalizer performs the explicit
.code call-finalizers
invocation against
.codn B .
Thus the the call either has no effect at all, or only calls some remaining
.code B
finalizers that have not yet been processed, rather than all of them,
as the application expects.
The application must avoid creating a dependency on the order of
finalization calls, to prevent the situation that the finalization actions are
only correct under an explicit
.code call-finalizers
but incorrect under spontaneous reclamation driven by garbage collection.
.SS* Modularization
.coNP Variable @ self-path
.desc
This variable holds the invocation path name of the \*(TX program.
The value of
.code self-path
when \*(TL expressions are being evaluated in command line arguments
is the string
.strn cmdline-expr .
The value of
.code self-path
when a \*(TX query is supplied on the command line via the
.code -c
command line option is the string
.strn cmdline .
Note that for programs read from a file,
.code self-path
holds the resolved name, and not the invocation name. For instance if
.code foo.tl
is invoked using the name
.codn foo ,
whereby \*(TX infers the suffix, then
.code self-path
holds the suffixed name.
.coNP Variable @ stdlib
.desc
The
.code stdlib
variable expands to the directory where the \*(TX standard library
is installed. It includes the trailing slash.
Note: there is no need to use the value of this variable to load library
modules. Library modules are keyed to specific symbols, and lazily loaded. When
a \*(TL library function, macro or variable is referenced for the first time,
the library module which defines it is loaded. This includes references
which occur during the code expansion phase, at "macro time", so it works for
macros. In the middle of processing a syntax tree, the expander may encounter a
symbol that is registered for auto-loading, and trigger the load. When the load
completes, the symbol might now be defined as a macro, which the expander
can immediately use to expand the given form that is being traversed.
.coNP Function @ load
.synb
.mets (load << target )
.syne
.desc
The
.code load
function causes a file containing \*(TL or \*(TX code to be read and processed.
The
.meta target
argument is a string. The function can load \*(TL source files as well
as compiled files.
Firstly, the value in
.meta target
is converted to a
.I "tentative pathname"
as follows.
If
.meta target
specifies a pure relative pathname, as defined by the
.code pure-rel-path-p
function, then a special behavior applies.
If an existing load operation is in progress, then the special variable
.code *load-path*
has a binding. In this case,
.code load
will assume that the relative pathname is a reference relative to the
directory portion of that path name.
If
.code *load-path*
has the value
.codn nil ,
then a pure relative
.meta target
pathname is used as-is, and thus resolved relative to the current working
directory.
Once the tentative path name is determined,
.code load
determines whether the name is suffixed. The name is suffixed if it
ends in any of these four suffixes:
.codn .tlo ,
.codn .tl ,
.code .txr
or
.codn .txr_profile .
Depending on whether the tentative path name is suffixed,
.code load
tries to make one or more attempts to open several variations of that name.
These variations are called
.I "actual paths" .
If any attempt fails due to an error other than non-existence,
such as a permission error, then no further attempts are made; the
error exception propagates to
.codn load 's
caller.
If the tentative path name is suffixed, then
.code load
tries to open a file by that actual path name. If that attempt
fails, no other names are tried.
If the tentative path name is unsuffixed, then first the suffix
.code .tlo
is appended to the name, and an attempt is made to open a file
with this actual path. If that file is not found, then the suffix
.code .tl
is similarly tried. If that file is not found, then the unsuffixed
name is tried.
If an unsuffixed file is opened, its contents are treated as interpreted Lisp.
Files ending in
.code .txr_profile
are also treated as interpreted Lisp. Files ending in
.code .tlo
are treated as compiled Lisp, and those ending in
.code .txr
are treated as the \*(TX Pattern Language.
If the file is treated as \*(TL, then Lisp forms are read from it in
succession. Each form is evaluated as if by the
.code eval
function, before the next form is read.
If a syntax error is encountered, an exception of type
.code eval-error
is thrown.
If a file is treated as a compiled \*(TL object file, then the compiled images
of top-level forms are read from it, converted into compiled objects, and
executed.
If the file treated as \*(TX Pattern Language code,
then its contents are parsed in their entirety.
If the parse is successful, the query is executed.
Previous \*(TX pattern variable and function bindings are in
effect. If the query binds new variables and functions,
these emerge from the
.code load
and take effect. If the parse is unsuccessful, an exception of type
.code query-error
is thrown.
Parser error messages are directed to the
.code *stderr*
stream.
Over the evaluation of either a \*(TL, compiled file, or \*(TX file,
.code load
establishes a new dynamic binding for several special
variables. The variable
.code *load-path*
is given a new binding containing the actual path name.
The
.code *package*
variable is also given a new dynamic binding, whose value is the
same as the existing binding. Thus if the processing of the
loaded file has the effect of altering the value of
.codn *package* ,
that effect will be undone when the binding is removed
after the load completes.
When the
.code load
function terminates normally after processing a file,
it returns
.codn nil .
If the file contains a \*(TX pattern query which is
processed to completion, the matching success or failure
of that query has no bearing on the return value of
.codn load .
Note that this behavior is different from the
.code @(load)
directive which itself fails if the loaded query
fails, causing subsequent directives not to be processed.
A \*(TX pattern language file loaded with the Lisp
.code load
function does not have the usual implicit access to the
command line arguments, unlike a top-level \*(TX query.
If the directives in the file try to match input, they
work against the
.code *stdin*
stream. The
.code @(next)
directive behaves as it does when no more arguments
are available.
If the source or compiled file begins with the characters
.codn #! ,
usually indicating "hash bang" script,
.code load
reads reads the first line of the file and discards it.
Processing of the file then begins with the first byte
following that line.
.coNP Special variable @ *load-path*
.desc
The
.code *load-path*
special variable has a top-level value which is
.codn nil .
When a file is being loaded, it is dynamically bound to the
path name of that file. This value is visible to the forms
are evaluated in that file during the loading process.
The
.code *load-path*
variable is is bound when a file is loaded from the command
line.
If the
.code -i
command line option is used to enter the interactive listener,
and a file to be loaded is also specified, then the
.code *load-path*
variable remains bound to the name of that file inside the
listener.
The
.code load
function establishes a binding for
.code *load-path*
prior to processing and evaluating all the top-level forms
in the target file. When the forms are evaluated, the binding
is discarded and
.code load
returns.
The
.code compile-file
function also establishes a binding for
.codn *load-path* .
The
.code @(load)
directive, also similarly establishes a binding around the
parsing and processing of a loaded \*(TX source file.
Also, during the processing of the profile file (see Interactive Profile File),
the variable is bound to the name of that file.
.coNP Macro @ load-for
.synb
.mets (load-for >> {( kind < sym << target )}*)
.syne
.desc
The
.code load-for
macro takes multiple arguments, each of which is a three-element
clause. Each clause specifies that a given
.meta target
file is to be conditionally loaded based on whether a symbol
.meta sym
has a certain kind of binding.
Each argument clause has the syntax
.mono
.meti >> ( kind < sym << target )
.onom
where
.meta kind
is one of the five symbols
.codn var ,
.codn fun ,
.codn macro ,
.code struct
or
.codn pkg .
The
.meta sym
element is a symbol suitable for use as a variable, function
or structure name, and
.meta target
is an expression which is evaluated to produce a value that is suitable
as an argument to the
.code load
function.
First, all
.code target
expressions in all clauses are unconditionally evaluated in left to right
order. Then the clauses are processed in that order. If the
.meta kind
symbol of a clause is
.codn var ,
then
.code load-for
tests whether
.meta sym
has a binding in the variable namespace using the
.code boundp
function. If a binding does not exist, then the value of the
.meta target
expression is passed to the
.code load
function. Otherwise,
.code load
is not called.
Similarly, if
.meta kind
is the symbol
.codn fun ,
then
.meta sym
is instead tested using
.codn fboundp ,
if
.meta kind
is
.codn macro ,
then
.meta sym
is tested using
.codn mboundp ,
if
.meta kind
is
.codn struct ,
then
.meta sym
is tested using
.codn find-struct-type ,
and if
.meta kind
is
.codn pkg ,
then
.meta sym
is tested using
.codn find-package .
When
.code load-for
invokes the
.code load
function, it confirms whether loading file has had the expected effect of
providing a definition of
.meta sym
of the right
.metn kind .
If this isn't the case, an error is thrown.
The
.code load-for
function returns
.codn nil .
.coNP Variable @ txr-exe-path
.desc
This variable holds the absolute path name of the executable file
of the running \*(TX instance.
.SS* Function Tracing
.coNP Special variable @ *trace-output*
.desc
The
.code *trace-output*
special variable holds a stream to which all trace output
is sent. Trace output consists of diagnostics enabled by the
.code trace
macro.
.coNP Macros @ trace and @ untrace
.synb
.mets (trace << function-name *)
.mets (untrace << function-name *)
.syne
.desc
The
.code trace
and
.code untrace
macros control function tracing.
When
.code trace
is called with one or more arguments, it considers each
argument to be the name of a global function. For each
function, it turns on tracing, if it is not already turned on.
If an argument denotes a nonexistent function, or is invalid
function name syntax,
.code trace
terminates by throwing an exception, without processing the
subsequent arguments, or undoing the effects already applied
due to processing the previous arguments.
When
.code trace
is called with no arguments, it lists the names of functions
for which tracing is currently enabled. In other cases it
returns
.codn nil .
When
.code untrace
is called with one or more arguments, it considers each
argument to be the name of a global function. For each
function, it turns off tracing, if tracing is enabled.
When
.code untrace
is called with no arguments, it disables tracing for all
functions.
The
.code untrace
macro always returns
.code nil
and silently tolerates arguments which are not names of functions
currently being traced.
Tracing a function consists of printing a message prior to entry into the
function indicating its name and arguments, and another message upon leaving
the function indicating its return value, which is syntactically correlated
with the entry message, using a combination of matching and indentation.
These messages are posted to the
.code *trace-output*
stream.
When traced functions call each other or recurse, these trace messages
nest. The nesting is detected and translated into indentation levels.
Tracing works by replacing a function definition with a trace hook function, and
retaining the previous definition. The trace hook calls the previous definition
and produces the diagnostics around it. When
.code untrace
is used to disable tracing, the previous definition is restored.
Methods can be traced; their names are given using
.mono
.meti (meth < struct << slot )
.onom
syntax: see the
.code func-get-name
function.
Macros can be traced; their names are given using
.mono
.meti (macro << name )
.onom
syntax. Note that
.code trace
will not show the destructured internal macro arguments, but only the
two arguments passed to the expander function: the whole form, and the
environment.
The
.code trace
and
.code untrace
functions return
.codn nil .
.SS* Dynamic Library Access
.coNP Function @ dlopen
.synb
.mets (dlopen >> [{ lib-name | nil} <> [ flags ])
.syne
.desc
The
.code dlopen
function provides access to the POSIX C library function of the
same name.
The argument to the optional
.meta lib-name
parameter may be a character string, or
.codn nil .
If it is
.codn nil ,
then the POSIX function is called with a null pointer for
its name argument, returning the handle for the main program,
if possible.
The
.meta flags
argument should be expressed as some bitwise combination of the values
of the variables
.codn rtld-lazy ,
.codn rtld-now ,
or other
.code rtld-
variables which give names to the
.codn dlopen -related
flags. If the
.meta flags
argument is omitted, the default value used is
.codn rtld-lazy .
If the function succeeds, it returns an object of type
.code cptr
which represents the open library handle ("dlhandle").
Otherwise it throws an exception, whose message incorporates, if possible,
error text retrieved from the
.code dlerror
POSIX function.
The
.code cptr
handle returned by
.code dlopen
will automatically be subject to
.code dlclose
when reclaimed by the garbage collector.
.coNP Function @ dlclose
.synb
.mets (dlclose << dlhandle )
.syne
.desc
The
.code dlclose
closes the library indicated by
.metn dlhandle ,
which must be a
.code cptr
object previously returned by
.codn dlopen .
The handle is closed by passing the stored pointer to the POSIX
.code dlclose
function. The internal pointer contained in the
.code cptr
object is then reset to null.
It is permissible to invoke
.code dlclose
more than once on a
.code cptr
object which was created by
.codn dlopen .
The first invocation resets the
.code cptr
object's pointer to null; the subsequent invocations
do nothing.
The
.code dlclose
function returns
.code t
if the POSIX function reports a successful result (zero), otherwise
it returns
.codn nil .
It also returns
.code nil
if invoked on a previously closed, and hence nulled-out
.code cptr
handle.
.coNP Functions @ dlsym and @ dlvsym
.synb
.mets (dlsym < dlhandle << sym-name )
.mets (dlvsym < dlhandle < sym-name << ver-name )
.syne
.desc
The
.code dlsym
function provides access to the same-named POSIX function. The
.code dlvsym
function provides access to the same-named GNU C Library function,
if available.
The
.meta dlhandle
argument must be a
.code cptr
handle previously returned by
.code dlopen
and not subsequently closed by
.code dlclose
or altered in any way.
The
.meta sym-name
and
.meta ver-name
arguments are character strings.
If these functions succeed, they return a
.code cptr
value which holds the address of the symbol which was found
in the library.
If they fail, they return a
.code cptr
object containing a null pointer.
.coNP Functions @ dlsym-checked and @ dlvsym-checked
.synb
.mets (dlsym-checked < dlhandle << sym-name )
.mets (dlvsym-checked < dlhandle < sym-name << ver-name )
.syne
.desc
The
.code dlsym-checked
and
.code dlvsym-checked
functions are alternatives to
.code dlsym
and
.codn dlvsym ,
respectively. Instead of returning a null
.code cptr
on failure, these functions throw an exception.
.coNP Variables @, rtld-lazy @, rtld-now @, rtld-global @, rtld-local @, rtld-nodelete @ rtld-noload and @ rtld-deepbind
.desc
These variables provide the same values as constants in the POSIX C library
header
.code "<dlfcn.h>"
named
.codn RTLD_LAZY ,
.codn RTLD_NOW ,
.codn RTLD_LOCAL ,
.IR "et cetera" .
.SH* FOREIGN FUNCTION INTERFACE
On platforms where it is supported, \*(TX provides a feature called the
.IR "foreign function interface" ,
or FFI. This refers to the ability to interoperate with programming
interfaces which are defined by the binary data type representations
and calling conventions of the platform's principal C language compiler.
\*(TX's FFI module provides a succinct Lisp-based type notation for expressing C
data types, together with memory-management semantics pertinent to the transfer
of data between software components. The notation is used to describe the
arguments and return values of functions in external libraries, and of Lisp
callback functions that can be called from those libraries. Driven by the
compiled representation of the type notation, the FFI module performs
transparent conversions between Lisp data types and C data types, and
automatically manages memory around foreign calls and incoming callbacks,
for many common interfacing conventions.
The FFI module consists of a library of functions which provide all of its
semantics. On top of these functions, the FFI module provides a number of
macros which comprise an expressive, convenient language for defining
foreign interfaces.
The FFI module supports passing and returning both structures and arrays
by value. Passing arrays by value isn't a feature of the C language syntax;
from the C point of view, these by-value array objects in the \*(TX FFI
type system are equivalent to C arrays encapsulated in
.codn struct -s.
A
.code carray
type is provided for situations when foreign code generates arrays of
undeclared, dynamic length, other than strings, and returns these arrays
by the usual convention of pointer to the first element. The handling of
.code carray
requires more responsibility from the application.
.SS* Cautionary Notes
The FFI feature is inherently unsafe. If the FFI type language is used to write
incorrect type definitions which do not match the actual binary interface of a
foreign function, undefined behavior results. Incorrect use of FFI can corrupt
memory, creating instability and security problems. Also, incorrect use of FFI
can cause memory leaks and/or use-after-free errors due to inappropriate
deallocation of memory.
The implicit memory management behaviors encoded in the FFI type system
are convenient, but risky. A minor declarative detail such as writing
.code str
instead of
.code str-d
in the middle of some nested type can make the difference between correct code
and code which causes a memory leak, or instability by freeing memory which is
in use.
FFI developers are encouraged to unit-test their FFI definitions carefully
and use tools such as Valgrind to detect memory misuses and leaks.
.SS* Key Concepts
.NP* The \fIput\fP operation
When a function call takes place from the \*(TL arena into a foreign
library function, argument values must be prepared in the foreign
representation. This takes place by converting Lisp objects into
stack-allocated temporary buffers representing C objects. For aggregate objects
containing pointers, additional buffers are allocated dynamically. For
instance, suppose a structure contains a string and is passed by value. The
structure will be converted to a stack-allocated equivalent C structure, in
which the string will appear as a pointer. That pointer may use dynamically
allocated (via
.codn malloc )
string data. The operation which prepares argument material before a foreign
function call is the
.I put
operation. In FFI callback dispatch, the operation which propagates the
callback return value to the foreign caller is also the put operation.
.NP* The \fIin\fP operation
After a foreign function call returns from a foreign library back to the \*(TL
arena, the arguments have to be examined one more time, because two-way
communication is possible, and because some of the material has temporary
dynamically-allocated buffers associated with it which must be released. For
instance a structure passed by pointer may be updated by the foreign function.
FFI needs to propagate the changes which the foreign function performed to the
C version of the structure, back to the original Lisp structure. Furthermore,
a structure passed by pointer uses a dynamically allocated buffer. This buffer
must be freed. The operation which handles the responsibility for propagating
argument data back into \*(TL objects, and frees any temporary memory that had
been arranged by the
.I put
operation is the
.I in
operation.
The in operation has two nuances: the by-value nuance and the
by-pointer nuance.
Data passed into a function by value such as function arguments or via
.code ptr-in
are subject to the by-value nuance. Updates to the foreign representation
of these objects does not propagate back to the Lisp representation to the
external representation; however, those objects may contain pointers requiring
the by-pointer nuance of the in operation of those pointers to be invoked.
.NP* The \fIget\fP operation
After a foreign call completes, it is also necessary to retrieve the call's
return value, convert it to a Lisp object, and free any dynamic memory.
This is preformed by the
.I get
operation.
The
.I get
operation is also used by a Lisp callback function, called from a foreign
library, to convert the arguments to Lisp objects.
.NP* The \fIout\fP operation
When a Lisp callback invoked by a foreign library completes, it must
provide a return value, and also update any argument objects with new
values. The return value is propagated using the put operation. Updates
to arguments are performed by the
.code out
operation. This operation is like the reverse of the in operation. Like
that operation, it has a by-value and by-pointer nuance.
For instance, if a callback receives a structure by value, upon return, there
is no use in reconstructing a new version of the structure from the updated
Lisp structure; the caller will not receive the change. However, if the
structure contains pointers to data that
was updated, by the callback, those changes must materialize. This is achieved
by triggering the by-value nuance of the structure type's out operation, which
will recursively invoke the out operation of embedded pointers, which will
in turn invoke the by-pointer nuance.
.SS* The FFI Type System
The FFI type system consists of a notation built using Lisp syntax. Basic,
unparametrized types are denoted by symbolic atoms. Similarly to a concept
in the C language,
.code typedef
names can be globally defined, using the
.code ffi-typedef
function, or the
.code typedef
macro.
Like in the C language,
.code typedef
names are aliases for an existing type, and not distinct types. However,
this is of no consequence, since the FFI doesn't perform any type checking
between two foreign types, and thus never takes into consideration whether two
such types are equal. The main concern in FFI is correspondence between Lisp
values and foreign types. For instance, a Lisp string argument will not convert
to a foreign function parameter of type
.codn int .
Compound expressions denote the construction of derived types, or types which
are instantiated with parameters. Each such expression has a type constructor
symbol in the operator position, from a limited, fixed vocabulary, which cannot
be extended.
Some constituents of compound type syntax are expressions which evaluate to
integer values: the dimension value for array types, the size for buffers,
the width for bitfields and the value expressions for enumeration constants are
such expressions. These expressions allow full use of \*(TL. They are
evaluated without visibility into any apparent surrounding lexical scope.
Some predefined types which are provided are in fact typedef names.
For instance, the
.code size-t
type is a typedef name for some other integral type, defined in a
platform-specific way. Which type that is may be determined by passing
the syntax to the type compiler function using the expression
.codn "(ffi-type-compile 'size-t)" .
The type compiler converts the
.code size-t
syntax to the compiled type object, resolving the typedef name to
the type which it denotes. The printed representation of that object
reveals the identity of the type. For instance, it might be
.codn "#<ffi-type uint>" ,
indicating that
.code size-t
is an alias for the
.code uint
basic type, which corresponds to the C type
.codn "unsigned int" .
.SS* Simple FFI Types
.coNP FFI types @, char @, zchar @ uchar and @ bchar
These first two of these types,
.code char
and
.code zchar
correspond to the C character type
.codn char .
The
.code uchar
and
.code bchar
types correspond to
.codn "unsigned char" .
Both Lisp integers and character values
convert to these representation, if they are in their numeric range.
Out-of-range values produce an exception.
A foreign
.codn char ,
.codn zchar ,
and
.code bchar
value converts to a Lisp character, whereas a
.code uchar
value converts to an integer.
If these types are used for representing individual scalar values,
there is no difference among
.codn char ,
.code zchar
and
.codn bchar .
What is different among these three types is that the
.code array
and
.code zarray
type constructors treat them specially. Arrays of these types are
subject to conversion to and from Lisp strings. The variation among
these types expresses different conversion semantics. That is to say,
an array of
.code bchar
converts between the foreign and native Lisp representation differently
from an array of
.codn zchar ,
which in turn converts differently from an array of
.codn char .
Note: it is recommended to avoid using the types
.code bchar
and
.code zchar
other than for expressing the element type of an
.code array
or
.codn zarray .
.coNP FFI types @, short @, ushort @, int @, uint @, long @ and @ ulong
These types correspond to the C integer types
.codn short ,
.codn "unsigned short" ,
.codn int ,
.codn "unsigned int" ,
.code long
and
.codn "unsigned long" .
Lisp characters and integers convert to these foreign representations, if they
are in their numeric range. Foreign values of these types convert
to Lisp integers.
.coNP FFI types @ longlong and @ ulonglong
These types are
.code typedef
names for integer types whose representation corresponds to the C types
.code "long long"
and
.codn "unsigned long long" .
.coNP FFI types @ int8 and @ uint8
These types correspond to 8 bit signed and unsigned integers.
They convert like integer types: both Lisp integers and characters
convert to these types, if in a suitable range; and under
the reverse conversion, the foreign values become Lisp integers.
.coNP FFI types @, int16 @, uint16 @, int32 @, uint32 @ int64 and @ uint64
These types correspond denote precisely sized C integer types.
They convert like integer types: both Lisp integers and characters
convert to these types, if in a suitable range; and under
the reverse conversion, the foreign values become Lisp integers.
.coNP FFI types @ float and @ double
These types correspond to the same-named C types. They convert
Lisp integers, characters and floating-point numbers to these C types.
Because the \*(TL
.code float
is represented as a C
.code double
it converts directly to
.code double
without the possibility of range error or loss of precision.
A conversion to type
.code float
is subject to a range check; an exception is thrown if the Lisp
floating-point value is out of range of this type. Even when the
conversion is possible, it alters the value, results in a loss of precision.
In the reverse direction, values of both types convert to the one and
only \*(TL
.code float
type.
.coNP FFI type @ bool
The type
.code bool
is a typedef name for the
.code uchar
instance of the parametrized
.code bool
type, which is to say,
.codn "(bool uchar)" .
.coNP FFI type @ val
The FFI
.code val
type denotes the machine representation of a Lisp value cell, which is
corresponds to a C pointer. Not all cell values are actually pointers, but
values that are heap objects, such as vectors and conses, are.
The
.code val
type transparently converts any Lisp object to a foreign pointer value
with no representation change at all; and performs the reverse conversion
from pointer to Lisp value.
Note: this is utterly dangerous. Lisp values that aren't pointers must not
be dereferenced by foreign code. Foreign code must not generate Lisp pointer
values that aren't objects which came from a Lisp heap.
Interpreting a Lisp value in foreign code requires a correct decoding of
its type tag, and, if necessary, stripping the tag bits to recover a heap
pointer and interpreting the type code stored in the heap object.
The conversion from foreign bit pattern to Lisp value is subject to a
validity checks; an exception will be thrown if the bit pattern isn't a valid
Lisp object. Nevertheless, the checks has cases which report as false
positives: admit some invalid objects may be admitted into the Lisp realm,
possibly with catastrophic results.
.coNP FFI type @ cptr
This type corresponds to a foreign pointer of any type, including a pointer to a function.
The
.code cptr
type converts between a foreign pointer and a Lisp object of type
.codn cptr .
Lisp objects of type
.code cptr
are tagged with a symbolic tag, which may be
.codn nil .
The unparametrized
.code cptr
converts foreign pointers to
.code cptr
objects which are tagged with
.codn nil .
In the reverse direction, it converts
.code cptr
Lisp objects of type
.code cptr
to foreign pointer, without regard for their type tag.
There is a parametrized version of the
.code cptr
FFI type, which provides a measure of type safety.
Note: the
.code cptr
type, in the context of FFI, is particularly useful for representing
C pointers that are used in C library interfaces as "opaque" handles.
For instance a FFI binding for the C functions
.code fopen
and
.code fclose
may use the
.code cptr
to represent the
.code "FILE *"
type. That is to say,
.code cptr
can be specified as the return type for
.codn fopen ,
thereby capturing the stream handle in a
.code cptr
object when that function is invoked through FFI. Then, the captured
.code cptr
object can be passed as the argument of
.code fclose
to close the stream.
.coNP FFI types @, str @, bstr @ str-d and @ bstr-d
These FFI types correspond to the C pointer type
.codn "char *" ,
providing automatic conversion between Lisp strings and null-terminated
C strings. The
.code str
and
.code str-d
types use UTF-8 encoding. The
.code bstr
and
.code bstr-d
types do not use UTF-8: only Lisp strings which contain strictly
code points in the range U+0000 to U+00FF may convert to these types;
out-of-range characters trigger an error exception.
The
.code -d
suffixed types differ from the unsuffixed variants
in that they denote the transfer of ownership of dynamically allocated memory,
and thus the responsibility for freeing that memory.
The
.code str
type behaves as follows. The put operation allocates, using
.codn malloc ,
a buffer large enough to hold the UTF-8 encoded version of the Lisp
string, encodes the string into that buffer, and then stores the
.code "char *"
pointer into the argument space. The in operation deallocates the
buffer. If
.code str
is passed by pointer, the in operation also takes the current value of the
.code "char *"
pointer, which may have been replaced by a different pointer, and creates a new
Lisp string by decoding UTF-8 from that buffer. The get operation retrieves the
C pointer and duplicates a new string by decoding the UTF-8 contents. The type
has no out operation: a string is not expected to be modified in-place.
The type
.code str-d
type differs in behavior from
.code str
as follows. Firstly, it has no in operation. Consequently,
.code str-d
doesn't deallocate the buffer that had been allocated by put.
Under the get operation, the
.code str-d
type assumes that ownership over the C pointer has been granted, and
after duplicating a new string from the decoded UTF-8 data in the C string,
it deallocates that C string by invoking the C library function
.code free
on it.
The type
.code bstr-d
behaves like
.code str-d
with regard to memory management; it differs from
.code str-d
in the same way that
.code str
differs from
.codn bstr :
it doesn't perform UTF-8 encoding or decoding.
Like other types, the string types combine with the
.code ptr
type family. Because the
.code ptr
family has memory management semantics, as does the string family,
it is important to understand the memory management implications
of the combination of the two.
The types
.code "(ptr str-d)"
and
.code "(ptr str)"
are effectively equivalent. They denote a string passed by pointer,
with in-out semantics. The effect is that the string is dynamic in both
directions. What that means is that the foreign function either must not
free the pointer it was given, or else it must replace it with one which the
caller can also free (or with a null pointer). The two are equivalent
because
.code str-d
has no in operation, so its get operation is used instead; but that operation
is similar to the in operation of the
.code str
type:
both decode the string currently referenced by the
.code "char *"
pointer, and then pass that pointer to the C
.code free
function.
To receive a string pointer by pointer from a foreign
function, one of the types
.code "(ptr-out str)"
or
.code "(ptr-out str-d)"
should be used, which have different semantics. In either situation, FFI will
prepare a pointer-sized uninitialized buffer, which the called function fills
with a
.code "char *"
pointer. In the
.code str
case, FFI will duplicate that string to a Lisp string. In the
.code str-d
case, FFI will also free the string received from the foreign function.
The type combination
.code "(ptr-in str-d)"
refers to a string pointer passed to a foreign function by pointer,
whereby the foreign function will retain and free the pointer. The type
combination
.code "(ptr-in str)"
passes the string pointer in the same way, but the foreign module mustn't
use the pointer after returning. FFI will free the pointer that had been
passed.
.coNP FFI types @ wstr and @ wstr-d
The FFI type
.code wstr
corresponds to the C type
.code "wchar_t *"
pointing to the first character of a null terminated wide string.
It converts between Lisp strings and symbols, and C strings.
The memory management is similar to the
.code str
and
.code str-d
types, except that no UTF-8 conversion takes place.
.coNP FFI types @ buf and @ buf-d
The
.code buf
type creates a correspondence between the \*(TL
.code buf
type and a C pointer to a block of arbitrary data. Note that there also
exists a parametrized version of the
.code buf
and
.code buf-d
type syntax which specifies a size.
Under the
.code buf
type's put operation, no memory allocation takes place. The pointer to the
buffer object's data is is written into the argument space, so the foreign
function can manipulate the buffer directly. If the object isn't a buffer
but rather the symbol
.codn nil ,
then a null pointer is written.
The
.code buf
in operation has semantics
as follows. In the pass-by-pointer nuance, the buffer pointer currently in the
argument space is compared to the original one which had been written there
from the buffer object. If they are identical, then the in operation
yields the original buffer object. Otherwise, if the altered
pointer is non-null,
it allocates a new buffer equal in size to the original one and copies in the
new data from the new pointer that was placed into the argument space by the
foreign function. If the altered pointer is null, then instead of allocating a
new buffer, the object
.code nil
is returned.
The by-value nuance of the in operation does nothing.
The get operation is not meaningful for an unsized
.codn buf :
it yields a zero length
.code buf
object. For this reason, parametrized
.code buf
type should be used for retrieving a buffer with a specific fixed size.
The
.code buf-d
type has different memory management from
.codn buf .
The put operation of
.code buf-d
allocates a copy of the buffer and writes into the argument space
a pointer to the copy. It is assumed that the foreign function takes
ownership of the copy.
The in operation of
.code buf-d
is also different. The by-value nuance of the in operation
is a no-op, like that of
.codn buf .
The by-pointer nuance doesn't attempt to compare the previously written
pointer to the current value. Rather, it assumes that if there is any non-null
pointer value in the argument space, then it should take ownership of
that object and return it as a new buffer. Thus if two-way dynamic buffer
passing is requested using
.code "(buf buf-d)"
it means that the foreign function must replace the pointer with a null
to indicate that it has consumed the buffer. Any non-null value in the
argument space indicates that the foreign function has either rejected
the pointer (not taken ownership), or has replaced it with a new object,
whose ownership is being passed.
Unidirectional by-pointer passing of a
.code buf-d
can be performed using the types
.code "(ptr-out buf-d)"
or
.codn "(ptr-int buf-d)" .
The former type will not invoke
.codn buf-d 's
put operation. It will only allocate a pointer-sized space, without
initializing it. After the foreign call, the by-pointer semantics of the
in operation will be triggered If the foreign function places a non-null
pointer into the space, its ownership will be seized by a newly instantiated
buffer object. Otherwise the function must place a null pointer, which
results in a
.code nil
value emerging from the in operation as documented above. The latter type will
achieve a transfer of ownership in the other direction, by invoking the
.code buf-d
put operation, which places a copy of the buffer into the pointer-sized
location prepared in the argument space. After
the call, it will invoke the by-value in semantics of
.codn buf-d ,
which is a no-op: thus no attempt is made to extract a buffer, even if
the foreign function alters the pointer.
.coNP FFI type @ closure
The
.code closure
type converts two kinds of Lisp objects to a C pointer: the
.code cptr
type, and the special
.code ffi-closure
type, whose instances are produced by the
.code ffi-make-closure
function, or by calls to functions defined by the
.code deffi-cb
macro. The
.code closure
type is useful for passing callbacks to foreign functions: Lisp functions
which appear to be C functions to foreign code.
.coNP FFI type @ void
The
.code void
type is useful for indicating the return type of foreign functions and
callbacks which return no value. It corresponds to a zero-sized object.
It will convert any lisp value into zero bytes, and convert
zero bytes into
.codn nil .
.SS* Parametrized FFI Type Operators
The following following parametrized type operators are available.
.coNP FFI type @ enum
.synb
.mets (enum < name >> {( sym << value ) | << sym }*)
.syne
.desc
The type
.code enum
specifies an enumerated type, which establishes a correspondence between
a set of Lisp symbols and foreign integer values of type
.codn int .
The
.meta name
argument must either be
.code nil
or a symbol for which the
.code bindable
function returns true. It gives the tag name of the enumerated
type. The remaining arguments specify the enumeration constants.
In the enumeration constant syntax, each occurrence of
.meta sym
They must be a bindable symbol according to the
.code bindable
function. The symbols may not repeat within the same enumerated type.
Unlike in the C language, different enumerations may use the same symbols;
they are in separate spaces.
If a
.meta sym
is given, it is associated with an integer value which is one greater
than the integer value associated with the previous symbol.
If there is no previous symbol, then the value is zero. If the previous
symbol has been assigned the highest possible value of the FFI
.code int
type, then an error exception is thrown.
If
.meti >> ( sym << value )
is given, then
.meta sym
is given the specified value. The
.meta value
is an expression which must evaluate to an integer value in range of the FFI
.code int
type.
It is evaluated in an environment in which the previous
symbols from the same enumeration appear as variables whose binding are the
their enumeration values, making it possible to use earlier enumerations in the
definition of later enumerations.
The FFI
.code enum
type converts two kinds of Lisp values to the foreign type
.codn int :
symbols which are in the set defined by the type, and integer values
which are in the range which that foreign type can represent.
Out-of-range integer values, symbols not defined in the enumeration, and
objects not of symbol or integer type all trigger an exception.
In the reverse direction, the
.code enum
type extracts from the foreign representation values of FFI type
.codn int ,
and converts them, if possible, to symbols. If an integer value occurs
which is not assigned to any enumeration symbol, then the conversion produces
that integer value itself rather than a symbol. If an integer value occurs
which is assigned to multiple enumeration symbols, it is not specified which
of those symbols is produced.
.coNP FFI type @ enumed
.synb
.mets (enumed < type < name >> {( sym << value ) | << sym }*)
.syne
.desc
The
.code enumed
type operator is a generalization of
.code enum
which allows the base integer type of the enumeration to be specified.
The following equivalence holds:
.verb
(enum n a b c ...) <--> (enumed int n a b c ...)
.brev
Any integer type or
.meta typedef
name may be specified for
.metn type ,
including any one of the endian types. The enumeration inherits its
size, alignment and other foreign representation details from
.metn type .
The values associated with the enumeration symbols must be in
the representation range of
.metn type ,
which is not checked until the conversion of a symbol
through the enumeration is is attempted at run time.
.coNP FFI type @ struct
.synb
.mets (struct < name >> {( slot << type <> [ init-form ])}*)
.syne
.desc
The FFI
.code struct
type maps between a Lisp
.code struct
and a C
.codn struct .
The
.meta name
argument of the syntax gives the structure type name, known as the tag.
If this argument is the symbol
.meta nil
then the structure type is named by a newly generated uninterned
symbol (gensym).
The
.meta name
is entered into a global namespace of tags which is shared by structures
and unions.
The
.meta name
also specifies the Lisp
.code struct
name associated with the FFI type.
The
.meta slot
and
.code type
pairs specify the structure members. The
.meta slot
elements must be symbols, and the
.meta type
elements must be FFI type expressions.
A
.meta struct
definition with no member refers to a previously defined
.code struct
or
.code union
type which has the same
.meta name
in the global
.cod3 struct / union
tag space.
If no prior
.code struct
or
.code union
exists, then a definition with no slots specifies a new,
structure type that is incomplete.
A
.meta struct
definition with no members never causes a Lisp structure type to be created.
A
.meta struct
definition that specifies one or more members either defines a new structure
type, or completes an existing one. If an incomplete structure or union
type which has the same
.meta name
exists, then the newly appearing definition is understood to provide
a completion of that type. If the incomplete type is a
.codn union ,
it thereby converted to a
.code struct
type.
If a complete structure type which has the
same
.meta name
already exists, then the newly appearing definition replaces that type
in the tag namespace.
A struct
.code struct
definition with members is entered into the
.cod3 struct / union
tag space immediately as an incomplete type (if it isn't already), before the
members are processed. Therefore, the member definitions can refer to the
.code struct
type. The type becomes complete when the last member is processed,
except in the special situation when that member causes the type to become
a flexible structure, described several paragraphs below.
A
.meta struct
definition that specifies members causes a Lisp
.code struct
having the same
.code name
to exist, if such a type doesn't already exist. If such a type is
created, instance slots are defined for it which correspond to the
member definitions in the FFI
.code struct
definition.
For any
.meta slot
which specifies an
.meta init-form
expression, that expression is evaluated during the processing of the type syntax,
in the global environment. The resulting value then becomes the initial value for
the slot. The semantics of this value is similar to that of a quoted object
appearing as an
.meta init-form
in the
.code defstruct
macro's
.meta slot-specifier
syntax. For example, if the type expression
.codn "(struct s (a int expr))" ,
which specifies a slot
.code a
initialized by
.codn expr ,
generates a Lisp struct type, the manner in which that type is generated
will resemble that of
.code "(defstruct s nil (a (quote [value-of-expr])))"
where
.code [value-of-expr]
denotes the substitution of the value of
.code expr
which had been obtained by evaluation in the global environment.
Note: if more flexible initialization semantics is required, the application must
define the Lisp struct type first with the desired characteristics, before
processing the FFI struct type. The FFI struct type will then related to the
existing Lisp struct type.
Those members whose
.meta slot
name is specified as
.code nil
is ignored; no instance slots are created in the Lisp type.
If a
.meta init-form
is specified for such a slot, there exists is no situation in which that
form will be evaluated.
When a Lisp object is converted to a struct, it must, firstly, be of the struct
type specified by
.metn name .
Secondly, that type must have all of the slots defined in the FFI type.
The slots are pulled from the Lisp structure in the order that they appear
in the FFI
.code struct
definition. They are placed into the target memory area in that order,
with all required padding between the members, and possibly after
the last member, for alignment.
Whenever a member is defined using
.code nil
as the
.meta slot
name, that member represents anonymous padding. The corresponding
.meta type
expression is used only to determine the size of the padding only. Its data
transfer semantics is completely suppressed. When converting from Lisp, the
anonymous padding member simply generates a skip of the number of byte
corresponding to the size of its type, plus any necessary additional padding
for the alignment of the subsequent member.
Structure members may be bitfields, which are described using the
.codn ubit ,
.code sbit
and
.code bit
compound type operators.
A structure member must not be an incomplete or zero sized array,
unless it is the last member. If the last member of FFI structure is
an incomplete array, then it is a flexible structure.
A structure member must not be a flexible structure, unless it is the
last member; the containing structure is then itself a flexible structure.
Flexible structures correspond to the C concept of a "flexible array member":
the idea that the last member of a structure may be an array of unknown size,
which allows for variable-length data at the end of a structure, provided
that the memory is suitably allocated.
Flexible structures are subject to special restrictions and requirements. See
the section Flexible Structures below. In particular, flexible structures
may not be passed or returned by value.
See also: the
.code make-zstruct
function and the
.code znew
macro.
.coNP FFI type @ union
.synb
.mets (union < name >> {( slot << type )}*)
.syne
.desc
The FFI
.code union
type resembles the
.code struct
type syntactically. It provides handling for foreign objects of C
.code union
type.
The
.meta name
argument specifies the name for the union type, known as a tag.
If this argument is the symbol
.meta nil
then the union type is named by a newly generated uninterned
symbol (gensym).
The
.meta name
is entered into a global namespace of tags which is shared by structures
and unions.
The
.meta slot
and
.code type
pairs specify the union members. The
.meta slot
elements must be symbols, and the
.meta type
elements must be FFI type expressions.
A
.meta union
definition with no member refers to a previously defined
.code struct
or
.code union
type which has the same
.meta name
in the global
.cod3 struct / union
tag space.
If no prior
.code struct
or
.code union
exists, then a definition with no slots specifies a new,
.code union
type that is incomplete.
A
.meta union
definition that specifies one or more members either defines a new structure
type, or completes an existing one. If an incomplete structure type which has
the same
.meta name
exists, then the newly appearing definition is understood to provide
a completion of that type. If the prior incomplete type is a
.codn struct ,
it is converted to
.code union
type. If a complete structure or union type which has the
same
.meta name
already exists, then the newly appearing definition replaces that type
in the tag namespace.
A struct
.code union
definition with members is entered into the
.cod3 struct / union
tag space immediately as an incomplete type (if it isn't already), before the
members are processed. Therefore, the member definitions can refer to the
.code union
type. The type becomes complete when the last member is processed.
Unlike the FFI
.code struct
type, the
.code union
type doesn't provide automatic conversion between C and Lisp data.
This is because the
.code union
is inherently unsafe, due to its placement of multiple types into the
same storage, and lack of any information to discriminate which type
is currently stored. Instead, the FFI
.code union
creates a correspondence between a C union that is regarded as just
a region of memory, and a \*(TL data type called
.codn union .
An instance of the Lisp
.code union
type holds a copy of the C union memory, and also contains type information
about the unions members. Functions are provided to store and retrieve the
members; it is these functions which provide the conversion between the
Lisp types and the foreign representations stored in the C union.
This is done under control of the application, because due to the inherent
lack of safety of the C
.codn union ,
only the application program knows which member of the union may be accessed.
Conversion between the C
.code union
and the Lisp
.code union
consists of just a memory copying operation.
The following functions are provided for manipulating unions:
.code make-union
instantiates a new union object;
.code union-members
retrieves a list of the symbols serving as the union's member names;
.code union-get
retrieves a specified member from the union's storage, converting it
to a Lisp object;
.code union-put
places a Lisp object into a union, using the specified member's type
to convert it to a foreign representation;
.code union-in
performs the "in semantics" on the specified member of a union,
propagating modifications in that member back to a Lisp object; and
.code union-out
performs "out semantics" on the specified member of a union,
propagating modifications done on a previously retrieved Lisp object
back into the union.
.coNP FFI type @ array
.synb
.mets (array < dim << type )
.mets (array << type )
.syne
.desc
The FFI
.code array
type creates a correspondence between Lisp sequences and
"by value" fixed size arrays in C. It converts Lisp sequences to C arrays, and
C arrays to Lisp vectors.
Arrays passed by values do not exist
in the C language syntax. Rather, the C type which corresponds to the
FFI array is a C array that is encapsulated in a
.codn struct .
For instance the type
.code "(array 3 char)"
can be visualized as corresponding to the C type
.codn "struct { char anonymous[3]; }" .
Thus, in the FFI syntax, we can specify arrays as function parameters
passed by value and as return values.
On conversion from Lisp to the foreign type, the FFI
.code array
simply iterates over the Lisp sequence, and performs an element for
element conversion to
.metn type .
If the sequence is shorter than the array, then the remaining elements
are filled with zero bits. If the sequence is longer than the array, then the
excess elements in the sequence are ignored.
Since Lisp arrays and C arrays do not share the same representation,
temporary buffers are automatically created and destroyed by FFI
to manage the conversion.
The
.meta dim
argument is an ordinary Lisp expression expanded and evaluated in the
top-level environment. It must produce a non-negative integer value.
In addition, several types are treated specially: when
.meta type
is one of
.codn char ,
.codn zchar ,
.code bchar
or
.codn wchar ,
the array type establishes a special correspondence with Lisp strings.
When the C array is decoded, a Lisp string is created or updated in place
to reflect the new contents. This is described in detail below.
The second form, whose syntax omits the
.meta dim
element, it denotes a variable length
array. It corresponds to the concept of an incomplete array
in the C language, except that no implicit array-to-pointer conversion
concept is implemented in the FFI type system. This type may not
be used as an array element or structure member. It also may not
be passed or returned by value, only by pointer.
Since the type has unknown length, it has a trivial get operation which returns
.codn nil .
It is useful for passing a variable amount of data into a foreign
function by pointer.
An array of
.code char
represents non-null-terminated UTF-8 character data, which converts to
and from a Lisp string. Any null bytes in the data correspond to
the pseudo-null character
.code #\exDC00
also notated as
.codn #\epnul .
An array of
.code zchar
represents a field of optionally null-terminated UTF-8 character data.
If a null byte occurs in the data then the text terminates before that
null byte, otherwise the data comprises the entire foreign array.
Thus, null bytes do not occur in the data. A null byte in the array will
not generate a pseudo-null character in the Lisp string.
An array of
.code bchar
values represents 8-bit character data that isn't UTF-8 encoded,
and is not null terminated. Each byte holds a character whose code is
in the range 0 to 255. If a null byte occurs in the data, is interpreted
as a string terminator.
.coNP FFI type @ zarray
.synb
.mets (zarray < dim << type )
.mets (zarray << type )
.syne
.desc
The
.code zarray
type is a variant of
.codn array .
When converting from Lisp to C, it ensures that the array is null-terminated.
This means that if the
.meta zarray
is dimensioned, then the
.mono
.meti >> [ dim - 1]
.onom
element of the C array is written out as all zero bytes,
ignoring the corresponding Lisp value in the Lisp array.
If the
.meta zarray
is undimensioned, then the size of the C array is deemed to be one greater
than the actual length of the Lisp array. The elements in the Lisp array are
converted to the corresponding elements of the C array, and then the
last element of the C array is filled with null bytes.
The
.code zarray
type is useful for handling null terminated character arrays representing
strings, and for null terminated vectors.
Unlike
.codn array ,
.code zarray
allows the Lisp object to be one element short. For instance,
when a
.code "(zarray 5 int)"
passed by pointer a foreign function is converted back to Lisp,
the Lisp object is required to have only four elements. If the Lisp object
has five elements, then the fifth one will be decoded from the C array
in earnest; it is not expected to be null. However, when that Lisp
representation is converted back to C, that extra element will be ignored and
output as a zero bytes.
Lastly, the
.code zarray
further extends the special treatment which the
.code array
type applies to the types
.codn zchar ,
.codn char ,
.code wchar
and
.codn bchar .
The
.code zarray
type assumes, and depends on the incoming data being null-terminated, and
converts it to a Lisp string accordingly. The regular
.code array
type doesn't assume null termination. In particular, this means that whereas
.code "(array 42 char)"
will decode 42 bytes of UTF-8, even if some of them are null, converting
those null bytes the U+DC00 pseudo-null, in contrast, a
.code zarray
will treat the 42 bytes as a null-terminated string, and decode UTF-8 only
up to the first null.
In the other direction, when converting from Lisp string to the foreign array,
.code zarray
ensures null termination.
Note that the type combination
.code zarray
of
.code zchar
behaves in a manner indistinguishable from a
.code zarray
of
.codn char .
The one-argument variant of the
.code zarray
syntax which omits the
.meta dim
argument specifies a null-terminated variant of the variable-length array.
Like that type, it corresponds to the concept of an incomplete
array in the C language. It may not be used as an array element
or structure member, and cannot be passed as an argument or returned
as a value.
Unlike the ordinary variable-length
.codn array ,
the
.code zarray
type supports the get operation, which extracts elements, accumulating them
into a resulting vector, until it encounters an element consisting of all zero
bytes. That element terminates the decoding, and isn't included in the
resulting array.
The variable-length
.code zarray
also has a special in operation. Like the get operation, the in operation
extracts all elements until a terminating null, decoding them to a vector.
Then, the entire original vector is replaced with the new vector,
even if the original vector is longer.
.coNP FFI type @ ptr
.synb
.mets (ptr << type )
.syne
.desc
The
.meta ptr
denotes the passage of a value by pointer. The
.meta type
argument gives the pointer's target type. The
.code ptr
type converts a single Lisp value, to and from the target type,
using a C pointer as the external representation.
When used for passing a value to a foreign function, the
.code ptr
type has in-out semantics: it supports the interfacing concept that
the called function can update datum which has been passed to it "by pointer",
thereby altering the caller's object. Since a Lisp value requires a conversion
to the FFI external representation, it cannot be directly passed by pointer.
Instead, this semantics is simulated. The put semantics of
.code ptr
allocates a temporary buffer, large enough to hold the representation of
.metn type .
The Lisp value is then encoded into this buffer, recursively relying on
the type's put semantics. After the foreign call,
.code ptr
triggers the in semantics of
.meta type
to update the Lisp object from the temporary buffer, and releases the
buffer.
The get semantics of
.code ptr
is used in retrieving a
.code ptr
return value, or, in a FFI callback, for retrieving the values of
incoming arguments that are of
.code ptr
type. The get semantics assumes that the memory referenced by the C
pointer is owned by foreign code. The Lisp object is merely decoded from the
data area, which is then not touched.
The
.code out
semantics of
.codn ptr ,
used by callbacks for updating the values of arguments
passed by pointer, assumes that the argument space already contains a
valid pointer. The pointer is retrieved from the argument space, and the
Lisp value is encoded into the memory referenced by that pointer.
Note that only Lisp objects with mutable slots can be meaningfully passed by
pointer with in-out semantics. If a Lisp objects without immutable slots, such
as an integer, is passed using
.code ptr
the incoming updated value of the external representation will be ignored.
Concretely, if a C function has the argument signature
.code "(int *)"
with in-out semantics such that it updates the
.code int
object which is passed in, this function can be called as a foreign function
using a
.code "(ptr int)"
FFI type for the argument. However, the argument of the foreign call on the
\*(TL side is just an integer value, and that cannot be updated.
On the other hand, if a FFI
.code struct
member is declared as of type
.code "(ptr int)"
then the Lisp
.code struct
is expected to have an integer-valued slot corresponding to that member.
The slot is then subject to a bi-directional transfer. FFI will create an
.codn int -sized
temporary data area, encode the slot into that area and place that area's
pointer into the encoded structure. After the call, the new value of the
.code int
will be extracted from the temporary buffer, which will then be released.
The Lisp structure's slot will be updated with the new integer.
This will happen even if the Lisp structure is being passed as a by-value
argument.
.coNP FFI type @ ptr-in
.synb
.mets (ptr-in << type )
.syne
.desc
.code ptr-in
type is a variation of
.code ptr
which denotes the passing of a value by pointer into a function, but
not out. The put semantics of
.code ptr-in
is the same as that of
.codn ptr ,
but after the completion of the foreign function call, the in semantics
differs. The
.code ptr-in
type only frees the temporary buffer, without decoding from it.
The out semantics of
.code ptr-in
differs also. It effectively treats the object as if it were "by value",
since the reverse data transfer is ruled out. In other words,
.code ptr-in
simply triggers the by-value nuance of
.metn type 's
out semantics.
The get semantics of
.code ptr-in
is the same as that of
.codn ptr .
.coNP FFI type @ ptr-out
.synb
.mets (ptr-out << type )
.syne
.desc
The
.code ptr-out
type is a variant of
.code ptr
which denotes a by pointer data transfer out of a function only, not into.
The put semantics of
.code ptr-out
prepares a data area large enough to hold
.meta type
and stores a pointer to that area into the argument space.
The Lisp value isn't encoded into the data area.
The in semantics is the same as that of
.codn ptr :
the by-pointer nuance of
.metn type 's
in semantics is invoked to decode the external representation to
Lisp data.
.coNP FFI type @ ptr-in-d
.synb
.mets (ptr-in-d << type )
.syne
.desc
The
.code ptr-in-d
type is a variant of
.code ptr-in
which transfers ownership of the allocated buffer to the invoked
function. That is to say, the in semantics of
.code ptr-in-d
doesn't involve the freeing of memory that was allocated by put
semantics.
The
.code ptr-in-d
type is useful when a function expects a pointer to an object that
was allocated by
.code malloc
and expects to take responsibility for freeing that object.
Since the function may free the object even before returning,
the pointer must not be used once the function is called. This is
ensured by the in semantics of
.code ptr-in-d
which is the same as that of
.codn ptr-in .
The
.code ptr-in-d
type also has get semantics which assumes that ownership of the
C object is to be seized. FFI will automatically free the C object
when get semantics is invoked to retrieve a value through a
.codn ptr-in-d .
.coNP FFI type @ ptr-out-d
.synb
.mets (ptr-out-d << type )
.syne
.desc
The
.code ptr-out-d
type is a variant of
.code ptr-out
which is useful for capturing return values or, in a callback
producing return values.
The
.code ptr-out-d
type has empty put semantics. If it put semantics is invoked, it does
nothing: no area is allocated for
.meta type
and no pointer is stored into the argument space.
The in semantics is the same as that of
.codn ptr :
a pointer is retrieved from the argument space, the object is subject to
.metn type 's
in semantics to recover the updated Lisp value, and then the object
is freed.
The get semantics of
.code ptr-out-d
is identical to that of
.codn ptr-in-d .
The out semantics is identical to that of
.codn ptr .
.coNP FFI type @ ptr-out-s
.synb
.mets (ptr-out-s << type )
.syne
.desc
The
.code ptr-out-d
type is a variant of
.code ptr-out
similar to
.codn ptr-out-d ,
which assumes that the C object being received has an indefinite
lifetime, and doesn't need to be freed. The suffix stands for "static".
Like
.codn ptr-out-d ,
the
.code ptr-out-s
has no put semantics.
Its in semantics recovers a Lisp value from the external object whose pointer
has been stored by the foreign function, but doesn't free the external
object.
The get semantics retrieves a Lisp value without freeing.
.coNP FFI type @ bool
.synb
.mets (bool << type )
.syne
.desc
The parametrized type
.code bool
can be derived from any integer or floating-point type. There is also an
unparametrized
.code bool
which is a
.code typedef
for the type
.codn "(bool uchar)" .
The
.code bool
type family represents Boolean values, converting between a Lisp Boolean
and foreign Boolean. A given instance of the
.code bool
type inherits all of its characteristics from
.metn type ,
such as its size, alignment and foreign representation. It alters the
get and put semantics, however. The get semantics converts a foreign zero
value of
.meta type
to the Lisp symbol
.codn nil ,
and all other values to the symbol
.codn t .
The put semantics converts the Lisp symbol
.code nil
to a foreign value of zero. Any other Lisp object converts to the foreign
value one.
The
.code bool
types are not integers, and cannot be used as the basis of bitfields:
syntax like
.code "(bit 3 (bool uint))"
is not permitted. However, Boolean bitfields are possible when this
syntax is turned inside out: the
.code bool
type can be derived from a bitfield type, as exemplified by
.codn "(bool (bit 3 uint))" .
This simply applies the above described Boolean conversion semantics to a
three-bit field. A zero/nonzero value of the field converts to
.cod3 nil / t
and a
.code nil
or
.cod2 non- nil
Lisp value converts to a 0 or 1 field value.
.coNP FFI types @ ubit and @ sbit
.synb
.mets ({ubit | sbit} << width )
.syne
.desc
The
.code ubit
and
.code sbit
types denote C language style bitfields. These types can only appear
as members of structures. A bitfield type cannot be the argument or return
value of a foreign function or closure, and cannot be a foreign variable.
Arrays of bitfields and pointers, of any kind, to bitfields are a forbidden
type combination that is rejected by the type system.
The
.code ubit
type denotes a bitfield of type
.codn uint ,
corresponding to an
.code unsigned
bitfield in the C language.
The
.code sbit
type denotes a bitfield of type
.codn int .
Unlike in the C language, it is not implementation-defined whether such
a bitfield represents signed values; it converts between Lisp integers
that may be positive or negative, and a foreign representation which is
two's complement.
Bitfields based on some other types are supported using the more general
.code bit
operator, which is described below.
The
.meta width
parameter of is an expression evaluated in the top-level environment,
indicates the number of bits. It may range from
zero to the number of bits in the
.code uint
type.
In a structure, bitfields produced by
.code sbit
and
.code ubit
are allocated out in storage units which have the
same width and alignment requirements as a
.codn uint .
These storage units themselves can be regarded as anonymous members of the
structure. When a new unit needs to be allocated in a structure to hold
bitfields, it is allocated in the same manner as a named member of type
.code uint
would be at the same position.
A zero-length bitfield is permitted. It may be given a name, but the field
will not perform any conversions to and from the corresponding slot in the
Lisp structure. Note that in situations when the FFI struct definition
causes the corresponding Lisp structure type to come into existence, the
Lisp structure type will have slots for all the zero width named bitfields,
even though those slots don't participate in any conversions in conjunction
with the FFI type.
The presence of a zero-length bitfield ensures that a subsequent
structure member, whether bitfield or not, is placed in a new storage
unit of the size of the bitfield's base type.
Details about the algorithm by which bitfields are allocated within a structure
are given in the paragraph below entitled
.BR "Bitfield Allocation Rules" .
A
.code ubit
field stores values which follow a pure binary enumeration. For instance,
a bit field of width 4 stores values from 0 to 15. On conversion from
the Lisp structure to the foreign structure, the corresponding member
must be a integer value in this range, or an error exception is thrown.
On conversion from the foreign representation to Lisp, the integer
corresponding to the bit pattern is recovered. Bitfields follow the
bit order of the underlying storage word. That is to say, the most
significant binary digit of the bitfield is the one which is closest
to the the most significant bit of the underlying storage unit.
If a four-bit field is placed into an empty storage unit and the value
8 its stored, then on a big-endian machine, this has the effect of
setting to 1 the most significant bit of the underlying storage word.
On a little-endian machine, it has the effect of setting bit 3 of
the word (where bit 0 is the least significant bit).
The
.code sbit
field creates a correspondence between a range of Lisp integers,
and a foreign representation based on the two's complement system.
The most significant bit of the bit field functions as a sign bit.
Values whose most significant bit is clear are positive, and use
a pure binary representation just like their
.code ubit
counterparts. The representation of negative values is defined
by the "two's complement" operation, which maps each value to
its additive inverse. The operation consists of temporarily treating the
entire bitfield as unsigned, and inverting the logical value of all the
bits, and then adding 1 with "wrap-around" to zero if 1 is added to a field
consisting of all 1 bits. (Thus zero maps to zero, as expected).
An anomaly in the two's complement system is that the most negative
value has no positive counterpart. The two's complement operation
on the most negative value produces that same value itself.
A
.code sbit
field of width 1
can only store two values: -1 and 0, represented by the bit patterns
1 and 0. An attempt to convert any other integer value to a
.code sbit
field of width 1 results in an error.
A
.code sbit
field of width 2 can represent the values -2, -1, 0 and 1, which are
stored as the bit patterns 10, 11, 00 and 01, respectively.
.coNP FFI type @ bit
.synb
.mets (bit < width << type )
.syne
.desc
The
.code bit
operator is more general than
.code ubit
and
.codn sbit .
It allows for bitfields based on integer units smaller than or equal to
.codn uint .
The
.meta type
argument may be any of the types
.codn char ,
.codn short ,
.codn int ,
.codn uchar ,
.codn ushort ,
.codn uint ,
.codn int8 ,
.codn int16 ,
.codn int32 ,
.codn uint8 ,
.code uint16
and
.codn uint32 .
When the character types
.code char
and
.code uchar
are used as the basis of bitfields, they convert integer values, not
characters.
In the case of
.codn char ,
the bitfield is signed.
All remarks about
.code ubit
and
.code sbit
apply to
.code bit
also.
Details about the algorithm by which bitfields are allocated within a structure
are given in the paragraph below entitled
.BR "Bitfield Allocation Rules" .
.coNP FFI types @ buf and @ buf-d
.synb
.mets ({buf | buf-d} << size )
.syne
.desc
The parametrized
.code buf
and
.code buf-d
types are variants of the unparametrized
.code buf
and
.codn buf-d ,
respectively. The
.meta size
argument is an expression which is evaluated in the top-level
environment, and must produce a non-negative integer.
Because they have a size, these types have useful get
semantics.
The get semantics of
.code buf-d
is that a Lisp object of type
.code buf
is created which takes direct ownership of the memory.
The get semantics of
.code buf
is that a Lisp object is created using a dynamically allocated copy
of the memory.
.coNP FFI type @ carray
.synb
.mets (carray << type )
.syne
.desc
The
.code carray
type corresponds to a C pointer, in connection with the concept
of representing a variable length array that is passed and returned
as a pointer to the base element. On the Lisp side, the
.code carray
FFI type corresponds to the
.code carray
Lisp type. The
.code carray
Lisp type is similar to
.codn cptr ,
but supports array indexing operations, and some other features.
It can be regarded as a semantic cross between
.code cptr
and
.codn buf .
The get semantics of
.code carray
is simply that a pointer is retrieved from memory and converted to
a freshly allocated
.code carray
object which holds that pointer, and is marked as having an unknown
size. No copy is made of the underlying array. When the application
determines the size of the array, it can inform that object by means
of calling the
.code carray-set-length
function.
The put semantics of the
.code carray
FFI type is simply to write, into the argument space, the pointer which the
object holds. The object must be a
.code carray
whose element type matches that of the FFI type.
The
.code carray
type lacks in or out semantics, since FFI doesn't manage any foreign
memory for the passage of a
.code carray
and any two-directional communication of data through the array
handled by performing direct operations on the
.code carray
Lisp object in application code.
The
.code carray
type is particularly useful in situations when
foreign code generates such an array, and the size of that array
isn't known from the object itself.
It is also useful, instead of a variable-length
.code zarray
for passing a dynamic array to foreign code in situations when the application benefits
from managing the memory for the array. The variable-length
.code zarray
FFI type's disadvantage relative to
.code carray
is that the
.code zarray
converts an entire Lisp sequence to a temporarily allocated
array, which is used only for one call. By contrast, the
.code carray
object holds the C representation which Lisp code can manipulate;
and that representation is passed directly, just like in the case of
.codn buf .
Unlike
.codn buf ,
there is no dynamic variant of
.codn carray .
The transfer of ownership of a
.code carray
requires the use of explicit operations like
.code carray-free
and
.codn carray-own .
It is possible to create a
.code carray
view over a buffer, using
.codn carray-buf .
.coNP FFI type @ cptr
.synb
.mets (cptr << type-sym )
.syne
.desc
The parametrized
.code cptr
type is similar to the unparametrized
.codn cptr .
It also converts between Lisp objects of type
.code cptr
and foreign pointers. However, it provides a measure of type safety.
When a foreign pointer is converted to a Lisp object under control of the
parametrized
.codn cptr ,
the resulting Lisp
.code cptr
object is tagged with the
.meta type-sym
symbol.
In the reverse direction, when a Lisp
.code cptr
object is converted to the parametrized type, its type tag must match
.metn type-sym ,
or else the conversion fails with an error exception.
This rule contains a slight relaxation: a
.code cptr
object with a
.code nil
tag can be converted to a foreign representation using any parametrized type,
if its value is null. In other situations, the
.code cptr-cast
function must be used to coerce the pointer object to the matching type.
Note that if
.meta type-sym
is specified as
.codn nil ,
then this is precisely equivalent to the unparametrized
.code cptr
which doesn't provides the above safety measure.
Pointer type safety is useful, because FFI can be used to create bindings
to large application programming interfaces (APIs) in which objects of
many different kinds are referenced using pointer handles. The erroneous
situation can occur that a FFI call passes a handle of one kind to a function
expecting a different kind of handle. If all pointer handles are represented
by a single
.code cptr
type, then such a situation proceeds without diagnosis.
If handles of different types are all mapped to
.code cptr
types with different tags, the situation is intercepted and diagnosed
with an error exception.
.coNP FFI type @ align
.synb
.mets (align < width << type )
.syne
.desc
The FFI type operator
.code align
defines a type which is a copy of
.metn type ,
but with the alignment requirement replaced by the
.metn width .
The
.meta width
argument is an expression which is evaluated in the top-level
environment. It must produce a positive integer which is a power of two.
The
.code align
operator can be used to create a version of
.meta type
with stricter or weaker alignment. Alignment affects the placement of
the type as a structure member, and as an array element.
A type with alignment 1 can be placed at any byte offset. A type with
alignment 2 can be placed only at even addresses and offsets.
Alignment can be applied to all types, including arrays and structs.
It may also be applied to bitfields, but special considerations have
to be observed to obtain the intended effect, described below.
However,
out of the elementary types, only the integer and floating point types are
required to support a weakening of alignment. Whether a type which corresponds
to a pointer, such as a
.code str
or
.codn buf ,
can be written at an offset which doesn't meet that type's default alignment
is machine-dependent.
If a FFI struct type is declared with a weakened alignment, whether or not such
a structure can be read or written at the misaligned offsets depends on whether
the individual members support it. If they are integer or floating-point types,
or aggregates thereof, the usage is supported in a machine-independent manner.
A struct type declared to have a weaker alignment, such as 1, does not
lose any of the padding at its end. That is to say, alignment has no effect
on structure size. It affects the offset at which a structure is placed as
a member of an array or another structure, with its padding intact. To
eliminate the padding at the end of a structure, it is necessary to use
.code align
to manipulate the alignment of individual members.
When
.code align
is applied to the type of a bitfield member of a structure, it has no effect on
placement. The alignment of a non-zero bitfield which begins a new
storage unit is taken into consideration for the purpose of determining
the most strictly alignment member of the structure. The alignment of all
other bitfields is ignored.
.PP
.SS* Additional Types
.coNP FFI types @, size-t @, ptrdiff-t @, int-ptr-t @, uint-ptr-t @, wint-t @, sig-atomic-t @ time-t and @ clock-t .
These additional FFI types for common C language types are provided as
.code typedef
aliases.
.coNP FFI type @ qref
.synb
.mets (qref < struct-type < member1 >> [ member2 ...])
.syne
.desc
The FFI type operator
.code qref
provides a way to reference the type of a member of a struct or union.
The
.meta struct-type
argument must be a type expression denoting a struct or union.
The
.meta member1
argument and any additional arguments must be symbols.
If
.code S
is a struct or union type, and
.code M
is a member, then
.code "(qref S M)"
is a type expression denoting the type of
.codn M .
Moreover, if
.code M
itself is a struct or union, which has a member named
.code N
then the type of
.code N
can be denoted by the expression
.codn "(qref S M N)" .
Similarly, additional symbols reference through additional struct/union
nestings.
Note: the referencing dot syntax can be used to write
.code qref
expressions.
For instance,
.code "(qref S M N)"
can be written as
.code S.M.N
instead.
.coNP FFI type @ elemtype
.synb
.mets (elemtype << type )
.syne
.desc
The FFI type operator
.code elemtype
denotes the element type of
.metn type ,
which must be a pointer, array or enum.
Note: there is also a macro
.codn elemtype .
The macro expression
.code "(elemtype X)"
is equivalent to the expression
.codn "(ffi (elemtype X))" .
.coNP FFI types @, blkcnt-t @, blksize-t @, clockid-t @, dev-t @, fsblkcnt-t @, fsfilcnt-t @, gid-t @, id-t @, ino-t @, key-t @, loff-t @, mode-t @, nlink-t @, off-t @, pid-t @ ssize-t and @ uid-t
The additional names of various common POSIX types may also be available,
depending on platform. They are provided as
.code typedef
aliases.
.SS* Endian Types
In addition to the type system described in the previous section.
the FFI type system supports
.IR "endian types" ,
which are useful for dealing with
data formats defined by networking protocols and other kinds of standards,
or data structure definitions from other machines.
There are two kinds of
.IR endianness :
.I "Little endian"
refers to the least-significant byte of a data type being
stored at the lowest address in memory, lowest offset in a buffer, lowest
offset in a file, or earlier byte in a communication stream.
.I "Big endian"
is the opposite: it refers to the most significant byte occurring
at the lowest address, offset or stream position.
For each of the signed integral types
.code int16
through
.codn int64 ,
the corresponding unsigned types
.code uint16
through
.codn uint64 ,
and the two floating-point types
.code float
and
.codn double ,
the FFI type system provides a big-endian and little endian version,
whose names are derived by prefixing the
.code be-
or
.code le-
prefix to its related type.
Thus, the exhaustive list of the endian types is:
.codn be-int16 ,
.codn be-uint16 ,
.codn be-int32 ,
.codn be-uint32 ,
.codn be-int64 ,
.codn be-uint64 ,
.codn be-float ,
.codn be-double ,
.codn le-int16 ,
.codn le-uint16 ,
.codn le-int32 ,
.codn le-uint32 ,
.codn le-int64 ,
.codn le-uint64 ,
.code le-float
and
.codn le-double .
These types have the same size and alignment as their plain, unprefixed
counterparts. Alignment can be overridden with the
.code align
type construction operator to create versions of these types with alternative
alignment.
Endian types are supported as arguments to functions, return values,
members of structs and elements of arrays.
\*(TL's FFI performs the automatic conversion from the abstract Lisp integer
representation to the foreign representations exhibiting the specified
endianness.
.SS* Incomplete Types
In the \*(TL FFI type system, the following types are
.IR incomplete :
the type
.codn void ,
arrays of unspecified size, and any
.code struct
whose last element is of incomplete type.
An incomplete type cannot used as a function parameter type, or a return
value type. It may not be used as an array element or union member type.
A struct member type may be incomplete only if it is the last member.
An incomplete structure whose last member is an array is a
.IR "flexible structure" .
.SS* Flexible Structures
If a FFI
.code struct
type is defined with an incomplete array (an array of unspecified size) as its
last member, then it specifies an incomplete type known as a
.IR "flexible structure" .
That array is the
.IR "terminating array" .
The terminating array corresponds to a slot in the Lisp structure; that
slot is the
.IR "last slot" .
A structure which has a flexible structure as its last member is also,
effectively, a flexible structure.
When a Lisp structure is being converted to the foreign representation
under the control of a flexible structure FFI type, the number of elements
in the terminating array is determined from the length of the object
stored in the last slot of the Lisp structure. The length includes the
terminating null element for
.code zarray
types. The conversion is consistent with the semantics of an incomplete
arrays that is not a structure member.
In the reverse direction, when a foreign representation is being converted
to a Lisp structure under the control of a flexible structure FFI type,
the size of the array that is accessed and extracted is determined from
the length of the object stored in the last slot, or, if the array type
is a
.code zarray
from detecting null-termination of the foreign array. The conversion of
the array itself is consistent with the semantics of an incomplete
arrays that is not a structure member.
Before the conversion takes place, all of the members of the
structure prior to the the terminating array, are extracted and converted to
Lisp representations. The corresponding slots of the Lisp structure are
updated. Then if the Lisp structure type has a
.code length
method, that method is invoked. The return value of the method is used
to perform an adjustment on the object in the last slot.
If the existing object in the last slot is a vector, its length is adjusted to
the value returned by the method. If the existing
object isn't a vector, then it is replaced by a new
.codn nil -filled
vector, whose length is given by the return value of
.codn length .
The conversion of the terminating array to Lisp representation the proceeds
after this adjustment, using the adjusted last slot object.
.SS* Bitfield Allocation Rules
The \*(TL FFI type system follows rules for bitfield allocation which were
experimentally derived from the behavior of the GNU C compiler on several
mainstream architectures.
The allocation algorithm can be imagined to walk through the structure
from the first member to the last, maintaining a byte offset
.I O
which indicates how many whole bytes have been allocated to members so far,
and a bit offset
.I B
which indicates, additionally, how many bits have been allocated in the
byte which follows these
.I O
bytes, between 0 and 7.
When a non-bitfield member is placed, then there are two cases: either
.I B
is zero (only
.I O
bytes have been allocated, with no fractional byte) or else
.I B
is nonzero. In this latter case,
.I B
is reset to zero and
.I O
is incremented by one. In either case,
.I O
is adjusted up to the required alignment boundary for the new member.
The member is placed, and
.I O
is incremented again by the size of that member.
When a bitfield member is placed, the algorithm considers the structure
to be allocated in units of the base type of that bitfield member.
For instance if the bitfield is derived from type
.code uint16
then the structure's layout is considered to have been allocated in
.code uint16
units. The algorithm examines the value of
.I O
and
.I B
to determine the first available unit in which at least
one bit of unallocated space remains.
Then, if the unit at that offset has enough space to hold the new
bitfield, according to the bitfield's width, then the bitfield is
placed into that unit. Otherwise, the bitfield is placed into the
next available unit.
After a bitfield is placed, the values of
.I O
and
.I B
are adjusted so that
.I O
reflects the whole number of bytes which have been allocated to the
structure so far, and
.I B
indicates the 0 to 7 additional bits of any bitfield material protruding
past those whole bytes.
A zero-width bitfield is also considered with regard to the storage
unit size indicated by its type. As in the case of the nonzero-width
bitfield, the offset of the first available unit is found which
has at least one bit of unallocated space. Then, if that unit is
entirely empty, the zero-width bitfield has no effect. If that unit is
partially filled, then
.I O
is adjusted to point to the next unit after that, and
.I B
is reset to zero. Note that according to this semantics, a zero-width bitfield
can have an effect even if placed between non-bitfield members, or appears
as the last member of a structure. Also, a structure containing only a
zero-width bitfield has size zero.
If, after the placement of all structure members,
.I B
has a nonzero value, then the offset
.I O
is incremented by one to cover that byte.
As the last allocation step, the size of the structure is then padded up to a
size which is a multiple of the alignment of the most strictly aligned member.
A named bitfield contributes to the alignment of the structure, according to
its type, the same way as a non-bitfield member of the same type.
An unnamed bitfield doesn't contribute alignment, or else may be regarded as
having the weakest possible alignment, which is byte alignment.
If all of the members of a structure are unnamed bitfield members of any type,
it exhibits byte alignment.
The description isn't complete without a treatment of byte and bit order.
Bitfield allocation follows an imaginary "bit endianness" whose direction
follows the machine's byte order: most significant bits are allocated first on
big endian, least significant bits first on little-endian.
If a one-bit-wide bitfield is allocated into a hitherto empty structure, it
will be placed into the first byte of that structure, regardless of the
machine's endianness, and regardless of the underlying storage unit size for
that bitfield. Within that first byte, it will be placed into the most
significant bit position on a big-endian machine (bit 7); and on a
little-endian machine, it will be placed into the least significant bit
position (bit 0). If another one-bit-wide is allocated, it is placed into
bit 6 on big-endian, and bit 1 on little-endian.
More generally, whenever a bitfield is allocated for a big-endian machine, and
the storage unit is determined into which that bitfield shall be placed, the
most significant bits of that storage unit are filled first on a big-endian
machine, whereas the least significant bits are filled first on a little-endian
machine. From this it follows that on either type of machine, that field shall
be placed at the lowest-addressed byte or bytes in which unallocated bits
remain.
.SS* FFI Call Descriptors
The FFI mechanism makes use of a type-like representation called the "call
descriptor". A call descriptor is an object which uses FFI types to describe
function arguments and return values. A FFI descriptor is required to call
a foreign function, and to create a FFI closure to use as a callback
function from a foreign function back into \*(TL.
A FFI descriptor object can be constructed from a return value type, and a list
of argument types, and several other pieces of information using the
function
.codn ffi-make-call-desc .
This object can then be passed to
.code ffi-call
to specify the C type signature of a foreign function, or to
.code ffi-make-closure
to specify the C type signature of a FFI closure to bind to a Lisp function.
The FFI macros
.code deffi
and
.code deffi-cb
provide a simplified syntax for expressing FFI call descriptors,
which includes a notation for expressing variadic calls.
A note about variadic foreign functions: although there is support
in the call descriptor mechanism for expressing a variadic function,
it expresses a particular
.B instance
of a variadic function, rather than the variadic function's type
.IR "per se" .
To call the same variadic function using different variadic arguments,
different call descriptors are required. For instance to perform
the equivalent of the C function call
.mono
printf("hello\en")
.onom
requires a certain descriptor. To perform the equivalent of
.mono
printf("hello, %s\en", name)
.onom
requires a different descriptor.
.SS* Foreign Function Type API
This group of functions comprises the basic interface to the \*(TL's FFI
type system module.
.coNP Function @ ffi-type-compile
.synb
.mets (ffi-type-compile << syntax )
.syne
.desc
The
.code ffi-type-compile
function produces and returns a compiled type object from a
.meta syntax
argument which specifies valid FFI syntax.
If the type syntax is invalid, or specifies a nonexistent
type specifier or operator, an exception is thrown.
Note: whenever a function argument is required to be of FFI type,
what it means is that it must be a compiled object, and not
a Lisp expression denoting FFI syntax.
.TP* Examples:
.verb
(ffi-type-compile 'int) -> #<ffi-type int>
(ffi-type-compile
'(array 3 double)) -> #<ffi-type (array 3 double)>
(ffi-type-compile 'blarg) -> ;; error
.brev
.coNP Function @ ffi-make-call-desc
.synb
.mets (ffi-make-call-desc < ntotal < nfixed < rettype << argtypes )
.syne
.desc
The
.code ffi-make-call-desc
function constructs a FFI call descriptor.
The
.meta ntotal
argument must be a non-negative integer; it indicates the number
of arguments in the call.
If the call denotes a variadic function, the
.meta nfixed
argument must be an integer between 1 and
.metn ntotal ,
denoting the number of fixed arguments.
If the call denotes an ordinary, non-variadic function, then
.meta nfixed
must be specified as
.codn nil .
The
.meta rettype
parameter must be an FFI type. It specifies the function
return type. Functions which don't return a value are specified
by the (compiled version of) the return type
.codn void .
The
.meta argtypes
argument must be a list of types, containing at least
.meta ntotal
elements. If the function takes no arguments, this list is empty.
If the function is variadic, then the first
.meta nfixed
elements of this list specify the types of the fixed arguments;
the remaining elements specify the variadic arguments.
Note: variadic functions must not be called using a non-variadic
descriptor, and
.IR "vice versa" ,
even if the return types and
argument types match.
.TP* Example:
.verb
;;
;; describe a call to the variadic function
;;
;; type void (*)(char *, ...)
;;
;; with these actual arguments
;;
;; (char *, int)
;;
(ffi-make-call-desc
2 ;; two arguments
1 ;; one fixed
(ffi-type-compile 'void) ;; returns nothing
(list (ffi-type-compile 'str) ;; str -> char *
(ffi-type-compile 'int))) ;; int
-->
#<ffi-call-desc #<ffi-type void>
(#<ffi-type str> #<ffi-type int>)>
.brev
.coNP Function @ ffi-type-operator-p
.synb
.mets (ffi-type-operator-p << symbol )
.syne
.desc
The
.code ffi-type-operator-p
function return
.code t
if
.meta symbol
is a type operator symbol: a symbol used in the first position of
a recognized compound type form in the FFI type system.
Otherwise, it returns
.codn nil .
.coNP Function @ ffi-type-p
.synb
.mets (ffi-type-p << symbol )
.syne
.desc
The
.code ffi-type-p
function returns
.code t
if
.meta symbol
denotes a type in the FFI type system: either a built-in type or
an alias type name established by
.codn typedef .
Otherwise, it returns
.codn nil .
.coNP Function @ ffi-make-closure
.synb
.mets (ffi-make-closure < lisp-fun < call-desc
.mets \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ >> [ safe-p <> [ abort-val ]])
.syne
.desc
The
.code ffi-make-closure
function binds a Lisp function
.metn lisp-fun ,
which may be a lexical closure, or any callable object, with a FFI call
descriptor
.meta call-desc
to produce a FFI closure.
A FFI closure is an object of type
.code ffi-closure
which is suitable as an argument for the type denoted by the
.code closure
type specifier keyword in the FFI type language.
This type appears a C function pointer in the foreign code,
and may be called as such. When it is called by foreign
code, it triggers a call to
.metn lisp-fun .
The optional
.meta safe-p
parameter controls whether the closure dispatch is "safe", the meaning of
which is described shortly. The default value is
.code t
so that unsafe closure dispatch must be explicitly requested with a
.code nil
argument for this parameter.
A callback closure which is safely dispatched, firstly, does not permit
the capture of delimited continuations across foreign code. Delimited
continuations can be captured inside a closure dispatched that way, but the
delimiting prompt must be within the callback's local stack frame, without
traversing across the foreign stack frames. Secondly, a callback closure which
is safely dispatched doesn't permit direct non-local control transfers across
foreign code, such as exception handling. Such transfers, however, appear to
work anyway (with caveats): this is because they are specially handled. The
closure dispatch mechanism intercepts all dynamic control transfers, converts
them to an ordinary return from the callback to the foreign code, and resumes
the control transfer when the foreign code itself finishes and returns.
If the callback returns a value (its return type is other than
.codn void )
then in this situation, the callback returns an all-zero-bits return
value to the foreign caller. If the
.meta abort-val
parameter is specified and its value is other than
.codn nil ,
then that value will be used as the return value instead of an all-zero
bit pattern.
An unsafely dispatched closure permits the capture of continuations from
the callback across the foreign code and direct dynamic control transfers which
abandon the foreign stack frames.
Unsafe closure dispatch is only compatible with foreign code which is
designed with that usage in mind. For instance foreign code which holds
dynamic resources in stack variables will leak those resources if abandoned
this way. There are also issues with capturing continuations across foreign
code.
Note: the C function pointer is called a "closure" because it carries
environment information. For instance, if
.code lisp-fun
is a lexical closure, invocations of it through the FFI closure
occur in its proper lexical environment, even though its external
representation is a simple C function pointer. This requires a special
trampoline trick: a piece of dynamically constructed machine code with the
closure binding embedded inside it, with the C function pointer pointing
to the machine code.
Note: the same call descriptor can be reused multiple times to create
different closures. The same Lisp function can be involved in multiple
FFI closures.
.TP* Example:
.verb
;; Package the TXR cmp-str function as a string
;; comparison callback compatible with:
;;
;; int (*)(const char *, const char *)
;;
(ffi-make-closure
(fun cmp-str)
(ffi-make-call-desc 2 nil ;; two args, non-variadic
(ffi-type-compile 'int) ;; int return
[mapcar ffi-type-compile '(str str)])) ;; args
.brev
.coNP Function @ ffi-call
.synb
.mets (ffi-call < fun-cptr < call-desc <> { arg }*)
.syne
.desc
The
.code ffi-call
function invokes a foreign function.
The
.meta fun-cptr
argument which must be a
.code cptr
object. It is assumed to point to a foreign function.
The
.meta call-desc
argument must be a FFI call descriptor, produced by
.codn ffi-call-desc .
The
.meta call-desc
must correctly describe the foreign function.
The zero or more
.meta arg
arguments are values which are converted into foreign
argument values. There must be exactly as many of these arguments
as are required by
.metn call-desc .
The
.code ffi-call
function converts every
.meta arg
to a corresponding foreign object. If these conversions are
successful, the converted foreign arguments are passed by value
to the foreign function indicated by
.metn fun-cptr .
An unsuccessful conversion throws an error.
When the call returns, the foreign function's return value is
converted to a Lisp object and returned, in accordance with the
return type that is declared inside
.metn call-desc .
.coNP Function @ ffi-typedef
.synb
.mets (ffi-typedef < name << type )
.syne
.desc
The
.code ffi-typedef
function installs the compiled FFI type given by
.meta type
as a typedef name under the symbol given by
.metn name .
After this registration, whenever the type compiler encounters that
symbol being used as a type specifier, it will replace it by the
type object it represents.
The
.code ffi-typedef
function returns type.
.TP* Example:
.verb
;; define refcount-t as an alias for uint32
(ffi-typedef 'refcount-t (ffi-type-compile 'uint32))
.brev
.coNP Function @ ffi-size
.synb
.mets (ffi-size << type )
.syne
.desc
The
.code ffi-size
function returns an integer which gives the storage size of
the given FFI type: the amount of storage required for the
external representation of that type.
Bitfield types do not have a size; it is an error to apply
this function to a bitfield.
The size is machine:specific.
.TP* Example:
.verb
(ffi-size '(ffi-type-compile 'double)) -> 8
(ffi-size '(ffi-type-compile 'char)) -> 1
(ffi-size '(ffi-type-compile
'(array 42 char))) -> 42
.brev
.coNP Function @ ffi-alignof
.synb
.mets (ffi-alignof << type )
.syne
.desc
The
.code ffi-alignof
function returns an integer which gives the alignment
the given FFI type. When an instance of
.meta type
is placed into a structure as a member, it is placed after the previous member
at the smallest available offset which is divisible by the alignment.
The bytes skipped from the smallest available offset to the smallest
available aligned offset are referred to as
.IR padding .
Bitfield types do not have an alignment; it is an error to apply
this function to a bitfield. Bitfields are allocated in
storage cells, and those cells have alignment which is the
same as that of the type
.codn int .
The alignment is machine-specific. It may be more strict than what the
hardware architecture requires, yet at the same time be smaller than the size
of the type. For instance, the size of the type
.code double
is commonly 8, yet the alignment is often 4, and this is so
even on processors like Intel x86 which can load and store
a double at a misaligned address.
The alignment of an array is the same as that of its element type.
The alignment of a structure is that of its member which has the
most strict (largest-valued) alignment.
It is a property of arrays, derived from requirements governing the C
language, that if the first element of an array is at a correctly aligned
address, then all elements are. To ensure that this property holds for
for arrays of structures, structures sometimes must include
padding at the end. This is because the size of a structure without any
padding might not be multiple of its alignment, which is derived from the most
strictly aligned member. For instance, if we assume an architecture on which
the size and alignment of
.code int
is 4, the size of the structure type
.code "(struct ab (a int) (b char))"
would be 5 if no padding were included. However,
in an array of these structures, the second element's
.code a
member would be placed at offset 5, rendering it misaligned.
To ensure that every
.code a
is placed at an offset which is multiple of 4, the struct type is extended
with anonymous padding so that its size is 8.
.TP* Example:
.verb
(ffi-alignof (ffi double)) -> 4
.brev
.coNP Function @ ffi-offsetof
.synb
.mets (ffi-offsetof < type << member )
.syne
.desc
The
.code ffi-alignof
function calculates the byte offset of
.meta member
within the FFI type
.metn type .
If
.meta type
isn't a FFI struct type, or if
.meta member
isn't a symbol naming a member of that type,
the function throws an exception.
An exception is also thrown if
.meta member
is a bitfield.
.TP* Example:
.verb
(ffi-offsetof (ffi (struct ab (a int) (b char))) 'b) -> 4
.brev
.coNP Function @ ffi-arraysize
.synb
.mets (ffi-arraysize << type )
.syne
.desc
The
.code ffi-arraysize
function reports the number of elements in
.metn type ,
which must be an array type: an
.codn array ,
.code zarray
or
.codn carray .
.TP* Example:
.verb
(ffi-arraysize (ffi (array 5 int))) -> 5
.brev
.coNP Function @ ffi-elemsize
.synb
.mets (ffi-elemsize << type )
.syne
.desc
The
.code ffi-elemsize
function reports the size of the element type of an array,
of the target type of a pointer, or of the base integer type of an enumeration.
The
.meta type
argument must be an array, pointer or enumeration type: a type constructed
by one of the operators
.codn array ,
.codn zarray ,
.codn carray ,
.codn ptr ,
.codn ptr-in ,
.codn ptr-out ,
.code enum
or
.codn enumed .
.TP* Example:
.verb
(ffi-elemsize (ffi (array 5 int))) -> 4 ;; (sizeof int)
.brev
.coNP Function @ ffi-elemtype
.synb
.mets (ffi-elemtype << type )
.syne
.desc
The
.code ffi-elemtype
function retrieves the element type of an array type,
target type of a pointer type, or base integer type of an enumeration.
The
.meta type
argument must be an array, pointer or enumeration type: a type constructed
by one of the operators
.codn array ,
.codn zarray ,
.codn carray ,
.codn ptr ,
.codn ptr-in ,
.codn ptr-out ,
.code enum
or
.codn enumed .
.TP* Example:
.verb
(ffi-elemtype (ffi (ptr int))) -> #<ffi-type int>
.brev
.SS* Foreign Function Macro Language
This group of macros provides a higher-level language for working with
FFI types and defining foreign function bindings. The macros are implemented
using the Foreign Function Type API described in the previous section.
.coNP Macro @ with-dyn-lib
.synb
.mets (with-dyn-lib < lib-expr << body-form *)
.syne
.desc
The
.code with-dyn-lib
macro works in conjunction with the
.codn deffi ,
.code deffi-sym
and
.code deffi-var
macros.
When a
.code deffi
form appears as one of the
.metn body-form -s
of the
.code with-dyn-lib
macro, that
.code deffi
form is permitted to use the simplified forms of the
.meta fun-expr
argument, to refer to library functions succinctly, without having
to specify the library. The same remark applies to
.code deffi-sym
and
.codn deffi-var ,
regarding their
.meta var-expr
parameter.
A form invoking the
.code with-dyn-lib
macro should be a top-level form. The macro creates a global variable named
by a symbol generated by
.code gensym
whose initializing expression binds it to a dynamic library handle.
The macro then creates an environment in which the enclosed
.codn deffi ,
.code deffi-var
and
.code deffi-sym
forms can implicitly refer to that library via the global variable.
The
.meta lib-expr
argument can take on three different forms:
.RS
.meIP nil
If
.meta lib-expr
is
.codn nil ,
then
.code with-dyn-lib
arranges for the library to refer to the \*(TX executable itself.
.meIP < string
If
.meta lib-expr
is a literal string, then
.code with-dyn-lib
will arrange for the hidden variable to be initialized with
an expression which opens a handle to the specified library.
.meIP < form
If
.meta lib-expr
is any other form, then it is assumed to denote syntax for
opening the handle to a library. That syntax is used verbatim
as the initializing expression for the generated global variable
which holds the library handle.
.RE
.IP
The result value of a
.code with-dyn-lib
form is the symbol which names the generated variable which
holds the library handle.
.TP* Examples:
.verb
;; refer to malloc and free functions
;; in the executable
(with-dyn-lib nil
(deffi malloc "malloc" cptr (size-t))
(deffi free "free" void (cptr)))
;; refer to "draw" function in fictitious
;; "libgraphics" library:
(with-dyn-lib "libgraphics.so.5"
(deffi draw "draw" int (cptr cptr)))
;; refer to "init_foo" function via specific
;; library handle.
(defvarl foo-lib (dlopen "libfoo.so.1"))
(with-dyn-lib foo-lib
(deffi init-foo "init_foo" void (void)))
.brev
.coNP Macro @ deffi
.synb
.mets (defmacro deffi < name < fun-expr < rettype << argtypes )
.syne
.desc
The
.code deffi
macro arranges for a Lisp function to be defined, via
.codn defun ,
which calls a foreign function.
The
.meta name
argument must be a symbol suitable as a function name in a
.code defun
form. This specifies the function's Lisp name.
The
.meta fun-expr
parameter specifies the foreign function which is to be called.
The syntactic variants permitted for its argument are
described below.
The
.meta rettype
argument must specify the return type, using the FFI type syntax,
as an unquoted literal. The macro arranges for the compilation of this
syntax via
.codn ffi-type-compile .
The
.meta argtypes
argument must specify a list of the argument types, as an unquoted
literal list, using FFI type syntax. The macro arranges for these types
to be compiled. Furthermore, a special convention may be used for
specifying a variadic function: if the
.code :
(colon keyword)
symbol appears as one of the elements of
.metn argtypes ,
then the
.code deffi
form specifies a fixed call to a foreign function which is variadic. The
argument types before the colon keyword are the fixed arguments. The types
after the colon, if any, are the variadic arguments.
The following syntactic variants are permitted of the
.meta fun-expr
argument:
.RS
.meIP < name-string
If
.meta fun-expr
is a literal string, then the
.code deffi
form must be enclosed in the
.code with-dyn-lib
macro, appearing as one of that macro's
.metn body-form -s.
In this situation the literal character string
.meta name-string
specifies a symbol to be found within the library established by the
.meta with-dyn-lib
macro.
.meIP >> ( name-string << ver-string )
This manner of specifying the
.meta fun-expr
also requires the
.code deffi
form to be enclosed in a
.codn with-dyn-lib .
It selects a particular version of a symbol from the library.
.meIP < form
If
.meta fun-expr
is any other form, then it must specify an expression which evaluates to a
.code cptr
object giving the address of a foreign library symbol. If this form
is used, then the
.code deffi
form need not be surrounded by a call to the
.code with-dyn-lib
macro.
.RE
.IP
The result value of a
.code deffi
form is
.metn name .
.coNP Macros @ deffi-cb and @ deffi-cb-unsafe
.synb
.mets (deffi-cb < name < rettype < argtypes <> [ abort-val ])
.mets (deffi-cb-unsafe < name < rettype << argtypes )
.syne
.desc
The
.code deffi-cb
macro defines, using
.code defun
a Lisp function called
.metn name .
Thus the
.meta name
argument must be a symbol suitable as a function name in a
.code defun
form.
The
.meta rettype
and
.meta argtypes
arguments are processed exactly as in the corresponding arguments in the
.code deffi
macro.
The
.code deffi-cb
macro arranges for
.meta rettype
and
.meta argtypes
to be compiled into a FFI call descriptor.
The generated function called
.meta name
then serves as a combinator which takes a Lisp function as its argument,
and binds it to the FFI call descriptor to produce a FFI closure.
That closure may then be passed to foreign functions as a callback.
The
.code deffi-cb
macro generates a callback which uses safe dispatch, which is explained
in the description of the
.code ffi-make-closure
function. The optional
.meta abort-val
parameter specifies an expression which evaluates to the value
to be returned by the callback in the event that a dynamic control
transfer is intercepted. The purpose of this value is to indicate
to the foreign code that the callback wishes to abort operation;
it is useful in situations when a suitable return value will induce
the foreign code to co-operate and itself return to the Lisp code
which will then continue the dynamic control transfer.
The
.code deffi-cb-unsafe
macro is a variant of
.code deffi-cb
with the same argument conventions. The difference is that it arranges for
.code ffi-make-closure
to be invoked with
.code nil
for the
.meta safe-p
parameter. This macro has no
.meta abort-val
parameter, since unsafe callbacks do not use it.
.TP* Example:
.verb
;; create a closure combinator which binds
;; Lisp functions to a call descriptor has the C type
;; signature void (*)(int).
(deffi-cb void-int-closure void (int))
;; use the combinator
;; some-foreign-function's second arg is
;; of type closure, specifying a callback:
(some-foreign-function
42
(void-int-closure (lambda (x)
(puts `callback! @x`))))
.brev
.coNP Macro @ deffi-var
.synb
.mets (deffi-var < name < var-expr << type )
.syne
.desc
The
.code deffi-var
macro defines a global symbol macro which expands to an expression
accessing a foreign variable, creating the illusion that the
variable is available as a Lisp variable holding a Lisp data type.
The
.meta name
argument gives the name of the symbol macro to be defined.
The
.meta var-expr
argument is one of several permitted syntactic forms
which specify the address of the foreign variable.
They are described below.
The
.meta type
argument expresses the variable type in FFI type syntax.
Once the variable is defined, accessing the macro symbol
.meta name
performs a get operation on the foreign variable, yielding
the conversion of that variable to a Lisp value.
An assignment to the symbol performs a put operation,
converting a Lisp object to a value which overwrites
the object.
Note: FFI memory management is not helpful in the use of
variables. Suppose a string value is
stored in a variable of type
.codn str .
This means that FFI dynamically allocates a buffer which
stores the UTF-8 encoded version of the string, and this
buffer is placed into the foreign variable.
Then suppose another such assignment takes place.
The previous value is simply overwritten without being
freed.
The following syntactic variants are permitted of the
.meta var-expr
argument:
.RS
.meIP < name-string
If
.meta var-expr
is a literal string, then the
.code deffi-var
form must be enclosed in the
.code with-dyn-lib
macro, appearing as one of that macro's
.metn body-form -s.
In this situation the literal character string
.meta name-string
specifies a symbol to be found within the library established by the
.meta with-dyn-lib
macro.
.meIP >> ( name-string << ver-string )
This manner of specifying the
.meta fun-expr
also requires the
.code deffi
form to be enclosed in a
.codn with-dyn-lib .
It selects a particular version of a symbol from the library.
.meIP < form
If
.meta var-expr
is any other form, then it must specify an expression which evaluates to a
.code cptr
object giving the address of a foreign library symbol. If this form
is used, then the
.code deffi
form need not be surrounded by a call to the
.code with-dyn-lib
macro.
.RE
.coNP Macro @ deffi-sym
.synb
.mets (deffi-sym < name < var-expr <> [ type-sym ])
.syne
.desc
The
.code deffi-sym
macro defines a global lexical variable called
.code name
whose value is a
.code cptr
object that refers to a symbol in a foreign library.
The
.meta name
argument gives the name for the variable to be defined.
This definition takes place place as if by the
.code defparml
macro.
The
.meta var-expr
is syntax which specifies the foreign pointer, using exactly the same
conventions as described for the
.code deffi-var
macro, allowing for a short-hand notation if this form is
enclosed in a
.code with-dyn-lib
macro invocation.
The optional
.meta type-sym
argument must be a symbol. If it is absent, it defaults to nil.
This argument specifies the type label for the
.code cptr
object which holds the pointer to the foreign symbol.
The result value of
.meta deffi-sym
is the symbol
.metn name .
.coNP Macro @ typedef
.synb
.mets (typedef < name << type-syntax )
.syne
.desc
The
.code typedef
macro provides a convenient way to define type aliases.
The
.meta type-syntax
expression is compiled as FFI syntax, and the
.meta name
symbol is installed as an alias denoting that type.
The
.code typedef
macro yields the compiled version of
.meta type-syntax
as its value.
.coNP Macro @ sizeof
.synb
.mets (sizeof < type-syntax <> [ object-expr ])
.syne
.desc
The macro
.code sizeof
calculates the size of the FFI type denoted by
.codn type-syntax .
The
.meta type-syntax
expression is compiled to a type using
.codn ffi-type-compile .
The
.meta object-expr
expression is evaluated to an object value.
If
.code type-syntax
denotes an incomplete array or structure type, and the
.meta object-expr
argument is present, then a
.I "dynamic size" is computed: the actual number of bytes required to store
that object value as a foreign representation.
The
.code sizeof
macro arranges for the size calculation to be carried out at macro-expansion
time, if possible, so that the
.code sizeof
form is replaced by an integer constant. This is possible when the
.meta object-expr
is omitted, or if it is a constant expression according to the
.code constantp
function.
For the type
.codn void ,
incomplete array types, and bitfield types, the one-argument form of
.code sizeof
reports zero.
For incomplete structure types, the one-argument
.code sizeof
reports a size which is equivalent to the offset of the last member.
The size of an incomplete structure does not include padding
for the most strictly aligned member.
.coNP Macro @ alignof
.synb
.mets (alignof << type-syntax )
.syne
.desc
The macro
.code alignof
calculates the alignment of the FFI type denoted by
.code type-syntax
at macro-expansion time, and produces that
integer value as its expansion, such that there is no
run-time computation. It uses the
.code ffi-alignof
function.
.coNP Macro @ offsetof
.synb
.mets (offsetof < type-syntax << member-name )
.syne
.desc
The macro
.code sizeof
calculates the offset of the structure member indicated by
.metn member-name ,
a symbol, inside the FFI struct type indicated by
.metn type-syntax .
This calculation is performed by a macro-expansion-time call to the
.code ffi-offsetof
function, and produces that
integer value as its expansion, such that there is no
run-time computation.
.coNP Macro @ arraysize
.synb
.mets (arraysize << type-syntax )
.syne
.desc
The macro
.code arraysize
calculates the number of elements of the array type indicated by
.metn type-syntax .
This calculation is performed by a macro-expansion-time call to the
.code ffi-arraysize
function, and produces that
integer value as its expansion, such that there is no
run-time computation.
.coNP Macro @ elemsize
.synb
.mets (elemsize << type-syntax )
.syne
.desc
The macro
.code elemsize
calculates the size of the element type of an array type, or
the size of target type of a pointer type indicated by
.metn type-syntax .
This calculation is performed by a macro-expansion-time call to the
.code ffi-elemsize
function, and produces that
integer value as its expansion, such that there is no
run-time computation.
.coNP Macro @ elemtype
.synb
.mets (elemtype << type-syntax )
.syne
.desc
The macro
.code elemtype
produce the element type of an array type, or
the target type of a pointer type indicated by
.metn type-syntax .
Note: the
.code elemtype
macro may be understood in terms of several possible implementations.
The form
.code "(elemtype X)"
is equivalent to
.codn "(ffi-elemtype (ffi-type-compile X))" .
Since there exists an
.code elemtype
type operator, the expression is also equivalent to
.codn "(ffi-type-compile '(elemtype X))" .
.coNP Macro @ ffi
.synb
.mets (ffi << type-syntax )
.syne
.desc
The
.code ffi
macro provides a shorthand notation for compiling a literal
FFI type expression to the corresponding type object. The
following equivalence holds:
.verb
(ffi expr) <--> (ffi-type-compile 'expr)
.brev
.SS* Zero-filled Object Support
Communicating with foreign interfaces sometimes requires representations
to be initialized consisting of all zero bits, or mostly zero bits.
\*(TX provides convenient ways to prepare Lisp objects such that when those
objects are converted to a foreign representation, they generate zero-filled
representations.
.coNP Function @ make-zstruct
.synb
.mets (make-zstruct < type >> { slot-sym << init-value }*)
.syne
.desc
The
.code make-zstruct
function provides a convenient means of instantiating a structure
for use in foreign function calls, imitating a pattern of initialization
often seen in the C language. It instantiates a Lisp
.code struct
by conversion of zero-filled memory through FFI, thus creating a Lisp
structure which appears zero-filled when converted to the foreign representation.
This simplifies application code, which is spared from providing individual
slot initializations which have this effect.
The
.meta type
argument must be a compiled FFI
.code struct
type. The remaining arguments must occur pairwise. Each
.meta slot-sym
argument must be a symbol naming a slot in the FFI
.code struct
type. The
.meta init-value
argument which follows it specifies the value for that
slot.
The
.code make-zstruct
function operates as follows. Firstly, the Lisp
.code struct
type is retrieved which corresponds to the FFI type given by
.metn type .
A new instance of the Lisp type is instantiated, as if by
a one-argument call to
.codn make-struct .
Next, each slot indicated by a
.meta slot-sym
argument is set to the corresponding
.metn init-value .
Finally, each slot of the struct which is not initialized via
.meta slot-sym
and
.meta init-value
pair, and which is known to the FFI type, is re-initialized by a conversion
from a foreign object of all-zero bits to a Lisp value.
argument. The
.code struct
object is then returned.
Note: the
.code znew
macro provides a less verbose notation based on
.codn make-zstruct .
Note: slots which are not known to the FFI
.code struct
type may be initialized by
.codn make-zstruct .
Each
.meta slot-sym
must be a slot of the Lisp
.code struct
type; but need not be declared as a member in the FFI
.code struct
type.
.coNP Macro @ znew
.synb
.mets (znew < type-syntax >> { slot-sym << init-value }*)
.syne
.desc
The
.code znew
macro provides a convenient way of using
.codn make-zstruct ,
using syntax which resembles that of the
.code new
macro.
The
.code znew
macro generates a
.code make-zstruct
call, arranging for the
.meta type-syntax
argument to be compiled to a FFI type object, and
applies quoting to every
.meta slot-sym
argument.
The following equivalence holds:
.verb
(znew s a i b j ...) <--> (make-zstruct (ffi s)
'a i 'b j ...)
.brev
.TP* Example
Given the following FFI type definition
.verb
(typedef foo (struct foo (a (cptr bar)) (b uint) (c bool)))
.brev
the following results are observed:
.verb
;; ordinary instantiation
(new foo) -> #S(foo a nil b nil c nil)
;; Under znew, a is null cptr of correct type:
(znew foo) -> #S(foo a #<cptr bar: 0> b 0 c nil)
;; value of b is specified; others come from zeros:
(znew foo b 42) -> #S(foo a #<cptr bar: 0> b 42 c nil)
.brev
.coNP Function @ zero-fill
.synb
.mets (zero-fill < type << obj )
.syne
.desc
The
.code zero-fill
function invokes the by-reference in semantics of FFI type
.meta type
against a zero-filled buffer, and a Lisp object
.metn obj .
This means that if
.meta obj
is an aggregate such as a vector, list or structure,
it is updated as if from an all-zero-bit foreign representation.
In that situation,
.meta obj
is also returned.
An object which has by-value semantics, such as an integer,
is not updated. In this case, nevertheless, the return value
is a Lisp object produced by converting an all-zero-bit buffer to
.metn type .
.SS* Foreign Unions
The following group of functions provides the means for working
with foreign unions, in conjunction with the
.code union
FFI type.
.coNP Function @ make-union
.synb
.mets (make-union < type >> [ initval <> [ member ]])
.syne
.desc
The
.code make-union
function instantiates a new object of type
.codn union ,
based on the FFI type specified by the
.meta type
parameter, which must be compiled FFI
.code union
type.
The object provides storage for the foreign representation of
.codn type ,
and that storage is initialized to all zero bytes.
Additionally, if
.meta initval
is specified, but
.meta member
is not, then
.meta initval
is stored into the union's via the first member, as if by
.codn union-put .
If the union type has no members, an error exception is thrown.
If both
.meta initval
and
.meta member
are specified, then
.meta initval
is stored into the union using the specified member, as if by
.codn union-put .
.coNP Function @ union-members
.synb
.mets (union-members << union )
.syne
.desc
The
.code union-members
function retrieves the list of symbols which name the members of
.metn union .
These are derived from the object's FFI type.
It is unspecified whether the list is freshly allocated on each call,
or whether the same list is returned; applications shouldn't
destructively manipulate this list.
.coNP Function @ union-get
.synb
.mets (union-get < union << member )
.syne
.desc
The
.code union-get
function performs the get semantics (conversion from a foreign
representation to Lisp) on the member of
.meta union
which is specified by the
.meta member
argument. That argument must be a symbol corresponding to one of the member
names.
The
.meta union
object's storage buffer is treated as an object of the foreign
type indicated by that member's type information, and converted
accordingly to a Lisp object that is returned.
.coNP Function @ union-put
.synb
.mets (union-put < union < member << new-value )
.syne
.desc
The
.code union-put
function performs the put semantics (conversion from a Lisp object
to foreign representation) on the member of
.meta union
which is specified by the
.meta member
argument. That argument must be a symbol corresponding to one of the member
names.
The object given as
.meta new-value
is converted to the foreign representation according to the type
information of the indicated member, and that representation is
placed into the
.meta union
object's storage buffer.
The return value is
.metn new-value .
.coNP Functions @ union-in and @ union-out
.synb
.mets (union-in < union < memb << memb-obj )
.mets (union-out < union < memb << memb-obj )
.syne
.desc
The
.code union-in
and
.code union-out
functions perform the FFI in semantics and out semantics, respectively.
These semantics are involved in two-way data transfers between foreign
representations and Lisp objects.
The
.meta union
argument must be a
.code union
object and the
.meta memb
argument a symbol which matches one of that object's member names.
In the case of
.codn union-in ,
.meta memb-obj
is a Lisp object that was previously stored into
.meta union
using the
.code union-put
operation, into the same member that is currently indicated by
.metn member .
In the case of
.codn union-out ,
.meta memb-obj
is a Lisp object that was previously retrieved from
.meta union
using the
.code union-get
operation, from the same member that is currently indicated by
.metn member .
The
.code union-in
performs the by-value nuance of the in semantics on the indicated
member: if the member contains pointers to any objects, those
objects are updated from their counterparts in
.meta memb-obj
using their respective by-reference in semantics, recursively.
Similarly
.code union-out
performs the by-value nuance of the out semantics on the indicated
member: if the member contains pointers to any objects, those
objects are updated with their Lisp counterparts in
.meta memb-obj
using their respective by-reference out semantics, recursively.
Note:
.code union-in
is intended to be used after a FFI call, on a union-typed by-value
argument, or a union-typed object contained in an argument,
in situations when the function is expected to have updated
the contents of the union. The
.code union-out
function is intended to be used in a FFI callback, on a union-typed
callback argument or union-typed object contained in such
an argument, in cases when the callback has updated the Lisp
object corresponding to a union member, and that change needs
to be propagated to the foreign caller.
.SS* FFI-type-driven I/O Functions
These functions provide a way to perform I/O on stream using the foreign
representation of Lisp objects, performing conversion between the Lisp
representations in memory and the foreign representations in a stream.
The
.meta stream
argument used with these functions must be a stream object which,
in the case of input functions, supports
.code get-byte
and, in the case of output, supports
.codn put-byte .
.coNP Function @ put-obj
.synb
.mets (put-obj < object < type <> [ stream ])
.syne
.desc
The
.code put-obj
function encodes
.meta object
into a foreign representation, according to the FFI type
.metn type .
The bytes of the foreign representation are then written to
.metn stream .
If
.meta stream
is omitted, it defaults to
.codn *stdout* .
If the operation successfully writes all bytes of the representation to
.metn stream ,
the value
.code t
is returned. A partial write causes the return value to be
.codn nil .
All other stream error situations throw exceptions.
.coNP Function @ get-obj
.synb
.mets (get-obj < type <> [ stream ])
.syne
.desc
The
.code get-obj
function reads from
.meta stream
the bytes corresponding to a foreign representation according to the FFI type
.metn type .
If
.meta stream
is omitted, it defaults to
.codn *stdin* .
If the read is successful, these bytes are decoded, producing a Lisp
object, which is returned.
If the read is incomplete, the value returned is
.metn nil .
All other stream error situations throw exceptions.
.coNP Function @ fill-obj
.synb
.mets (fill-obj < object < type <> [ stream ])
.syne
.desc
The
.code get-obj
function reads from
.meta stream
the bytes corresponding to a foreign representation according to the FFI type
.metn type .
If the read is successful, then
.meta object
is updated, if possible, from that representation, using the by-value in
semantics of the FFI type and returned. If a by-value update of
.meta object
isn't possible, then a new object is decoded from the data and returned.
If the read is incomplete, the value returned is
.metn nil .
All other stream error situations throw exceptions.
.SS* Buffer Functions
Functions in this area provide a way to perform conversion between
Lisp objects and foreign representation to and from objects of the
.code buf
type.
.coNP Functions @ ffi-put and @ ffi-put-into
.synb
.mets (ffi-put < obj << type )
.mets (ffi-put-into < dst-buf < obj < type <> [ offset ])
.syne
.desc
The
.code ffi-put
function encodes the Lisp object
.meta obj
according to the FFI type
.meta type
and returns a new buffer object of type
.code buf
which holds the foreign representation.
The
.code ffi-put-into
function is similar, except that it uses an existing buffer
.meta dst-buf
which must be large enough to hold the foreign representation.
The
.meta type
argument must be a compiled FFI type.
If
.meta type
is has a variable length, then the actual size of the foreign representation is
calculated from
.metn obj .
The
.meta obj
argument must be an object compatible with the conversions
implied by
.metn type .
The optional
.meta offset
argument specifies a byte offset from the beginning of the data area of
.meta dst-buf
where the foreign-representation of
.meta obj
is stored. The default value is zero.
These functions perform the "put semantics" encoding action similar to
what happens to the arguments of an outgoing foreign function call.
Caution: incorrect use of this function, or its use in isolation
without a matching
.code ffi-in
call, can cause memory leaks, because, depending on
.metn type ,
temporary resources may be allocated, and pointers to those resources
will be stored in the buffer.
.coNP Function @ ffi-out
.synb
.mets (ffi-out < dst-buf < obj < type < copy-p <> [ offset ])
.syne
.desc
The
.code ffi-out
function performs the "out semantics" encoding action, similar
to the treatment applied to the arguments of a callback prior to
returning to foreign code.
It is assumed that
.code obj
is an object that was returned by an earlier call to
.codn ffi-get ,
and that the
.meta dst-buf
and
.meta type
arguments are the same objects that were used in that call.
The
.meta copy-p
argument is a Boolean flag which is true if the buffer represents a datum
that is being passed by pointer. If
.meta copy-p
is true, then
.meta obj
is converted to a foreign representation which is stored into
.metn dst-buf .
If it is false, it indicates that the buffer itself is a pass-by-value object.
This means that the object itself will not be copied, but if it is an aggregate
which contains pointers, the operation will recurse on those objects, invoking
their "out semantics" action with pass-by-pointer semantics. The required
pointers to these indirect objects are obtained from
.metn dst-buf .
The optional
.meta offset
argument specifies a byte offset from the beginning of the data area of
.meta dst-buf
where the foreign-representation of
.meta obj
is understood to be stored, and where it is updated if requested by
.metn copy-p .
The default value is zero.
The
.code ffi-out
function returns
.metn dst-buf .
.coNP Function @ ffi-in
.synb
.mets (ffi-in < src-buf < obj < type < copy-p <> [ offset ])
.syne
.desc
The
.code ffi-in
function performs the "in semantics" decoding action, similar to the
treatment applied to the arguments of a foreign function call after
it returns, in order to free temporary resources and recover the new
values of objects that have been modified by the foreign function.
It is assumed that
.meta src-buf
is a buffer that was prepared by a call to
.code ffi-put
or
.codn ffi-put-into ,
and that
.meta type
and
.meta obj
are the same values that were passed as the
corresponding arguments of those functions.
The
.code ffi-in
function releases the temporary memory resources that were allocated by
.code ffi-put
or
.codn ffi-put-into ,
which are obtained from the buffer itself, where they appear as pointers.
The function recursively performs the in semantics across the entire type,
and the entire object graph rooted at the buffer.
The
.meta copy-p
argument is a Boolean flag which is true if the buffer represents a datum
that is being passed by pointer. If it is false, it indicates that the
buffer itself is a pass-by-value object. Under pass-by-pointer semantics,
either a whole new object is extracted from the buffer and returned,
or else the slots of
.meta obj
are updated with new values from the buffer.
Under pass-by-value semantics, no such extraction takes place, and
.meta obj
is returned.
However, regardless of the value of
.codn copy-p ,
if the object is an aggregate which contains pointers, the recursive
treatment through those pointers involves pass-by-pointer semantics.
This is consistent with the idea that we can pass a structure by value,
but that structure can have pointers to objects which are updated by
the called function. Those indirect objects are passed by pointer.
They get updated, but the parent structure cannot.
If
.meta type
is has a variable length, then the actual size of the foreign representation is
calculated from
.metn obj .
The optional
.meta offset
argument specifies a byte offset from the beginning of the data area of
.meta src-buf
from which the foreign-representation of
.meta obj
is taken.
The
.code ffi-in
function returns either
.meta obj
or a new object which is understood to have been produced as its
replacement.
.coNP Function @ ffi-get
.synb
.mets (ffi-get < src-buf < type <> [ offset ])
.syne
.desc
The
.code ffi-get
function extracts a Lisp value from buffer
.meta src-buf
according to the FFI type
.metn type .
The
.meta src-buf
argument is an object of type
.meta buf
large enough to hold a foreign representation of
.metn type ,
at the byte offset indicated by the
.meta offset
argument.
The
.meta type
argument is compiled FFI type.
The optional
.meta offset
argument defaults to zero.
The external representation in
.meta src-buf
at the specified offset is scanned according to
.meta type
and converted to a Lisp value which is returned.
The
.code ffi-get
operation is similar to the "get semantics" performed by FFI
in order to extract the return value of foreign function
calls, and by the FFI callback mechanism to extract the
arguments coming into a callback.
The
.meta type
argument may not be a variable length type, such as an array of
unspecified size.
.SS* Foreign Arrays
Functions in this area provide a means for working with
foreign arrays, in connection with the FFI
.code carray
type.
.coNP Functions @ carray-vec and @ carray-list
.synb
.mets (carray-vec < vec < type <> [ null-term-p ])
.mets (carray-list < list < type <> [ null-term-p ])
.syne
.desc
The
.code carray-vec
and
.code carray-list
functions allocate storage for the representation of a foreign array, and
return a
.code carray
object which holds a pointer to that storage.
The argument
.metn type ,
which must be a compiled FFI type,
is retained as the
.code carray
object's element type.
Prior to returning, the functions
initializes the foreign array by converting the elements of
.meta vec
or, respectively,
.meta list
into elements of the foreign array.
The conversion is performed using the put semantics of
.metn type ,
which is a compiled FFI type.
The length of the returned
.code carray
is determined from the length of
.meta vec
or
.meta list
and from the value of the Boolean argument
.metn null-term-p .
If
.meta null-term-p
is
.codn nil ,
then the length of the
.code carray
is the same as that of the input
.meta vec
or
.metn list .
A true value of
.meta null-term-p
indicates null termination.
This causes the length of the
.code carray
to be one greater than that of
.meta vec
or
.metn list ,
and the extra element allocated to the foreign array is filled with zero bytes.
.coNP Function @ carrayp
.synb
.mets (carrayp << object )
.syne
.desc
The
.code carrayp
function returns
.code t
if
.meta object
is a
.codn carray ,
otherwise it returns
.codn nil .
.coNP Function @ carray-blank
.synb
.mets (carray-blank < length << type )
.syne
.desc
The
.code carray-blank
function allocates storage for the representation of a foreign array,
filling that storage with zero bytes, and returns a
.code carray
object which holds a pointer to that storage.
The argument
.metn type ,
which must be a compiled FFI type,
is retained as the
.code carray
object's element type.
The
.meta length
argument must be a nonnegative integer; it specifies the number
of elements in the foreign array and is retained as the
.code carray
object's length.
The size of the foreign array is the product of the size of
.meta type
as reported by the
.code ffi-size
function, and of
.metn length .
.coNP Function @ carray-buf
.synb
.mets (carray-buf < buf < type <> [ offset ])
.syne
.desc
The
.code carray-buf
function creates a
.code carray
object which refers to the storage provided and managed by the buffer object
.metn buf ,
providing a view of that storage, and manipulation thereof, as an array.
The optional
.meta offset
parameter specifies an offset from the start of the buffer to the
location which is interpreted as the start of the
.codn carray ,
which extends from that offset to the end of the buffer.
The default value is zero: the
.code carray
covers the entire buffer.
If a value is specified, it must be in the range zero to the length of
.metn buf .
The
.meta type
argument must be a compiled FFI type whose size is nonzero.
The
.code carray
is overlaid onto the storage of
.meta buf
as follows:
First,
.meta offs
is subtracted from the bytewise length of
.metn buf ,
as reported by
.code length-buf
function to produce the effective length of the storage to be used for the array.
The effective length is divided by the size of
.metn type ,
as reported by
.codn ffi-size .
The resulting quotient represents the length (number of elements) of the
.code carray
object.
Note: the returned
.code carray
object holds a reference to
.metn buf ,
preventing
.meta buf
from being reclaimed by garbage collection, thereby protecting the
underlying storage from becoming invalid. A subsequent invocation of
.code carray-own
operation releases this reference.
Note: the relationship between the
.code carray
object and
.meta buf
is inherently unsafe: if
.meta buf
is subsequently subject to operations which reallocate the storage,
such as
.code buf-set-length
the pointer stored inside the referencing
.code carray
object becomes invalid, and operations involving that pointer
have undefined behavior.
Note: if the length of the buffer is not evenly divisible by the size of the
type, the calculated number of elements is rounded down. The trailing portion
of the buffer corresponding to the division remainder, being insufficient
to constitute a whole array element, is excluded from the array view.
.coNP Function @ carray-buf-sync
.synb
.mets (carray-buf-sync << carray )
.syne
.desc
The
.code carray-buf-sync
function requires
.meta carray
to be a
.code carray
object which refers to a
.code buf
object for its storage. Such objects are created by the function
.codn carray-buf .
The
.code carray-buf-sync
function retrieves and returns the buffer object associated with
.meta carray
and at the same time also updates the internal properties of
.meta carray
using the current information: the pointer to the data, and the
length of
.meta carray
are altered to reflect the current state of the buffer.
.coNP Function @ buf-carray
.synb
.mets (buf-carray << carray )
.syne
.desc
The
.code buf-carray
function duplicates the underlying storage of
.meta carray
and returns that storage represented as an object of
.code buf
type.
The storage size is calculated by multiplying the
.code carray
object's element size by the number of elements.
Only that extent of the storage is duplicated.
.coNP Function @ carray-cptr
.synb
.mets (carray-cptr < cptr < type <> [ length ])
.syne
.desc
The
.code carray-cptr
function creates a
.code carray
object based on a pointer derived from a
.code cptr
object.
The
.meta cptr
argument must be of type
.codn cptr .
The object's
.code cptr
type tag is ignored.
The
.meta type
argument must specify a compiled FFI type, which will become
the element type of the returned
.codn carray .
If
.meta length
is specified as
.codn nil ,
or not specified,
then the returned
.code carray
object will be of unknown length. Otherwise,
.meta length
must be a non-negative integer which will be taken as the
length of the array.
Note: this conversion is inherently unsafe.
.coNP Function @ length-carray
.synb
.mets (length-carray << carray )
.syne
.desc
The
.code length-carry
function returns the length of the
.meta carray
argument, which must be an object of type
.codn carray .
If
.meta carray
has an unknown length, then
.code nil
is returned.
.coNP Function @ copy-carray
.synb
.mets (copy-carray << carray )
.syne
.desc
The
.code copy-carray
function returns a duplicate of
.metn carray .
The duplicate has the same element type and length, but has its own
copy of the underlying storage. This is true whether or not
.meta carray
owns its storage or not. In either case, the duplicate owns
.I its
copy of the storage.
.coNP Function @ carray-set-length
.synb
.mets (carray-set-length < carray << length )
.syne
.desc
The
.code carry-set-length
attempts to change the length of
.metn carray ,
which must be an object of
.code carray
type.
The
.meta length
argument indicates the new length, which must be
a non-negative integer.
The operation throws an
.code error
exception if
.meta length
is negative.
An
.code error
exception is also thrown if
.meta carray
is an object which owns the underlying storage. There is no provision in the
.code carray
type to change the storage size.
It is permissible to change the length of a
.code carray
object which acts as a view into a buffer (as constructed via the
.code carray-buf
operation).
This creates a potentially unsafe situation in which the length requires
a larger amount of backing storage than is provided by the buffer.
.coNP Accessor @ carray-ref
.synb
.mets (carray-ref < carray << idx )
.mets (set (carray-ref < carray << idx ) << new-val )
.syne
.desc
The
.code carray-ref
function accesses an element of the foreign array
.metn carray ,
converting that element to a Lisp value, which is returned.
The
.meta idx
argument must be a non-negative integer. If
.meta carray
has a known length,
.meta idx
must be less than the length.
If
.meta carray
has an unknown length, then the the access is permitted regardless of how
positive is the value of
.metn idx .
Whether the access has well-defined behavior depends on the actual extent of
the underlying array storage.
The validity of any access to the underlying storage depends on the
validity of the pointer to that storage.
The access to the array storage proceeds as follows. Every
.code carray
object has an element type, which is a compiled FFI type.
A byte offset
address is calculated by multiplying the size of the element type of
.meta carray
by
.metn idx .
Then, the get semantics of the element type is invoked to convert, to
a Lisp object, a region of data starting at calculated byte offset in the array
storage. The resulting object is returned.
Assigning an a value to a
.code caddr-ref
form is equivalent to using
.code caddr-refset
to store the value.
.coNP Function @ carray-refset
.synb
.mets (carray-refset < carray < idx << new-val )
.syne
.desc
The
.code carray-refset
function accesses an element of the foreign array
.metn carray ,
overwriting that element with a new value obtained
from a conversion of the Lisp value
.metn new-val .
The return value is
.metn new-val .
The
.meta idx
argument must be a non-negative integer. If
.meta carray
has a known length,
.meta idx
must be less than the length.
If
.meta carray
has an unknown length, then the the access is permitted regardless of how
positive is the value of
.metn idx .
Whether the access has well-defined behavior depends on the actual extent of
the underlying array storage.
The validity of any access to the underlying storage depends on the
validity of the pointer to that storage.
The access to the array storage proceeds as follows. Every
.code carray
object has an element type, which is a compiled FFI type.
A byte offset
address is calculated by multiplying the size of the element type of
.meta carray
by
.metn idx .
Then, the put semantics of the element type is invoked to convert
.meta new-val
to a foreign representation, which is written into the array storage
started at the calculated byte offset.
If
.meta new-val
has a type which is not compatible with the element type, or a value which
is out of range or otherwise unsuitable, an exception is thrown.
.coNP Functions @ carray-dup and @ carray-own
.synb
.mets (carray-dup << carray )
.mets (carray-own << carray )
.syne
.desc
The
.code carray-dup
function acts upon a
.code carray
object which doesn't own its underlying array storage.
It allocates a duplicate copy of the array storage referenced by
.metn carray ,
and assigns to
.meta carray
the new copy. Then it marks
.meta carray
as owning that storage. Lastly, if
.meta carray
references another object, that reference is removed;
.meta carray
no longer prevents the other object from being reclaimed by
the garbage collector.
If
.meta carray
already owns its storage, then this function has no effect.
If
.meta carray
has an unknown size, then an error exception is thrown.
A
.code carray
produced by the functions
.code carray-vec
or
.code carray-blank
already owns its storage.
A
.code carray
object does not own its storage if it is produced by
.code carray-buf
or by the conversion of a foreign pointer under the control of the
.code carray
FFI type.
Because
.code carray
objects derived from foreign pointers via FFI have an unknown size,
before using
.codn carray-dup ,
the application must determine the length of the array, and call
.code carray-set-length
to establish that length.
After
.codn carray-dup ,
the length may not be altered.
The
.code carray-dup
function returns
.code t
if it has performed the duplication operation. If it has done
nothing, it returns
.codn nil .
The
.code carray-own
function resembles
.codn carray-dup ,
differing from that function only in in two ways.
Instead of allocating a duplicate copy of the underlying array storage,
.code carray-own
causes
.meta carray
to
.B assume
ownership of the existing storage. Secondly, it is an error to use
.code carray-own
on a
.meta carray
which references a buffer object.
The
.meta carray-own
function always returns
.codn nil .
In all other regards, the descriptions of
.code carray-dup
apply to
.codn carray-own .
.coNP Function @ carray-free
.synb
.mets (carray-free << carray )
.syne
.desc
If
.meta carray
is a
.code carray
object which owns the storage to which it refers, then
.code carray-free
function liberates that storage by passing the pointer to the C
library function
.codn free .
It then replaces that pointer with a null pointer, and
changes the size to zero.
If
.meta carray
doesn't own the storage, an exception is thrown.
.coNP Function @ carray-type
.synb
.mets (carray-type << carray )
.syne
.desc
The
.code carray-type
function returns the element type of
.metn carray ,
a compiled FFI type.
.coNP Functions @ vec-carray and @ list-carray
.synb
.mets (vec-carray < carray <> [ null-term-p ])
.mets (list-carray < carray <> [ null-term-p ])
.syne
.desc
The
.code vec-carray
and
.code list-carray
functions convert the array storage of
.meta carray
to a freshly constructed object representation: vector, and list, respectively.
The new vector or list is returned.
The
.meta carray
object must have a known size; an
.code error
exception is thrown if these functions are invoked on a
.code carray
object of unknown size.
The effective length of the new vector or list is derived
from the length of
.metn carray ,
taking into account the value of
.metn null-term-p .
The
.meta null-term-p
Boolean parameter defaults to
.codn nil .
If specified as true, then it has the effect that the
effective length of the returned vector or list is
one less than that of
.metn carray :
in other words, a true value of
.meta null-term-p
indicates that
.meta carray
holds storage which represents a null-terminated array, and the
terminating null element is to be excluded from the conversion.
If
.meta null-term-p
is true, but the length of
.meta carray
is already zero, then it has no effect; the effective length remains zero,
and a zero-length vector or list is returned.
Conversion of the foreign array to the vector or list is performed
by iterating over all of its elements, starting from element zero, up to the
element before the effective length.
.coNP Functions @ carray-get and @ carray-getz
.synb
.mets (carray-get << carray )
.mets (carray-getz << carray )
.syne
.desc
The
.code carray-get
and
.code carray-getz
functions treat the contents of
.meta carray
as a FFI
.code array
and
.code zarray
type, respectively.
They invoke the get semantics to convert the FFI array to a Lisp
object, and return that object.
If the element type is one of
.codn char ,
.code bchar
or
.codn wchar ,
then the expected string conversion semantics applies.
.coNP Functions @ carray-put and @ carray-putz
.synb
.mets (carray-put < carray << new-val )
.mets (carray-putz < carray << new-val )
.syne
.desc
The
.code carray-put
and
.code carray-putz
functions treat the contents of
.meta carray
as a FFI
.code array
and
.code zarray
type, respectively.
They invoke the put semantics to convert the Lisp object
.meta new-val
array to the foreign array representation, which is placed into
the array storage referenced by
.metn carray .
If the element type is one of
.codn char ,
.code bchar
or
.codn wchar ,
then the expected string conversion semantics applies.
Both of these functions return
.metn carray .
.coNP Accessor @ carray-sub
.synb
.mets (carray-sub < carray >> [ from <> [ to ]])
.mets (set (carray-sub < carray >> [ from <> [ to ]]) << new-val )
.syne
.desc
The
.code carray-sub
function extracts a subrange of a
.meta carray
object, returning a new
.code carray
object denoting that subrange.
The semantics of
.meta from
and
.meta to
work exactly like the corresponding arguments of the
.code sub
accessor, following the same conventions.
The returned
.code carray
shares the array has the same element type as the original and
shares the same array storage. If, subsequently, elements of the
original array are modified which lie in the range, then the
modifications will affect the previously returned subrange
.codn carray .
The returned
.code carray
references the original object, to ensure that as long as the returned object
is reachable by the garbage collector, so is the original. This relationship
can be severed by invoking
.code carray-dup
on the returned object, after which the two no longer share storage,
and modifications in the original are not reflected in the subrange.
If
.code carray-sub
is used as a syntactic place, the argument expressions
.metn carray ,
.metn from ,
.meta to
and
.meta new-val
are evaluated just once. The prior value, if required, is accessed by calling
.code carray-sub
and
.meta new-val
is then stored via
.codn carray-replace .
.coNP Function @ carray-replace
.synb
.mets (carray-replace < carray < item-sequence >> [ from <> [ to ]])
.syne
.desc
The
.code carray-replace
function is a specialized version of
.code replace
which works on
.code carray
objects. It replaces a sub-range of
.meta carray
with elements from
.metn item-sequence .
The replacement sequence need not have the same length
as the range which it replaces.
The semantics of
.meta from
and
.meta to
work exactly like the corresponding arguments of the
.code replace
function, following the same conventions.
The semantics of the
.code carray-replace
operation itself differs from the
.code replace
semantics on sequences in one important regard: the
.code carray
object's length always remains the same.
The range indicated by
.meta from
and
.meta to
is deleted from
.meta carray
and replaced by elements of
.metn item-sequence ,
which undergo conversion to the foreign type that defines the
elements of
.metn carray .
If this operation would make the
.code carray
longer, any elements in excess of the object's length are discarded,
whether they are the original elements, or whether they come from
.metn item-sequence .
Under no circumstances does
.code carray-replace
write an element beyond the length of the underlying storage.
If this operation would make the
.meta carray
shorter (the range being replaced is longer than
.metn item-sequence )
then the downward relocation of items above the replacement range
creates a gap at the end of
.meta carray
which is filled with zero bytes.
The return value is
.meta carray
itself.
.coNP Function @ carray-pun
.synb
.mets (carray-pun < carray << type )
.syne
.desc
The
.code carray-pun
creates a new
.code carray
object which provides an aliased view of the same data that is referenced by
the original
.meta carray
object.
The
.meta type
argument specifies the element type used by the returned aliasing array.
The
.code carray-pun
function considers the byte size of the array, which is a product of
the original length and element size. It then calculates how many elements of
.meta type
fit into this size. This value becomes the length of the aliasing array
which is returned.
Since the returned aliasing array and the original refer to the same
storage, modifications performed in one view are reflected in the other.
The aliasing array holds a reference to the original, so that as long as
it is reachable by the garbage collector, so is the original.
That relationship is severed if
.code carray-dup
is invoked on the aliasing array.
The meaning of the aliasing depends entirely on the bitwise representations of
the types involved.
.coNP Functions @ carray-uint and @ carray-int
.synb
.mets (carray-uint < number <> [ type ])
.mets (carray-int < number <> [ type ])
.syne
.desc
The
.code carray-uint
and
.code carray-int
functions convert
.metn number ,
an integer, to a binary image, which is then used as
the underlying storage for a
.codn carray .
The
.meta type
argument, a compiled FFI type, determines the element type for the returned
.codn carray .
If it is omitted, it defaults to the
.code uint
type, so that the array is effectively of bytes.
Regardless of
.metn type ,
these functions first determine the number of bytes required to represent
.meta number
in a big endian format. Then the number of elements is determined for the
array, so that it provides at least as that many bytes of storage. The
representation of
.meta number
is then placed into this storage, such that its least significant byte
coincides with the last byte of that storage. If the number is smaller
than the storage provided by the array, it extended with padding bytes on the
left, near the beginning of the array.
In the case of
.codn carray-uint ,
.meta number
must be a non-negative integer. An unsigned representation is produced
which carries no sign bit. The representation is as many bytes wide as
are required to cover the number up to its most significant bit whose
value is 1. If any padding bytes are required due to the array being larger,
they are always zero.
The
.code carray-int
function encodes negative integers also, using a variable-length two's
complement representation. The number of bits required to hold the number
is calculated as the smallest width which can represent the value in two's
complement, including a sign bit. Any unused bits in the most significant
byte are filled with copies of the sign bit: in other words, sign extension
takes place up to the byte size. The sign extension continues through the
padding bytes if the array is larger than the number of bytes required to represent
.metn number ;
the padding bytes are filled with the value
.code #b11111111
(255) if the number is negative, or else 0 if it is non-negative.
.coNP Functions @ uint-carray and @ int-carray
.synb
.mets (uint-carray << carray )
.mets (int-carray < number <> [ type ])
.syne
.desc
The
.code uint-carray
and
.code int-carray
functions treat the storage bytes
.meta carray
object as the representation of an integer.
The
.code uint-carray
function simply treats all of the bytes as a big-endian unsigned integer in
a pure binary representation, and returns that integer, which is necessarily
always non-negative.
The
.code int-carray
function treats the bytes as a two's complement representation. The returned
number is negative if the first storage byte of
.meta carray
has a 1 in the most significant bit position: in other words, is in the
range
.code #x80
to
.codn #xFF .
In this case, the two's complement of the entire representation is calculated:
all of the bits are inverted, the resulting positive integer is extracted.
Then 1 is added to that integer, and it is negated. Thus, for example, if all
of the bytes are
.codn #xFF ,
the value -1 is returned.
.coNP Functions @ fill-carray and @ put-carray
.synb
.mets (fill-array < carray >> [ pos <> [ stream ]])
.mets (put-array < carray >> [ pos <> [ stream ]])
.syne
.desc
The
.code fill-array
and
.code put-array
functions perform stream output using the
.code carray
object as a buffer.
The semantics of these functions is as follows.
A temporary buffer is created which aliases the storage of
.meta carray
and this buffer is used as an argument in an invocation of, respectively,
the buffer I/O function
.meta fill-buf
or
.metn put-buf .
The value returned by buffer I/O function is returned.
The
.meta pos
and
.meta stream
arguments are defaulted exactly in the same manner as by
.code fill-buf
and
.codn put-buf ,
and have the same meaning. In particular,
.meta pos
indicates a byte offset into the
.meta carray
object's storage, not an array index.
.SH* LISP COMPILATION
.SS* Overview
\*(TX supports two modes of processing of Lisp programs: evaluation and compilation.
Expressions entered into the listener, loaded from source files via
.codn load ,
processed by the
.code eval
function, or embedded into the \*(TX pattern language, are processed by the
.IR evaluator .
The evaluator expands all macros, and then interprets the program
by traversing its raw syntax tree structure. It uses an inefficient
representation of lexical variables consisting of heap-allocated environment
objects which store variable bindings as Lisp association lists. Every time a
variable is accessed, the chain of environments is searched for the binding.
\*(TX also provides a compiler and virtual machine for more efficient execution
of Lisp programs. In this mode of processing, top-level expressions are
translated into the instructions of Lisp-oriented virtual machine. The virtual
machine language is traversed more efficiently compared to the traversal of the
cons cells of the original Lisp syntax tree. Moreover, compiled code uses a
much more efficient representation for lexical variables which doesn't involve
searching through an environment chain. Lexical variables are always allocated
on the stack (the native one established by the operating system). They are
transparently relocated to dynamic storage only when captured by lexical
closures, and without sacrificing access speed.
\*(TX provides the function
.code compile
for compiling individual functions, both anonymous and named. File compilation
is supported via the function
.codn compile-file .
The function
.code compile-toplevel
is provided for compiling expressions in the global environment. This
function is the basis for both
.code compile
and
.codn compile-file .
The
.code disassemble
function is provided to list the compiled code in a more understandable way;
.code disassemble
takes a compiled code object and decodes it into an assembly language
presentation of its virtual machine code, accompanied by a dump of the various
information tables.
File compilation via
.code compile-file
refers to a processing step whereby a source file containing \*(TL forms
(typically named with a
.code .tl
file name suffix) is translated into an object file (named with a
.code .tlo
suffix) containing a compiled version of those forms.
The compiled object file can then be loaded via the
.code load
function instead of the source file. Usually, loading the compiled file
produces the same effect as if the source file were loaded. However, note that
the behavior of compiled code can differ from interpreted code in a number of
ways. Differences in behavior can be deliberately induced. Certain erroneous
or dubious situations can also cause compiled code to behave differently from
interpreted code.
Compilation not only provides faster execution; compiled files also load much
faster than source files. Moreover, they can be distributed unaccompanied by
the source files, and resist reverse engineering.
.SS* Top-Level Forms
An important concept in file compilation via
.code compile-file
is that of the
.IR "top-level form" ,
and how that term is defined. The file compiler individually processes
top-level forms; for each such form, it emits a translated image.
In the context of file compilation, a top-level form isn't simply any Lisp form
which is not enclosed by another one. Rather, in this specific context, it has
this specific definition, which allows some enclosed forms to still be
considered top-level forms:
.RS
.IP 1.
If a form appearing in a \*(TL source file isn't enclosed in another
form, it is a top-level form.
.IP 2.
If a
.code progn
form is top-level form, then each of its constituent forms is also a top-level
form.
.IP 3.
If a
.code compile-only
form is top-level form, then each of its constituent forms is also a top-level
form.
.IP 4.
If an
.code eval-only
form is top-level form, then each of its constituent forms is also a top-level
form.
.IP 5
If a
.code load-time
form is top-level form, then its argument is a top-level form.
.IP 6.
When a form is identified as a top-level form by the above rule 1,
its constituents are considered under rules 2-4 only after the form is
fully macro-expanded.
.IP 7.
No other forms are top-level forms.
.RE
A top-level form is a
.I primary
top-level form if it doesn't contain any other top-level forms.
This means that it is not a form based on any of the operators
.codn progn ,
.code compile-only
or
.codn eval-only .
.SS* File Compilation Model
The file compiler reads each successive forms from a file, performs a partial
expansion on that form, then traverses it to identify all of the
top-level forms which it contains. Each top-level form is subject to
three actions, either of the latter two of which may be omitted: compilation,
execution and emission. Compilation refers to the translation to compiled form.
Execution is the invocation of the compiled form. Emission refers to appending
an externalized representation of the compiled form (its image) to the output
which is written into the compiled file.
By default, all three actions take place for every top-level form. Using the
operators
.code compile-only
or
.codn eval-only ,
execution or emission, or both, may be suppressed. If both are suppressed,
then compilation isn't performed; the forms processed in this mode are
effectively ignored.
When a compiled file is loaded, the images of compiled forms are read from
it and converted back to compiled objects, which are executed in sequence.
Partial expansion means that file compilation doesn't fully expand each
form that is encountered. Rather, an incremental expansion is performed,
similar to the algorithm used by the
.code eval
function:
.RS
.IP 1
First, if
.meta form
is a macro, it is macro-expanded as if by an application of the function
.codn macroexpand .
.IP 2
If the resulting expanded form is a
.codn progn ,
.codn compile-only ,
or
.code eval-only
form, then
.code compile-file
iterates over that form's argument expressions, compiling each expression
recursively as if it were a separate expression.
.IP 3
Otherwise, if the expanded form isn't one of the above three kinds of
expressions, it is subject to a full expansion and compilation.
.RE
.SS* Treatment of Literals
Programs specify not only code, but also data. Data embedded in a program is
called
.IR "literal data" .
There are restrictions on what kinds of object may be used as literal data
in programs subject to file compilation. Programs which stray outside of these
restrictions will produce compiled files which load incorrectly or fail to
load.
Literal objects arise not only from the use of literal such as numbers,
characters and strings, and not only from quoted symbols or lists.
For instance, compiled forms which define or reference free variables or global
functions require the names of these variables or functions to be represented
as literals.
An object used as a literal in file-compiled code must be
.I externalizable
which means that it has a printed representation which can be scanned to
produce a similar object. An object which does not have a readable printed
representation will give rise to a compiled file which triggers an exception.
Literals which are themselves read from program source code naturally meet this
restriction; however, with the use of macros, it is possible to embed arbitrary
objects into program code.
If the same object appears in two or more places in the code specified in a
single file, the file compilation and loading mechanism ensures that the
multiple occurrences of that object in the compiled file become a single object
when the compiled file is loaded. For example, if macros are used in such a way
that the compiled file defines a function which has a name generated by
.codn gensym ,
and there are calls to that function throughout that file, this will work
properly: the multiple occurrences of the gensym will appear as the same symbol.
However: that symbol in the loaded file will not be identical to any other
symbol in the \*(TX image; it will be newly allocated each time the compiled
file is loaded.
Interned symbols are recorded in a compiled file by means of their textual
names and package prefixes. When a compiled file is loaded, the interned
symbols which occur as literals in it are entered into the specified packages
under the specified names. The value of the
.code *package*
special variable has no influence on this.
Circular structures in compiled literals are preserved; on loading, similar
circular structures are reproduced.
.SS* Treatment of The Hash Bang Line
\*(TX supports the hash bang mechanism in compiled
.code .tlo
files, thereby allowing compiled scripts to be executable.
When a source file begins with the
.code #!
("hash-bang") character sequence, the file compiler propagates that
line (all characters up to and including the terminating newline) to the
compiled file, subject to the following transformation: occurrences of
.str --lisp
which are not followed by a dash are replaced with
.strn --compiled .
Furthermore, certain permissions are propagated from a hash bang source
file to the target file. If the source file is executable to its owner,
then the target file is made executable as if by using
.code chmod
with the
.code +x
mode: all the executable permissions that are allowed by the current
.code umask
are are enabled on the target file. If the target file is thus being marked
executable, then additional permissions are also treated as follows. If the
target file has the same owner as the source file, and the source file's setuid
permission bit is set, then this is propagated to the target file. Similarly,
if the target file has the same group owner as the source file, and the source
file's group execute bit and setgid permission bit are set, then the setgid
bit is set on the target file.
.SS* Compiled File Compatibility
\*(TX's virtual machine architecture for executing compiled code
is evolving, and that evolution has implications for the compatibility between
compiled files the \*(TX executable image.
The basic requirement is that a given version of \*(TX can load and execute
the compiled files which that same version has produced.
Furthermore, these files are architecture-independent, except that their
encoding is in the local byte order ("endianness") of the host machine.
The byte order is explicitly indicated in the files, and the
.code load
function resolves it. Thus a file produced by \*(TX running on a 64 bit big
endian Power PC can be loaded by \*(TX running on 32 bit x86, which is
little endian.
A given \*(TX version may also be capable of loading files produced by
an older version, or even ones produced by a newer version. Whether this
is possible depends on the versions involved.
Compiled files contain a minor and major version number (which is independent
of the \*(TX version). The
.code load
function examines these numbers and decides whether the file is loadable,
or whether it must be rejected.
The first version of \*(TX which featured the compiler and virtual machine was
191. Older versions therefore cannot load compiled files.
Versions 191 and 192 produce version 1 compiled files, and load only that
version.
Versions 193 through 198 produce version 2 compiled files and load only
that version.
Version 199 produces version 3 files and loads version 2 or 3.
Versions 200 through 215 produce version 4 files and load version 2, 3 or 4.
Versions 216 through 243 produce version 5.0 files and load version 2, 3, 4 or 5,
regardless of minor version.
Version 244 produces version 5.1 files and loads version 2, 3, 4 or 5,
regardless of minor version.
.SS* Semantic Differences between Compilation and Interpretation
The
.code compile-only
and
.code eval-only
operators can be used to deliberately produce code which behaves differently
when compiled and interpreted. In addition, unwanted differences in behavior
can also occur. The situations are summarized below.
.coNP Differences due to @ load-time
Forms evaluated by
.code load-time
are treated differently by the compiler. When a top-level form is compiled,
its embedded
.code load-time
forms are factored out such that the compiled image of the top-level form
will evaluate these forms before other evaluations take place.
The interpreter doesn't perform this factoring; it evaluates a
.code load-time
form when it encounters it for the first time.
.coNP Treatment of literals
The compiler identifies multiple occurrences of equivalent strings and bignum
integers that occur as literals, and condenses each one to a single instance,
within the scope of the compilation. The scope is possibly as wide as a file.
If the literal
.str abc
appears in multiple places in the same file that is processed by
.codn compile-file ,
in the resulting compiled file, there may be just a single
.str abc
object. For instance, if the file contains two functions:
.verb
(defun f1 () "abc")
(defun f2 () "abc")
.brev
when compiled, these will return the same object such that
.verb
(eq (f1) (f2)) -> t
.brev
No such de-duplication is performed for interpreted code.
Consequently, code which depends on multiple occurrences of these objects to be
distinct objects may behave correctly when interpreted, but misbehave when
compiled. Or
.IR "vice versa .
One example is code which modifies a string literal.
Under compilation, the change will affect all occurrences of that literal
that have been merged into one object. Another example is an
expression like
.codn "(eq \(dqabc\(dq \(dqabc\(dq)" ,
which yields
.code nil
under interpretation because the two strings are distinct object in spite
of appearing side by side in the syntax, but
.code t
when compiled, since they denote the same string object.
In the future, objects other than strings and bignums may be similarly
consolidated, such as lists and vectors, which means that interpreted
code which works today when compiled may misbehave in the future.
Note that objects which are literally notated in source code are not the only
kinds of objects considered to be literals. Objects which are constructed by
macros and inserted into macro-expansions are also literals. Literals are
self-evaluating objects that appear as expressions in the syntax which remains
after macro-expansion, as well as arguments of the
.code quote
operator. If a macro calculates a new string each time it is expanded,
and inserts it into the expansion as a literal, the compiler will identify
and consolidate groups of such strings that are identical.
.coNP Treatment of unbound variables
Unbound variables are treated differently by the compiler. A reference
to an unbound variable is treated as a global lexical access. This means that
if a variable access is compiled first and then a
.code defvar
is processed which introduces the variable as a dynamically scoped ("special")
variable, the compiled code will not treat the variable as special; it
will refer to the global binding of the variable, even when a dynamic binding
for that variable exists. The interpreter treats all variable references
that do not have lexical bindings as referring to dynamic variables.
The compiler treats a variable as dynamic if a
.code defvar
has been processed which marked that variable as special.
.coNP Unbound symbols in @ dwim
Arguments of a
.code dwim
form (or the equivalent bracket notation) which are unbound
symbols are treated differently by the
compiler. The code is compiled under the assumption that all such symbols
refer to global functions. For instance, if neither
.code f
nor
.code x
are defined, then
.code "[f x]"
will be compiled under the assumption that they are functions. If they are
later defined as variables, the compiled code will fail because no function
named
.code x
exists. The interpreter resolves each symbol in a
.code dwim
form at the time the form is being executed. If a symbol is defined
as a variable at that time, it is accessed as a variable. If it defined as a
function, it is accessed as a function.
.coNP Bound symbols in @ dwim
The symbolic arguments of a
.code dwim
form that refer to global bindings are also treated differently by the compiler.
For each such symbol, the compiler determines whether it refers to a
function or variable and, further, whether the variable is global lexical or
special. This treatment of the symbol is then cemented in the compiled code;
the compiled code will treat that symbol that way regardless of the
run-time situation. By contrast, the interpreter performs this classification
each time the arguments of a
.code dwim
form are evaluated. The rules are otherwise the same: if the symbol is bound as
a variable, it is treated as a variable. If it is bound as a function, it is
treated as a function. If it has both bindings, it is treated as a variable.
The difference is that this is resolved at compile time for compiled code,
and at evaluation time for interpreted code.
.coNP File-wide insertion of gensyms
The following degenerate situation occurs, illustrated by example. Suppose the
following definitions are given:
.verb
(defvarl %gensym%)
(defmacro define-secret-fun ((. args) . body)
(set %gensym% (gensym))
^(defun ,%gensym% (,*args) ,*body))
(defmacro call-secret-fun (. args)
^(,%gensym% ,*args))
.brev
The idea is to be able to define a function whose name is an uninterned
symbol and then call it. An example module might use these definitions as
follows:
.verb
(define-secret-fun (a) (put-line `a is @a`))
(call-secret-fun 42)
.brev
The effect is that the second top-level form calls the function, which
prints 42 to standard out. This works both interpreted and compiled with
.codn compile-file .
Each of these two macro calls generates a top-level form into which
the same gensym is inserted. This works under file compilation due to a
deliberate strategy in the layout of compiled files, which allows such
uses. Namely, the file compiler combines multiple top-level forms are combined
into a single object, which is read at once, and which uses the circle
notation to unify gensym references.
However, suppose the following change is introduced:
.verb
(define-secret-fun (a) (put-line `a is @a`))
(defpackage foo) ;; newly inserted form
(call-secret-fun 42)
.brev
This still works when interpreted, and compiles successfully. However, when the
compiled file is loaded, the compiled version of the
.code call-secret-fun
form fails with an error complaining that the
.code #:g0039
(or other gensym name) function is not defined.
This is because for this modified source file, the file compiler is not
able to combine the compiled forms into a single object. It would not
be correct to do so in the presence of the
.code defpackage
form, because the evaluation of that form affects the subsequent interpretation
of symbols. After the package definition is executed, it is possible for
a subsequent top-level form to refer to a symbol in the
.code foo
package such as
.code foo:bar
to occur, which would be erroneous if the package didn't exist.
The file compiler therefore arranges for the compiled forms after the
.code defpackage
to be emitted into a separate object. But that division in the output file
consequently prevents the occurrences of the gensym to resolve to the same
symbol object.
In other words, the strategy for allowing global gensym use is in conflict
with support for forms which have a necessary read-time effect such as
.codn defpackage .
The solution is to rearrange the file to unravel the interference, or
to use interned symbols instead of gensyms.
.coNP Delimited Continuations
There are differences in behavior between compiled and interpreted code
with regard to delimited continuations. This is covered in the
Delimited Continuations section of the manual.
.SS* Compilation Library
.coNP Function @ compile-toplevel
.synb
.mets (compile-toplevel < form << expanded-p )
.syne
.desc
The
.code compile-toplevel
function takes the Lisp form
.meta form
and compiles it. The return value is a
.I "virtual machine description"
object representing the compiled form. This object isn't of function type, but may be
invoked as if it were a function with no arguments.
Invoking the compiled object is expected to produce the same effect as
evaluating the original
.meta form
using the
.code eval
function.
The
.meta expanded-p
argument indicates that
.meta form
has already been expanded and is to be compiled without further expansion.
If
.meta expanded-p
is
.codn nil ,
then it is subject to a full expansion.
Note: in spite of the name,
.code compile-toplevel
makes no consideration whether or not
.meta form
is a "top-level form" according to the definition of that term
as it applies to
.code compile-file
processing.
Note: a form like
.code "(progn (defmacro foo ()) (foo))"
will not be processed by
.code compile-toplevel
in a manner similar to the processing by
.code eval
or
.codn compile-file .
In this example,
.code defmacro
form will not be evaluated prior to the expansion of
.code "(foo)"
(and in fact not evaluated at all)
and so the latter expression isn't correctly referring to that macro.
The form
.code "(progn (macro-time (defmacro foo ())) (foo))"
can be processed by
.codn compile-toplevel ;
however, the macro definition now takes place during expansion, and isn't
compiled.
The
.code compile-file
function has no such issue when it encounters such a form at the top-level,
because that function will consider a top-level
.code progn
form to consist of multiple top-level forms that are compiled
individually, and also executed immediately after being compiled.
.TP* Example
.verb
;; compile (+ 2 2) form and execute to calculate 4
;;
(defparm comp (compile-toplevel '(+ 2 2)))
(call comp) -> 4
[comp] -> 4
.brev
.coNP Function @ compile
.synb
.mets (compile << function-name )
.mets (compile << lambda-expression )
.mets (compile << function-object )
.syne
.desc
The
.code compile
function compiles functions.
It can compile named functions when
the argument is a
.metn function-name .
A function name is a symbol denoting an existing interpreted function,
or compound syntax such as
.mono
.meti (meth < type << name )
.onom
to refer to methods. The code of the interpreted function is retrieved,
compiled in a manner which produces an anonymous compiled function,
and then that function replaces the original function under the same name.
If the argument is a lambda expression, then that function is
compiled.
If the argument is a function object, and that object is an interpreted
function, then its code is retrieved and compiled.
In all cases, the return value of
.code compile
is the compiled function.
.coNP Functions @ compile-file and @ compile-update-file
.synb
.mets (compile-file < input-path <> [ output-path ])
.mets (compile-update-file < input-path <> [ output-path ])
.syne
.desc
The
.code compile-file
function reads forms from an input file, and produces a compiled output file.
First,
.meta input-path
is converted to a
.I "tentative path name"
as follows.
If
.meta input-path
specifies a pure relative pathname, as defined by the
.code pure-rel-path-p
function, then a special behavior applies.
If an existing load operation is in progress, then the special variable
.code *load-path*
has a binding. In this case,
.code load
will assume that the relative pathname is a reference relative to the
directory portion of that path name.
If
.code *load-path*
has the value
.codn nil ,
then a pure relative
.meta input-path
pathname is used as-is, and thus resolved relative to the current working
directory.
The tentative path name is converted to an
.I "actual input path name"
as follows. Firstly, if the tentative path name ends with one of the suffixes
.code .tl
or
.code .txr
then it is considered suffixed, otherwise it is considered unsuffixed.
If it is suffixed, then the actual path name is the same as the tentative path name.
In the unsuffixed case, two possible actual input path names are formed. First,
the suffix
.code .tl
is added to the tentative path name. If that path exists, it is taken
taken as the actual path. Otherwise, the unmodified tentative path
is taken as the actual input path.
If the actual path ends in the suffix
.code .txr
then the behavior is unspecified.
If the
.meta output-path
parameter is given an argument, then that argument specifies the
output path.
Otherwise the output path is derived from the tentative input path
as follows. If the tentative input path is unsuffixed, then
.code .tlo
is added to it to produce the output path.
Otherwise, the suffix is removed from the tentative input path
and replaced with the
.code .tlo
suffix.
The
.code compile-file
function binds the variables
.code *load-path*
and
.code *package*
similarly to the
.code load
function.
Over the compilation of the input file,
.code compile-file
establishes a new dynamic binding for several special
variables. The variable
.code *load-path*
is given a new binding containing the actual input path name.
The
.code *package*
variable is also given a new dynamic binding, whose value is the
same as the existing binding. Thus if the compilation of the
file has side the effect of altering the value of
.codn *package* ,
that effect will be undone when the binding is removed
after the compilation completes.
Compilation proceeds according to the File Compilation Model.
If the compilation process fails to produce a successful translation
for each form in the input file, the output file is removed.
The
.code compile-update-file
function differs from
.code compile-file
in the following regard: compilation is performed only if the input
file is newer than the output file, or else if the output file doesn't
exist.
The
.code compile-file
always returns
.code t
if it terminates normally, which occurs if it successfully translates
every form in the input file, depositing the translation into the output
file. If compilation fails,
.code compile-file
terminates by throwing an exception.
The
.code compile-update-file
function returns
.code t
if it successfully compiles, similarly to
.codn compile-file .
If compilation is skipped, the function returns
.codn nil .
Note: the following idiom may be used to load a file, compiling it if
necessary:
.verb
(or (compile-update-file "file")
(load-file "file"))
.brev
However, note that it relies on the effect of compiling a source file being the
same as the effect of loading the compiled file.
This can only be true if the source file contains no
.code compile-only
or
.code eval-only
top-level forms.
.coNP Macro @ with-compilation-unit
.synb
.mets (with-compilation-unit << form *)
.syne
.desc
When a file is processed by
.codn compile-file ,
certain actions, such as the issuance of diagnostics about undefined functions
and variables, are delayed until the file is completely processed.
The
.code with-compilation-unit
macro allows these actions to be collectively deferred until multiple files
are completely processed.
The macro evaluates each enclosed
.meta form
in a single compilation environment. After the last
.meta form
is evaluated, deferred actions of any enclosed
.code compile-file
forms are performed, and then the value of the last
.meta form
is returned.
It is permissible to nest
.code with-compilation-unit
forms, lexically or dynamically. The outer-most invocation of
.code with-compilation-unit
dominates; all deferred
.code compile-file
actions are held until the outer-most enclosing
.code with-compilation-unit
terminates.
.coNP Operators @ compile-only and @ eval-only
.synb
.mets (compile-only << form *)
.mets (eval-only << form *)
.syne
.desc
These operators take on a special behavior only when they appear as top-level forms
in the context of file compilation.
When a
.code compile-only
or
.code eval-only
form is processed by the evaluator rather than compiler, or when it is
processed outside of file compilation, or when it is appears as other than a
top-level form even under file compilation, then these operators behave
in a manner identical to
.codn progn .
When a
.code compile-only
form appears as a top-level form under file compilation, it indicates to the
file compiler that the
.metn form -s
enclosed in it are not to be evaluated. By default, the file compiler executes
each top-level form after compiling it. The
.code compile-only
operator suppresses this evaluation.
When a
.code eval-only
form appears as a top-level form under file compilation, it indicates to the
file compiler that the
.metn form -s
enclosed in it are not to be emitted into the output file. By default, the file
compiler includes the compiled image in the output written to the output file.
The
.code eval-only
operator suppresses this inclusion.
Forms which are surrounded by both an
.code eval-only
form and a
.code compile-only
form are neither executed nor emitted into the output file. In this situation,
the forms are skipped entirely; no compilation takes place.
.TP* Notes:
The
.code compile-file
function not only compiles, but also executes every form for the following
reason: the correct compilation of forms can depend on the execution of earlier
forms. For instance, code may depend on macros. Macros may in turn depend on
functions and variables. All those definitions are required in order to compile
the dependent code. Those dependencies may be in a separate file which is
loaded by a
.code load
form; that
.code load
form must be executed.
Note that execution of a form implies that the
.code load-time
forms that it contains are evaluated (prior to other evaluations). Suppression
of the execution of a form also suppresses the evaluation of
.code load-time
forms.
Situations in which
.code compile-only
is useful are those in which it is desirable to stage the execution of some
top-level form into the compiled file, and not have it happen during
compilation. For instance:
.verb
;; in a main module
(compile-only (start-application))
.brev
It is not desirable to have the file compiler try to start the application
as a side effect of compiling the main module. The right behavior is to
compile the
.code "(start-application)"
top-level form so that this will happen when that module is loaded.
Situation in which
.code eval-only
is useful is for specifying forms which have a compile-time effect only,
but are not propagated into the compiled file.
For example, since the correct treatment of literal symbols occurring in a
compiled file does not depend on the
.code *package*
variable, in many cases, the
.code in-package
invocation in the file can be wrapped with
.codn eval-only :
.verb
(eval-only (in-package app))
.brev
The
.code in-package
form must be evaluated during compilation so that the remaining forms are read
in the correct package. However the loading of the compiled versions of those
forms doesn't require that package to be in effect; thus a compiled image
of the
.code in-package
form need not appear in the compiled file.
Macros definitions may be treated with
.code eval-only
if the intent is only to make the expanded code available in the compiled file,
and not to propagate compiled versions of the macros which produced it.
.coNP Macro @ load-time
.synb
.mets (load-time << form )
.syne
.desc
The
.code load-time
macro makes it possible for a program to evaluate a form, such that,
subsequently, the value of that form is then treated as if it were
a literal object.
Literals are pieces of the program syntax which are not evaluated at all.
On the other hand, the values of expressions are not literals.
From time to time, certain situations benefit from the program being
able to perform an evaluation, and then have the result of that evaluation
treated as a literal.
There is already an operator named
.code macro-time
which makes this possible in its particular manner: that operator
allows one or more expressions to be evaluated during macro expansion.
The result of the
.code macro-time
is then quoted and substituted in place of the expression. That result
then appears as a true quoted literal to the executing code.
The
.code load-time
macro similarly arranges for the single form
.meta form
to be evaluated. However, this evaluation doesn't take place at
expansion time. It is delayed until the program executes.
What exactly "delayed until the program executes" means depends on whether
.code load-time
is used in compiled or interpreted code, and in what situation is
it compiled.
If the
.code load-time
form appears in interpreted code, then the exact time when
.meta form
is evaluated is unspecified. The evaluator may identify all
.code load-time
forms which occur anywhere in a top-level expression, and perform
their evaluations immediately, before evaluating the form itself.
Then, when the
.code load-time
forms are encountered again during the evaluation of the form,
they simply retrieve the previously evaluated values as if
they were literal. Or else, the evaluation may be performed late: when the
.code load-time
form itself is encountered during normal evaluation. In that case,
.meta form
will still be evaluated only once and then its value will be be
inserted as a literal in subsequent re-evaluations of that
.code load-time
form, if any.
If a
.code load-time
form appears in a non-top-level expression which is compiled, the
compiler arranges for the compiled version of
.meta form
to be executed when compiled version of the entire expression is
executed. This execution occurs early, before the execution of
forms that are not wrapped in
.codn load-time .
The value produced by
.code form
is entered into the static data vector associated with the
compiled top-level expression, which also holds ordinary literals.
Whenever the value of that
.code load-time
form is required, the compiled code references it from the data
vector as if it were a true literal.
When a
.code load-time
top-level form is processed by
.codn compile-file ,
it has no unusual semantics; the effect is that it is replaced by
its argument
.metn form ,
which is in that case also considered a top-level form.
The implications of the translation scheme may be understood
separately from the perspective of code processed with
.codn compile-toplevel ,
.code compile
and
.codn compile-file .
A
.code load-time
form appearing in a form passed to
.code compile-toplevel
is translated such that its embedded
.meta form
will be executed each time the virtual machine description returned by
.code compile-toplevel
is executed, and the execution of all such forms is placed ahead
of other code.
A
.code load-time
form appearing in an interpreted function which is processed by
.code compile
is evaluated immediately, and its value becomes a literal
in the compiled version of the function.
A
.code load-time
form appearing as a non-top-level form inside a file that is processed by
.code compile-file
is compiled along with that form and deposited into the object file.
When the object file is loaded, each compiled top-level form is executed.
Each compiled top-level form's
.code load-time
calculations are executed first, and the corresponding
.meta form
values become literals at that point. This execution order is individually
ensured for each top-level form.
Thus, the
.code load-time
forms in a given top-level form may rely on the side-effects of
prior top-level forms having taken place.
Note that, by default,
.code compile-file
also immediately executes each top-level form which it compiles and deposits
into the output file. This execution is equivalent to a load; it causes
.code load-time
forms to be evaluated. The
.code compile-only
operator must be used around
.code load-time
forms which must be evaluated only when the compiled file is loaded,
and not at compile time.
In all situations, the evaluation of
.meta form
takes place in the global environment. Even if the
.code load-time
form is surrounded by constructs which establish lexical bindings,
those lexical bindings aren't visible to
.metn form .
Which dynamic bindings are visible to
.meta form
depends on the exact situation. If a
.code load-time
form occurs in code that had been processed by
.code compile-file
and is now being loaded by
.codn load ,
then the dynamic environment in effect is the one in which the
.code load
occurred, with any modifications to that environment that were performed
by previously executed forms. If a
.code load-time
form occurs in code that had been processed by
.codn compile-toplevel ,
then
.meta form
is evaluated in the dynamic environment of the caller which invokes
the execution of the resulting compiled object.
When a
.code load-time
form occurs in the code of an function being processed by
.codn compile ,
then
.meta form
is evaluated in the dynamic environment of the caller which invokes
.codn compile .
If a
.code load-time
form occurs in a form processed processed by the evaluator, it is unspecified
whether it takes place in the original dynamic environment in which the
evaluator was invoked, or whether it is in the dynamic environment of
the immediately enclosing form which surrounds the
.code load-time
form.
A
.code load-time
form may be nested inside another
.code load-time
form. In this situation, two cases occur.
If the two forms are not embedded in a
.codn lambda ,
or else are embedded in the same
.codn lambda ,
then the inner
.code load-time
form is superfluous due to the presence of the outer
.codn load-time .
That is to say, the inner
.mono
.meti (load-time << form )
.onom
expression is equivalent to
.metn form ,
because the outer form already establishes its evaluation to be in a load-time
context.
If the inner
.code load-time
form occurs in a
.codn lambda ,
but the outer form occurs outside of that
.codn lambda ,
then the semantics of the inner
.code load-time
form is relevant and necessary. This is because expressions occurring in a
.code lambda
are evaluated when the
.code lambda
is called, which may take place from a non-load-time context, even if the
.code lambda
itself was produced in a load-time context.
An expression being embedded in a
.code lambda
means that it appears either in the
.code lambda
body, or else in the parameter list as the initializing
expression for an optional parameter.
.TP* Notes:
When interpreted code containing
.code load-time
is evaluated, a mutating side effect may take place
on the tree structure of that code itself as a result of the
.code load-time
evaluation.
If that previously evaluated code is subsequently compiled, the compiled
translation may be different from compiling the original unevaluated code.
Specifically, the compiler may take advantage of the
.code load-time
evaluation which had already taken place in the interpreter, and simply take
that value, and avoid compiling
.meta form
entirely. This also has implications on the dynamic environment
that is in effect when
.meta form
is evaluated. If
.meta form
is evaluated by the interpreter, then it interacts with the dynamic environment
which as in effect in that situation; then when the compiler later just takes
the result of that evaluation, the compiler's dynamic environment is irrelevant
since
.meta form
isn't being evaluated any more.
If
.metn form ,
when evaluated multiple times, potentially produces a different value on each
evaluation, this has implications for the situation when an object produced by
.code compile-toplevel
is invoked multiple times. Each time such an object is invoked, the
.code load-time
forms are evaluated. If they produce different values, then it appears that
the values of literals are changing. All lexical closures derived from the
same compiled object share the same literal data.
The
.code load
function never evaluates a compiled expression more than once. If the same
compiled file is loaded more than once, a new compiled object instance is
produced from each compiled expression, carrying its own storage area for
literals. The
.code compile
function also never evaluates a compiled expression more than once; it produces
a compiled object, and then executes it once in order to obtain a lexical
closure which is returned. Invoking the closure doesn't cause the
.code load-time
expressions to be evaluated.
The
.code load-time
form is subject to compiler optimizations. A top-level expression is assumed to
be evaluated in load time, so
.code load-time
does nothing in a top-level expression. It becomes active inside forms
embedded in a
.code lambda
expressions. Since
.code load-time
may be used to hoist calculations outside of loops,
.code load-time
is also active in those parts of loops which are repeatedly evaluated.
The use of
.code load-time
is similar to defining a variable and then referring to the variable.
For instance, a file containing this:
.verb
(defvarl a (list 1 2))
(defun f () (cons 0 a))
.brev
is similar to
.verb
(defun f () (cons 0 (load-time (list 1 2))))
.brev
When either file is loaded, in source or compiled form,
.code list
expression is evaluated at load time, and then when
.code f
is invoked, it retrieves the list.
Both approaches have advantages. The variable-based approach gives the value a
name. The semantics of the variable is straightforward. The variable
.code a
can easily be assigned a new value. Using its name, the variable can be
inspected from the interactive listener. The variable can be referenced
from multiple top-level forms directly; it is not a static datum tied to
a table of literal values that is tied to a single top-level form.
Furthermore, the use of
.cod3 defvar / defvarl
versus
.cod3 defparm / defparml
controls whether the variable gets replaced with a new value when the
file is re-loaded.
The advantage of
.code load-time
is that it doesn't require a separate top-level form to achieve its load-time
effect: the expression is simply nested at the point where it is needed. The
.code load-time
form can therefore be generated by macros, whose expansions cannot inject
extra top-level forms into the site where they are invoked.
If a macro writer would like some form to be evaluated at load time and
its value accessible in a macro expansion that appears arbitrarily nested
in code, then
.code load-time
may provide the path to a straightforward implementation strategy.
Access to a
.code load-time
value is fast because it doesn't involve referencing through a variable
binding; compiled code accesses the value directly via its fixed position
in the static data table associated with that code. This advantage is
insignificant, however, because access to lexical variables in compiled code is
similarly fast, and a value can easily be propagated from a global variable
to a lexical for the sake of speed. That said,
.code load-time
eliminates that copying step too.
A
.code load-time
is also useful when the value is not required, and instead the form produces
a useful effect, which should be hoisted to load time. For instance, consider
a macro which produces the following expansion:
.verb
(progn (load-time (defvar #:g0025)) (other-logic ... #:g0025))
.brev
no matter where this expansion is inserted,
.code compile-file
and
.code load
will ensure that the
.code defvar
is executed once, when the compiled file is loaded, as if that
.code defvar
appeared on its own as a top-level form. Then the
.code other-logic
form can refer to the variable, without the
.code defvar
being evaluated on each execution of the
.codn progn .
The author of a macro can use
.code load-time
to stage the evaluation of global effects that the macro expansion depends on
simply by bundling these effects into the expansion, wrapped in
.codn load-time .
.TP* "Dialect note:"
The
.code load-time
macro is similar to the ANSI Common Lisp
.code load-time-value
special operator. It doesn't support the
.meta read-only-p
argument featured in the ANSI CL operator.
The semantics of
.code load-time
is somewhat more precisely specified in terms of concrete
implementation concepts. The ANSI CL
.code load-time-value
may evaluate
.meta form
more than once in interpreted code; effectively, the ANSI CL
implementation may treat
.code "(load-time-value x)"
as
.codn "(progn x)" .
This is not true of \*(TL's
.code load-time
which requires once-only evaluation even in interpreted code.
The name
.code load-time
is used instead of
.code load-time-value
for several reasons.
Firstly,
.code load-time
is useful for staging effects, like definitions, to load time, even when the
resulting value is not used.
Secondly, unlike \*(TL, ANSI CL features multiple values: a form
can yield zero or more values. The ANSI CL
.code load-time-value
operator, however, is restricted to yielding a single value, and its
name may have been chosen to emphasize this aspect/restriction.
That doesn't apply in the context of \*(TL in which all expressions
which terminate normally yield exactly one value, making
.str -value
a suffix that adds no value. Lastly,
.code load-time
is shorter, and harmonizes with
.codn macro-time ,
which preceded it by four years.
.coNP Function @ disassemble
.synb
.mets (disassemble << function-name )
.mets (disassemble << function )
.mets (disassemble << compiled-expression )
.syne
.desc
The
.code disassemble
function presents a disassembly listing of the virtual machine
code of a compiled function or form. It also presents the literal data
contained in that compiled object in a tabular form which is readily
cross-referenced with the disassembly listing.
If the argument is a
.meta function-name
then the function object is retrieved from the binding indicated
by the name, in the global namespace. That object is then treated
as if it were the
.meta function
argument.
A
.meta function
argument is one that is a function object. Only compiled virtual machine
functions can be disassembled; other kinds of functions are rejected by
.codn disassemble .
The
.code disassemble
function will also process the
.meta complied-expression
object that is returned by the
.code compile-toplevel
function.
In the case of
.metn function ,
the entire compiled form containing
.meta function
is disassembled. That form usually contains code which is external
to the function, even possibly other functions.
The disassembly listing indicates the entry point in the code
block where the execution of
.meta function
begins.
The
.code disassemble
function returns its argument.
.coNP Function @ dump-compiled-objects
.synb
.mets (dump-compiled-objects < stream << object *)
.syne
.desc
The
.code dump-compiled-objects
function writes compiled objects into
.meta stream
in the same format as the
.code compile-file
function.
Unlike under
.codn compile-file ,
the output is written into an arbitrary stream rather than a named file.
The objects aren't specified by the to-be-compiled syntax processed from a
source file, but rather as zero or more arguments which specify objects that
are already compiled.
Each
.meta object
must be be one of three kinds of values:
.RS
.IP 1.
a virtual machine description object returned by
.code compile-toplevel
function; or
.IP 2.
a compiled function object, satisfying the function
.codn vm-fun-p ;
or else
.IP 3.
the name of a compiled function object, which may take any of the
forms suitable as arguments to the
.code symbol-function
function.
.RE
.IP
First,
.code dump-compiled-objects
writes some preamble information into
.metn stream .
Then, for each
.meta object
that is not already a virtual machine description, its corresponding
virtual machine description is retrieved. The virtual machine description
is converted into the externalized format required for the object format
and that externalized format is written into
.metn stream .
The
.code object
argument are thus processed in left-to-right order.
If exactly one call to
.code dump-compiled-objects
is used to populate an initially empty file, and no other data are
written into the file, then that file is a valid compiled file.
If that file is processed by
.code load-file
then each of the externalized forms is converted to a virtual machine
description and executed.
Note that virtual machine descriptions are not functions. A function's
virtual machine description is the compiled version of the top-level form
whose evaluation produced that function.
For example, if the following top-level form is compiled and executed,
two functions are defined:
.verb
(let ()
(defun a ())
(defun b ()))
.brev
Then, the following two expressions all have the same effect on
stream
.codn s :
.verb
(dump-compiled-objects s 'a)
(dump-compiled-objects s 'b)
.brev
Whether the
.code a
or
.code b
symbol is used to specify the object to be dumped, the same virtual machine
description is externalized and deposited into the stream. That machine
description, when loaded and executed, defines two functions.
.SH* INTERACTIVE LISTENER
.SS* Overview
On some target platforms, \*(TX provides an interactive listener, which is
invoked using the
.code -i
command line option, or by executing
.code txr
with no arguments. The interactive listener provides features like visual
editing of the command line, tab completion on \*(TL symbols, and history
recall.
.SS* Basic Operation
The interactive listener prints a numbered prompt. The number in the prompt increments with every
command. The first command line is numbered 1, the second one 2 and so forth.
The listener accepts input characters from the terminal. Characters are either
interpreted as editing commands or other special characters, or else are
inserted into the editing buffer. However, control characters which don't
correspond to commands are silently rejected.
The carriage return character generated by the Enter key indicates that a
complete line has been entered, and it is to be interpreted. The listener
parses the line as a \*(TL expression, evaluates it, and prints the resulting
value. If the evaluation of the line throws an exception, the listener
intercepts the exception and prints information about it preceded by
two asterisks and a space. These asterisks distinguish an exception from a
result value.
If an empty line is entered, or a line containing only spaces, tabs
or embedded carriage returns or linefeeds, the prompt is repeated without
incrementing the number. Such a line is not entered into the history.
A line which only contains a \*(TL comment (optional spaces, tabs or embedded
carriage returns or linefeeds, followed by a semicolon), also causes
the prompt to be repeated without incrementing the number. However,
such a line
.B is
entered into the history.
The listener does not allow lines containing certain bad syntax to be submitted
with Enter. If the buffer contains an expression with unbalanced parentheses
or brackets, or unterminated literals, then Enter generates a newline character
which is inserted into the buffer. In that situation, if that newline character
is being added at the very end of the buffer, the listener flashes the
exclamation mark character (!) two times to warn the user that line has not
been submitted: no computation is taking place, and the listener is waiting for
more input. It is possible to force the submission of an unbalanced line using
the sequence Ctrl-X, Ctrl-F.
.SS* Limitations
The interactive listener can only accept up to 4095 abstract characters of
input in a single command line.
Though the edit buffer is referred as the "command line", it may contain
multi-line input. The carriage return characters which separate multiple lines
count as one abstract character each, and are understood to occupy two display
positions.
The command line must contain exactly one complete \*(TL expression, or a
comment. Multiple expressions will not be evaluated.
In multi-line mode, if the number of lines exceeds the number of lines
of the terminal display, the editing experience is adversely affected
in unspecified ways.
The screen updating logic in the listener is based on the assumption that
the display terminal uses ANSI emulation. No other terminal emulation
is supported. The
.code TERM
environment variable is ignored.
.SS* Ways to Quit
Pressing Ctrl-D in a completely empty command line terminates the listener.
Another way to quit is to enter the
.code :quit
keyword symbol. When the form input into the listener consists of this symbol,
the listener will terminate:
.verb
1> (+ 2 2)
4
2> :quit
os-shell $
.brev
Another way to terminate is to evaluate a call to the
.code exit
function. This method allows a termination status to be specified:
.verb
1> (exit 1)
os-shell $
.brev
However, if a \*(TX interactive session is terminated this way, it will not
save the listener history.
Raising a fatal signal with the
.code raise
function is another way to quit:
.verb
1> (raise sig-abrt)
Aborted (core dumped)
os-shell $
.brev
The previous remark about not saving the listener history applies here also.
.SS* Interrupting Evaluation
Ctrl-C typed while editing a command line is interpreted as an editing command
which causes that command line to be canceled. The listener prints the string
.str ** intr
and repeats the same prompt.
If a command line is submitted for evaluation, the evaluation might take
a long time or block for input. In these situations, typing Ctrl-C will issue
an interrupt signal. The listener has installed a handler for this signal which
generates an exception of type
.code error
which is caught by the listener. The exception's message is the string
.str intr
so that the listener ends up printing
.str intr **
like in the case of the Ctrl-C editing command. In this situation, though new
command line prompt is issued with an incremented number, and the exception
is recorded as a value.
.SS* Listener Variables
.coNP Variables @, *0 @, *1 @, *2 @, ... @ *99
.desc
The listener provides useful variables which allow commands to reference
the results of previous commands. As noted previously, the commands
are enumerated with an incrementing number. Each command's number, modulo 100,
corresponds to one of the variables
.codn *0 ,
.codn *1 ,
.codn *2 ,
.codn ... ,
.codn *99 .
Thus, up to the previous hundred results can be referenced:
.verb
...
99> (+ 2 2) ;; stored in *99
4
100> (* 3 2) ;; stored in *0
6
101> (+ *99 *0) ;; i.e. (+ 4 6)
10
.brev
.coNP Symbol Macros @, *-1 @, *-2 @, ... @ *-20
The listener provides small number of symbol macros for referencing the
results of previous commands in a relative. The macro
.code *-1
refers to the value of the immediately previous command. The macro
.code *-2
refers to the value of the command before that one and so on.
Note: each of these macros expands to a reference to the
.code *r
vector, according to the following pattern:
.mono
*-1 --> [*r (mod (- *v 1) 100)]
*-2 --> [*r (mod (- *v 2) 100)]
...
*-20 --> [*r (mod (- *v 20) 100)]
.onom
.coNP Variable @ *n
.desc
The listener variable
.code *n
evaluates to the current command line number: the number of the command in
which the variable occurs:
.verb
5> *n
5
6> (* 2 *n)
12
.brev
.coNP Variable @ *v
.desc
The listener variable
.code *v
evaluates to the current variable number: the command number modulo 100:
.verb
103> *v
3
104> *v
4
.brev
.coNP Variable @ *r
.desc
The listener variable
.code *r
evaluates to a hash table which associates variable numbers with command
results:
.verb
213> 42
42
214> [*r 13]
42
.brev
The result hash allows relative addressing. For instance the expression
.code "[*r (mod (pred *v) 100)]"
refers to the result of the previous command.
.SS* Exceptions
The interactive listener catches all exceptions. Each caught exception is
associated with the command's variable number, and stored as a value
in the appropriate listener variable as well as the
.code *r
result hash. Exceptions are turned into values by creating a cons cell
whose
.code car
is the exception symbol and whose
.code cdr
holds the exception's arguments.
For each caught exception, a message
is printed beginning with the sequence
.strn "** " .
Exactly how the message appears depends on the type and content of
the exception.
.SS* Editing
The following sections describe the interactive editing commands
available in the listener.
Terminals can often be configured with different choices of cursor
shape: such as a block-shaped cursor, an underline cursor or a
vertical line or "I-beam" cursor. In the following sections, the
phrase "character under the cursor" refers to the character that is
currently covered by a block cursor, underlined by an underline cursor,
or that is immediately to the right of an I-beam cursor.
.NP* Move Left and Right
Moving within the line is achieved using the left and right arrow keys. In
addition, Ctrl-B ("back") and Ctrl-F ("forward") perform this movement.
.NP* Jump to Beginning and End of Line
The Ctrl-A command moves to the beginning of the line. ("A" is the beginning
of the alphabet). The Ctrl-E ("end") command jumps to the end of the line,
such that the last character of the line is to the left of the cursor
position. On terminals which have the Home and End keys, these may also
be used instead of Ctrl-A and Ctrl-E.
In line mode, these commands move the cursor to the beginning or end of the
edit buffer.
In multi-line mode, if the cursor is not already at the beginning of a physical
line, then Ctrl-A moves it to the first character of the physical line.
Otherwise, Ctrl-A moves the cursor to the beginning of the edit buffer.
Similarly, in multi-line mode, if the cursor not already at the end of a
physical line, Ctrl-E moves it there. Otherwise, the cursor moves to the
end of the edit buffer.
.NP* Jump to Matching Parenthesis
If the cursor is on an opening or closing parenthesis, brace or bracket,
the Ctrl-] command tries to jump to the matching character. The logic for
finding the matching character is identical to that of the Parenthesis Matching
feature. If no matching character is found, then no movement takes place.
If the cursor is not on an opening or closing parenthesis, brace or bracket,
then the closest such character is found. The cursor is moved to that character
and then an attempt is made to jump to the matching one from that new
position.
If the cursor is equidistant to two such characters, then one of them
is chosen as follows. If the two characters are oriented in the same way (both
are opening and closing), then that one is chosen whose convex side faces the
cursor position. Thus, effectively, an inner enclosure is favored over an
outer one. Otherwise, if the two characters have opposite orientation (one is
opening and the other closing), then the one which is to the right of the
cursor position is chosen.
Note: the Ctrl-] character can be produced on some terminals using Ctrl-5
(using the keyboard home row 5, not the numeric keypad 5). This the same
key which produces the % character when Shift is used. The % character is
used in the Vi editor for parenthesis matching.
.NP* Character Swap
The Ctrl-T (twiddle) command exchanges the character under the cursor with the
previous character.
.NP* Delete Character Left
The Backspace key erases the character to the left of the cursor, and moves the
cursor to the position which that character occupied.
It doesn't matter whether this key generates ASCII
characters 8 (BS) or 127 (DEL): either one is acceptable. The Ctrl-H command
also performs the same action, since it corresponds to ASCII BS.
.NP* Delete Character Right
The Ctrl-D command deletes the character under the cursor, if the cursor
is block-shaped, or to the right of the cursor if the cursor is an I-beam.
the cursor maintains its current character position relative to the
start of the line. In multi-line mode, if Ctrl-D is at the end of a line that
is not the last line, it deletes the newline character, causing the
following line to be joined to the end of the current line.
If the cursor is at the end of the buffer, then Ctrl-D does nothing,
except if the buffer is completely empty, in which case it is a quit
indication. The Delete key, if available on the terminal, is a near synonym of
Ctrl-D. It performs all the same functions, except that it does not
act as a quit indication; Delete has no effect when the buffer is empty.
When a visual selection is in effect, then Ctrl-D and Del delete
that selection, and copy it to the clipboard.
.NP* Delete Word Left
The Ctrl-W ("word") command deletes the word to the left of the cursor
position. More precisely, this command first deletes any consecutive whitespace
characters (spaces or tabs) to the left of the cursor. Then, it deletes
consecutive non-whitespace characters. Material under the cursor or to the
right remains. The deleted material is copied into the clipboard.
.NP* Delete to Beginning of Line
The Ctrl-U ("undo typing") command is a "super backspace" operation: it deletes
all characters to the left of the cursor position. The cursor is moved to
the leftmost position. In multi-line mode, Ctrl-U deletes only to the beginning of the current
physical line, not all the way to the first position of the buffer.
Ctrl-U copies the deleted material into the clipboard.
.NP* Delete to End of Line
The Ctrl-K ("kill") command deletes the character under the cursor position
and all subsequent characters. The cursor position doesn't change.
In multi-line mode, Ctrl-K deletes only until the end of the current
physical line, not the entire buffer.
The material deleted by Ctrl-K is copied into the clipboard.
.NP* Verbatim Character Insert
The Ctrl-V ("verbatim") command places the listener's input editor into
a mode in which the next character is interpreted literally and inserted
into the line, even if that character is a special character such as Enter,
or a command character.
.NP* Verbatim Insert Mode
The two-character sequence Ctrl-X, Ctrl-V ("extended verbatim", "super paste")
enters into an verbatim insert mode useful for entry of free-form text. It is
particularly useful in multi-line mode. In this mode, almost every character
is inserted verbatim, including Enter. The only commands recognized are:
Ctrl-X, which terminates this mode, Backspace (both ASCII BS and DEL
variants) and arrow key navigation. Enter inserts a line break, which
appears as such in multi-line mode, or as
.code ^M
in line mode.
.NP* Delete Current Line
The Ctrl-X, Ctrl-K command sequence may be used in multi-line mode
to delete the entire physical line under the cursor. Any lines below that
line move up to close the gap. In line mode, the command has no effect,
other than canceling select mode. The deleted line, including the
terminating newline character, if it has one, is copied into the
clipboard.
.NP* History Recall
By default, the most recent 500 lines submitted to the interactive listener are
remembered in a history. This history is available for recall, making it
convenient to repair mistakes, or compose new lines which are based on previous
lines. Note that the the history suppresses consecutive duplicate lines.
The number of lines retained may be customized using the
.code *listener-hist-len*
variable.
If the up arrow is used while editing a line, the contents of the line are
placed into a temporary save area. The line display is then updated to
show the most recent line of history. Using the up arrow key additional times
will recall successively less recent lines.
The down arrow key navigates in the opposite direction: from older lines to
newer lines. When the down arrow key is invoked on the most recent history line,
then the current line is restored from the temporary save area.
Instead of the up and down arrow keys, the commands Ctrl-P ("previous")
and Ctrl-N ("next") may be used.
If the Enter key is pressed while a recalled history line is showing, then that
line will be submitted as if it were a newly composed line. The originally
edited line which had been placed in the save area is discarded.
When a recalled line is showing, it may be edited. There are two important
behaviors to note here. If a recalled history line is edited, and then the
up/down arrow keys or a navigation command is used to show a different
history line, or to restore the original current line, then the edit is made
permanent: the edited line replaces its original version in the same
position in the history. This feature allows corrections to be made to the
history.
The edit is recorded in the line's undo history as a single change; if the
edited line is visited again, then a single Ctrl-O command will revert all the
edits that were made.
However, if a recalled line is edited and submitted without navigating to
another line, then it is submitted as a newly composed line, without replacing
the original in the history.
Each submitted line is entered into the history, if it is different
from the most recent line already in history. This is true whether it
is a freshly composed line, a recalled history line, or an edited
history line.
.NP* History Search
It is possible to search backwards through the history interactively
for a line containing a substring. The Ctrl-R command is used to initiate
search. The command prompt is replaced with the prefix
.code search:
next to which a pair of empty square brackets appears, indicating
that the listener is in search mode. The square brackets are the
search box, enclosing the search text, which is initially empty.
In search mode, characters may be typed. They accumulate inside the search
box, and constitute the string to search for. The listener instantly
navigates to the most recent line which contains a substring match for the
search string, and places the cursor on the first character of the
match. Control characters entered directly are ignored. The Ctrl-V command be
used to add a character verbatim, as in edit mode.
To remove characters from the search box, Backspace can be used. The
search is not repeated with the shortened search text: the same line
continues to show until a character is added, at which point
a new search is issued.
Search mode has a "home position": a starting point for searches.
The initial home position is whatever line of history is selected
when search mode is initiated. Searches work backward in history from
that line. If search text is edited by deleting characters and then
adding new ones, the new search proceeds from the home position.
The Ctrl-R command can be used in search mode. It registers the currently
showing line as the new home position, and then repeats the search using the
existing search text backwards from the new position. If the search text
is empty, Ctrl-R has no effect.
The Ctrl-C command leaves search mode at any time and causes the
listener to resume editing the original input at the original character
position. The Enter key accepts the result of a search and submits it
as if it were a newly composed line.
Navigation and editing keys may be used in search mode. A navigation or editing
key immediately cancels search mode, and is processed in edit mode, using
whatever line was located by the search, at the matching character position.
The Ctrl-L (Clear Screen and Refresh), as well as Ctrl-Z
(Suspend to Background) commands are available in search mode. Their effects
takes place without leaving search mode.
Navigating to a history line manually using the up and down arrow keys (or
Ctrl-P/Ctrl-N) has the same net effect same as locating that line using
Ctrl-R search.
.NP* Submit and Stay in History
Normally when the Enter key is used on a recalled history line,
the next time the listener is re-entered, it jumps back to the
newest history position where a new line is about to be composed.
The alternative command sequence Ctrl-X, Enter provides a useful alternative
behavior. After the submitted line is processed, the listener doesn't jump to
the newest history position. Instead, it stays in the history, advancing
forward by one position to the successor of the submitted line.
Ctrl-X, Enter can be used to conveniently submit a range of lines
from the history, one by one, in their original order.
.NP* Insert Previous Word
The equivalent command sequences Ctrl-X, w and Ctrl-X, Ctrl-W insert
a word from the previous line at the cursor position. A word is defined
as a sequence of non-whitespace characters, separated from other words
by whitespace. By default, the last word of the previous line is inserted.
Between the Ctrl-X and Ctrl-W or w, a decimal number can be entered.
The number 1 specifies that the last word is to be inserted, 2 specifies
the second last word, 3 the third word from the right and so on.
Only the most recent three decimal digits are retained, so the number can range
from 0 to 999. A value of 0, or a value which exceeds the number of words
causes the Ctrl-W or w to do nothing. Note that "previous line" means
relative to the current location in the history. If the 42nd most recent
history line is currently recalled, this command takes material from the 43rd
history line.
.NP* Insert Previous Atom
The equivalent command sequences Ctrl-X, a and Ctrl-X, Ctrl-A insert
an atom from the previous line at the cursor position. A line only
makes atoms available if it expresses a valid \*(TX form, free of syntax
errors. A line containing only whitespace or a comment makes no atoms
available. For the purposes of this editing feature, an atom is defined
as the printed representation of a Lisp atom taken from the Lisp form
specified in the previous line. The line is flattened into atoms
as if by the
.code flatcar
function. By default, the last atom is extracted. A numeric argument
typed between the Ctrl-X and Ctrl-A or a can be used to select a
atoms by position from the end. The number 1 specifies the last atom,
2 the second last and so on.
Only the most recent three decimal digits are retained, so the number can range
from 0 to 999. A value of 0, or a value which exceeds the number of words
causes the Ctrl-A or a to do nothing. Note that "previous line"
has the same meaning as for the Ctrl-X, Ctrl-W (insert previous word) command.
.NP* Insert Previous Line
The command sequences Ctrl-X, Ctrl-R ("repeat") and Ctrl-X, r, which are
equivalent, insert an entire line of history into the current buffer. By
default, the previous line is inserted. A less recent line can be selected by
typing a numeric argument between the Ctrl-X and the Ctrl-R/r. The immediately
previous history line is numbered 1, the one before it 2 and so on.
If this command is used during history navigation, it references previous
lines relative to the currently recalled history line.
.NP* Symbolic Completion
If the Tab key is pressed while editing a line, it is interpreted as a
request for completion. There is a second completion command: the
sequence Ctrl-X Tab.
When completion is invoked with Tab or Ctrl-X Tab, the listener looks at a few
of the trailing characters to the left of the cursor position to determine the
applicable list of completions. Completions are determined from among the \*(TL symbols which have
global variable, function, macro and symbolic macro bindings, as well
as the static and instance slots of structures. Symbols which
have operator bindings are also taken into consideration. If a
package-qualified symbol is completed, then completion is restricted to that
package. Keyword symbol completion is restricted to the contents of the keyword
package. The namespaces which are searched for symbols are restricted according
to preceding character syntax. For instance if the characters
.code ".("
or
.code ".["
immediately precede the prefix, then only those symbols are considered
which are methods: that is, each is the static slot of at least one structure,
in which that static slots holds a function.
The difference between Tab and Ctrl-X Tab is that Tab completion looks only for
prefix matches among the eligible identifiers. Thus it is a pure completion in
the sense that it suggests additional material that may follow what has been
typed. If the buffer contains
.code (list
it will only suggest completions which can be endings for
.code list
such as
.codn list* ,
.codn listp ,
and
.codn list-str .
It will not suggest identifiers which rewrite the
.code list
prefix. By contrast, the Ctrl-X Tab completion suggests not only pure
completions but also alternatives to the partial identifier, by looking for
substring matches. For instance
.code copy-list
is a possible completion for
.codn list ,
as is
.codn proper-list-p .
If no completions are found, then the BEL character is sent to the terminal
to generate a beep or a visual alert indication. The listener returns to
editing mode.
If completions are found, listener enters into completion selection mode.
The first available completion is placed into the line as if it had been typed
in. The other completions may be viewed one by one using the Tab key.
(Note that the Ctrl-X is not used, only Tab, even if completion mode had been
entered via Ctrl-X Tab).
When the completions are exhausted, the original uncompleted line is shown
again, and Tab can continue to be used to cycle through the completions again.
In completion mode, the Ctrl-C character acts as a command to cancel completion mode
and return to editing the original uncompleted line. Any other input character causes
the listener to keep the currently shown completion, and return to edit mode,
where that character is immediately processed as if it had been typed in
edit mode.
.NP* Edit with External Editor
The two character command Ctrl-X, Ctrl-E launches an external editor to
edit the current command line. The command line is stored in a temporary
file first, and the editor is invoked on this file. When the editor
terminates, the file is read into the editing buffer.
The editor is determined from the
.code EDITOR
environment variable. If this variable doesn't exist,
the command does nothing.
The temporary file is created in the home directory, if that can
be determined. Otherwise it is created in the current working directory. If the
creation of the file fails, then the command silently returns to edit mode.
The home directory is determined from the
.code HOME
environment variable in POSIX environments. On MS Windows, the
.code USERPROFILE
variable is probed for the user's directory.
If the command line contains embedded carriage returns (which denote
line breaks in multi-line mode) these are replaced with newline characters
when written out to the file. Conversely, when the edited file is read
back, its newlines are converted to carriage returns, so that multi-line
content is handled properly. (See the following section, Multi-Line Mode).
.NP* Undo Editing
The listener provides an undo feature. The Ctrl-O command ("old", "oops")
restores the edit buffer contents and cursor position to a previous state.
There is a single undo history which records up the 200 most recent edit
states. However, the states are associated with history lines, so that it
appears that each line has its own, independent undo history.
Undoing the edits in one line has no effect on the undo history of another
line.
Undo also records edits for lines that have been canceled with Ctrl-C, and are
not entered into the history, making it possible to recall canceled lines.
The undo history is lost when \*(TX terminates.
Undo doesn't save and restore previous contents of the clipboard buffer.
There is no redo. When undo removes an edit to restore to a prior edit state,
the removed edit is permanently discarded.
Note that if undo is invoked on a historic line, each undo step updates that
history entry instantly to the restored state, not only the visible edit
buffer. This is in contrast to the way new edits work. New edits are not
committed to history until navigation takes place to a different history line.
Also note that when new edits are performed on a historic line and it is
submitted with Enter without navigating to another line, the undo information
for those edits is retained, and belongs to the newly submitted line. The
historic line hasn't actually been modified, and so it has no new undo
information. However, if a historic line is edited, and then navigation takes
place to a different historic line, then the undo information is committed to
that line, because the modifications to the line have been placed back
in the history entry.
.SS* Visual Selection Mode
The interactive listener supports visual copy and paste operation.
Text may be visually selected for copying into a clipboard or
or for deletion. In visual selection mode, the actions of some editing
commands are modified so that they act upon the selection instead
of their usual target, or upon both the target and the selection.
.NP* Making a Selection
The Ctrl-S command enters into visual selection mode and marks the
starting point of the selection, which is considered the position
immediately to the left of the current character.
While in visual selection mode, it is possible to move around using
the usual movement commands. The ending point of the selection
tracks the movement.
The selected text is displayed in reverse video.
Typing Ctrl-S again while in visual selection mode cancels
the mode.
Tab completion, history navigation, history search and editing in an external
editor all cancel visual selection mode.
By default, the the selection excludes the character which lies to the right of
the rightmost end-point. Thus, the selection simply consists of the text
between these two positions, whether or not they are reversed. This style of
selection pairs excellently with an I-beam style cursor, and has clear
semantics. The end-points are referenced to the positions between the
characters, and everything between them is selected.
The selection behavior may be altered using the Boolean configuration variable
.codn *listener-sel-inclusive-p* .
This variable is
.code nil
by default. If it is changed to true, then the selection includes the
character to the right of the rightmost endpoint, if there is such a
character within the current line. This style of selection
pair well with a block-shaped cursor. It creates the apparent semantics that
the end-points of the election are characters, rather than points
between characters, and that these characters are included in the selection.
.NP* Selection Endpoint Toggle
In visual selection, the starting point of the selection remains fixed, while
the ending point tracks the movement of the cursor. The Ctrl-^ command will
exchange the two points. The effect is that the cursor jumps to the opposite
end of the selection. That end is now the ending point which tracks the cursor
movement.
.NP* Visual Copy
The Ctrl-Y command ("yank") copies the selected text into a clipboard buffer.
The previous contents of the clipboard buffer, if any, are discarded.
Unlike the history, the clipboard buffer is not persisted.
If \*(TX terminates, it is lost.
.NP* Visual Cut
If the Ctrl-D command is invoked while a selection is in effect, then
instead of deleting the character under the cursor, it deletes the
selection, and copies it to the clipboard. The Delete key has the same
effect.
Ctrl-D and Del have no effect on the clipboard when visual selection is not in
effect, and they operate on just one character.
.NP* Clipboard Paste
The Ctrl-Q command ("quote the clipboard") inserts text from the clipboard
at the current cursor position. The cursor position is updated to
be immediately after the inserted text. The clipboard text remains available
for further pasting.
If nothing has been yet been copied to the clipboard in the current
session, then this command has no effect.
.NP* Clipboard Swap Paste
The Ctrl-X, Ctrl-Q command sequence ("exchange quote") exchanges the
selected text with the contents of the clipboard. The selection is
copied into the clipboard as if by Ctrl-Y and replaced by the
previous contents of the clipboard.
If the clipboard has not yet been used in the current session,
If nothing has been yet been copied to the clipboard in the current
session, then this command behaves like Ctrl-Y:
text is yanked into the clipboard, but not deleted.
.NP* Visual Replace
In visual selection mode, an editing commands may be used which insert new
text, or a character may be typed in order to insert it. When this happens, the
selection is first deleted and visual mode is canceled. Then the insertion
takes place and visual mode is canceled. The effect is that the newly inserted
text replaces the selected text.
This applies to the Clipboard Paste (Ctrl-Q) command also. If a
selection is effect when Ctrl-Q is invoked, the selected text
is replaced with the clipboard buffer contents.
When a selection is replaced in this manner, the contents
of the clipboard are unaffected.
.NP* Delete in Selection Mode
In visual mode, it is possible to issue commands which delete text.
One such command is Ctrl-D. Its special behavior in selection mode,
Visual Cut, is described above.
The Backspace key and Ctrl-H also have a special behavior in select mode. If
the cursor is at the rightmost endpoint of the selection, then these commands
delete the selection and nothing else. If the cursor is at the leftmost
endpoint of the selection, then these commands delete the selection, and take
their usual effect of deleting a character also. In both cases, selection mode
is canceled. The clipboard is not affected.
The Ctrl-W command for deleting the previous word, when used in visual
selection mode, deletes the selection and cancels selection mode,
and then deletes the word before the selection. Only the deleted
selection is copied into the clipboard, not the deleted word.
All other deletion commands such as Ctrl-K simply cancel visual
selection mode and take their usual effect.
.SS* Multi-Line Mode
The listener operates in one of two modes: line mode and multi-line mode.
This is determined by the special variable
.code *listener-multi-line-p*
whose default value is
.code t
(multi-line mode). It is possible to toggle between
line mode and multi-line mode using the Ctrl-J command.
In line mode, all input given to a single prompt appears to be on a single
line. When the line becomes longer than the screen width, it scrolls
horizontally. In line mode, carriage return characters embedded in a line
are displayed as
.codn ^M .
In multi-line mode, when the input exceeds the screen width, it simply wraps to
take up additional lines rather than scrolling horizontally. Furthermore,
multi-line mode not only wraps long lines of input onto multiple lines of
the display, but also supports true multi-line input. In multi-line
mode, carriage return characters embedded in input are treated as line
breaks rather than being rendered as
.codn ^M .
Because carriage returns are not line terminators in text files,
lines which contain embedded carriage returns are correctly saved
into and retrieved from the persistent history file.
When Enter is typed in multi-line mode, the listener tries to determine whether
the current input, taken as a whole, is an incomplete expression which requires
closing punctuation for elements like compound expressions and string literals.
If the input appears incomplete, then the Enter is inserted verbatim at
the current cursor position, rather than signaling that the line is
being submitted for evaluation. The Ctrl-X, Enter command sequence also has
this behavior.
.SS* Reading Forms Directly from the Terminal
In addition to multi-line mode, the listener provides support
for directly parsing input from the terminal, suitable for processing
large amounts of pasted material.
If the
.code :read
keyword is entered into the listener, it will temporarily suspend
interactive editing and allow the \*(TL parser to read
directly from standard input. The reading stops when an error occurs,
or EOF is indicated by entering Ctrl-D.
In direct parsing mode, each expression which is read is evaluated, but its
value is not printed. However, the value of the last form evaluated is returned
to the interactive listener, which prints the value and accepts it as if
it as the result value of the
.code :read
command.
Note that none of the material read from the terminal is entered into the
interactive history. Only the
.code :read
command which triggers this parsing mode appears in the history.
.SS* Clear Screen and Refresh
The Ctrl-L command clears the screen and re-draws the line being edited.
This is useful when the display is disturbed by the output of some
background process, or serial line noise.
.SS* Suspend to Background
The Ctrl-Z ("Zzzz... (sleep)") command causes \*(TX to be placed into the
background in a suspended, and control returned to the system shell.
Bringing the suspended \*(TX back into the foreground is achieved with a shell
job-control command such as the
.code fg
command in GNU Bash.
When \*(TX is resumed, the interactive listener will re-display the edited
line and restore the previous cursor position.
Making full use of this feature requires a POSIX job control shell,
in the sense that without job control support in the shell, there may not be a
way to restore \*(TX into the terminal session's foreground, causing the
user to lose interactive control over that \*(TX instance.
.SS* Editing Help
The Ctrl-X ? command shows a summary of commands, in a four-line
display which temporarily replaces the editing area. The help text
is divided into several pages. Ctrl-C dismisses the display, and
returns to editing. The Ctrl-P, left arrow and up arrow keys return
to the previous screen. The Ctrl-Z and Ctrl-L commands are available,
having their usual meaning of suspending and refreshing the display.
Any other key advances to the next screen.
Advancing from the last screen, dismisses the display, and returns
to editing. Navigating to the previous screen when the first screen
is being shown also dismisses the display and returns to editing.
.SS* Print the Prompt
The
.code :prompt
command prints the current prompt, followed by a newline, without
incrementing the prompt number. The
.code :p
command prints just the current prompt number, followed by a newline,
without incrementing the number.
These comments are useful in plain mode, in which no prompts are
printed. See Plain Mode below.
.SS* Plain Mode
When the input device isn't an interactive terminal, or if the
.code -n
or
.code --noninteractive
command line operations are used when invoking \*(TX,
the listener operates in
.IR "plain mode" .
It reads input without providing any editing features: no completion,
history recall, selection, or copy and paste. Only the line editing
features provided by the operating system are available.
No prompts appear; however, there is still an incrementing counter,
and the numbered variables
.codn *1 ,
.codn *2 ,
.code ...
for accessing evaluation results are established.
Lines are still entered into the history, and the interactive profile
is still processed, as usual.
.SS* Interactive Profile File
When the listener starts up, it looks for file called
.code .txr_profile
in the user's home directory, as determined by the
.code HOME
environment variable in POSIX environments or the
.code USERPROFILE
environment variable on MS Windows. If that variable doesn't exist, no further
attempt is made to locate this file.
If the file exists, it is subject to a security check.
The function
.code path-private-to-me-p
is applied to the file. If it returns
.code nil
then an error message is displayed and the file is not loaded.
If the file passes the security check, it is expected to be readable and
to contain
\*(TL forms, which are read and evaluated.
Syntax errors encountered while reading the profile file are displayed
on standard output, and any exceptions thrown that are derived from
.code error
are caught and displayed. The interactive listener starts in spite of these
situations. Exceptions not derived from
.code error
will terminate the process.
The profile file is not read by non-interactive invocations of \*(TX:
that is, when the
.code -i
option isn't present.
.SS* History Persistence
The history is maintained in a text file called
.code .txr_history
in the user's home directory. Whenever the interactive listener terminates,
this file is updated with the history contents stored in the listener's
memory. The next time the listener starts, it first re-loads the history from
this file, making the most recent
.code *listener-hist-len*
expressions of a previous session available for recall.
The history file is maintained in a way that is somewhat
robust against the loss of history arising from the situation that a user
manages multiple simultaneous \*(TX sessions. When a session terminates, it
doesn't blindly overwrite the history file, which may have already been updated
with new history produced by another session. Rather, it appends new entries
to the history file. New entries are those that had not been previously read
from the history file, but have been newly entered into the listener.
An effort is made to keep the history file trimmed to no more than
twice the number of entries specified in
.codn *listener-hist-len* .
The terminating session first makes a temporary copy of the existing
history, which is trimmed to the most recent
.code *listener-hist-len*
entries. New entries are then appended to this temporary file.
Finally, the actual history file is replaced with this temporary file by a
.code rename-path
a rename operation. This algorithm doesn't use locking, and is therefore not
robust against the situation when a two or more multiple interactive \*(TX
sessions belonging to the same user terminate at around the same time.
The home directory is determined from the
contents of the
.code HOME
environment variable in POSIX environments or
.code USERPROFILE
on MS Windows. If this variable doesn't exist, or the user doesn't
have permissions to write to this directory or to an existing history file
in that directory, then the history isn't saved.
It is possible to save the history without terminating the interactive
session, using the
.code :save
command. This saves the history in the manner described above.
Each invocation of
.code :save
only adds to the history file new input since the most recent
.code :save
command.
.SS* Parenthesis Matching
A feature of the listener is visual parenthesis matching in the form of a
brief forward or backward jump of the cursor. This provides a hint to the programmer,
helping to prevent avoid parenthesis balancing errors.
When any of the three closing characters
.codn ) ,
.code ]
or
.code }
is inserted, the listener scans backward for the matching opening
character. Likewise, if any of the three opening characters
.codn ( ,
.code [
or
.code {
is inserted in the middle of text, the listener scans forward for the matching
closing character.
If the matching character is found, the cursor jumps to that
character and then returns to the original position a brief moment later. If a
new character is typed during the brief time delay, the delay is immediately
canceled, so as not to hinder rapid typing.
This back-and-forth jump behavior also occurs when a character is erased using
Backspace, and the the cursor ends up immediately to the right of a
parenthesis.
Note that the matching is unsophisticated; it doesn't observe the
lexical conventions and syntax of the \*(TL programming language. For
instance, a closing parenthesis outside a string literal may match
match an opening one inside a string literal.
.SS* Listener Configuration Variables
The listener's behavior can be influenced through values of certain
global variables. The settings can be made persistent by means
of setting these variables in the interactive profile file.
.coNP Special variable @ *listener-hist-len*
.desc
This special variable determines how many lines of history are
retained by the listener. Changing this variable from within the listener
has an instant effect. If the number is reduced from its current value,
history lines are immediately discarded. The default value is 500.
.coNP Special variable @ *listener-multi-line-p*
.desc
This is a Boolean variable which indicates whether the listener is
in multi-line mode. The default value is
.codn nil .
Changing this variable from within the listener takes effect
immediately for the next line of input.
If multi-line mode is toggled interactively from within the listener,
the variable is updated to reflect the latest state. This happens
when the command is submitted for evaluation.
.coNP Special variable @ *listener-sel-inclusive-p*
.desc
This Boolean variable controls the behavior of visual selection.
It is
.code nil
by default.
A visual selection is determined by end-points, which are abstract positions
understood as being between characters. When a visual selection begins,
it marks an end-point immediately to the left of a block-shaped cursor,
or precisely at the in-between position of an I-beam cursor.
The end of the visual selection is similarly determined from the ending
cursor position. The selection consists of those characters which lie
between these positions. This style of selection pairs well with an I-beam
style cursor shape.
If the
.code *listener-sel-inclusive-p*
variable is set true, then the selection also includes one more
character to the right of the rightmost endpoint, if there is
such a character within the current line, giving rise to the appearance
that the selection is determined by the starting and ending character,
and includes them. This type of selection pairs well with a block-shaped
cursor.
.coNP Special variable @ *listener-pprint-p*
.desc
This Boolean variable controls how the listener prints the results
of evaluations.
It is
.code nil
by default.
When the variable is
.codn nil ,
the evaluation result of each line entered into the listener is printed
using the
.code prinl
function. Thus values are rendered in a machine-readable syntax, ensuing
read/print consistency.
If the variable is set true, the evaluation result of each line is printed
using the
.code pprinl
function.
.coNP Special variable @ *listener-greedy-eval-p*
.desc
The special variable
.code *listener-greedy-eval-p*
controls whether or not a "greedy evaluation" feature is enabled
in the listener. The default value is
.codn nil ,
disabling the feature.
Greedy evaluation means that after the listener evaluates an expression
successfully and prints its value, it then checks whether that value is
an expression that may be further subject to non-trivial evaluation.
If so, it evaluates that expression, and prints the resulting value.
The process is then repeated with the resulting value. It keeps repeating until
evaluation throws an error, or produces a self-evaluating object.
These additional evaluations are performed in such a way that all warnings are
suppressed and all other exceptions are intercepted.
Greedy evaluation doesn't affect the state of the listener.
Only the original expression is entered into the
history. Only the value of the original expression is saved in the result hash
or a numbered variable. The command line number
.code *n
is incremented by one. The additional evaluations are only performed for
the purpose of producing useful output. The evaluations may
have side effects.
.TP* Example:
.verb
1> (set *listener-greedy-eval-p* t)
t
2> 'a
a
3> (defvar b 2)
b
2
4> (defvar c '(+ 2 2))
c
(+ 2 2)
4
5> (defvar d '(list '+ 2 2))
d
(list '+ 2 2)
(+ 2 2)
4
.brev
The
.code "(defvar d ...)"
form produces
.code d
symbol as its result value. That symbol has a variable binding as a result
of that
.code defvar
and so evaluates; that evaluation produces
.codn "(list '+ 2 2)" ,
the contents of
.codn d .
That object is a Lisp expression and is evaluated, producing
.code "(+ 2 2)"
and that is also an expression, which reduces to
.codn 4 .
The object
.code 4
is self-evaluating, and so the greedy evaluation process stops.
.SS* Listener-Related Miscellanea
.coNP Function @ quip
.synb
.mets (quip)
.syne
.desc
The
.code quip
function returns a randomly selected string containing a humorous quip,
quote or witticism. The following code may be added to
.code .txr_profile
to produce the random quip on startup:
.verb
(put-line (quip))
.brev
The
.code quip
function was introduced in \*(TX 244. If the
.code .txr_profile
is used with installations of older \*(TX versions, it is recommended to use
the following, to avoid calling the undefined function, as well as to
prevent a warning:
.verb
(if (fboundp 'quip)
(put-line (quip))
(defun quip ()))
.brev
.SH* SETUID/SETGID OPERATION
On platforms with the Unix filesystem and process security model, \*(TX has
support for executing setuid/setgid scripts, even on platforms whose operating system
kernel does not honor the setuid/setgid bit on hash bang scripts. On these
systems, taking advantage of the feature requires \*(TX to be installed as a
setuid/setgid executable. For this reason, \*(TX is aware when it is executed
setuid and takes care to manage privileges. The following description about
the handling of setuid applies to the parallel handling of setgid also.
When \*(TX starts, early in its execution it determines whether or not is
is executing setuid. If so, it temporarily drops privileges, as a precaution.
This is done before processing the command line arguments.
When \*(TX determines that it is executing a setuid script (a file marked
executable to its owner and attributed with the set-user-ID bit), it then
attempts to impersonate the owner of the script file by changing to
effective user ID to that owner just before executing the file. It retains
the real and saved user ID. If the attempt to assume that user ID is
unsuccessful, then \*(TX permanently drops setuid privileges before executing
the script. Likewise, before executing any code other than a setuid
script, \*(TX also drops privileges.
\*(TX tries to honor and implement the setuid permissions on a script
whether or not it is running setuid. When not running setuid, it nevertheless
tries to change its effective user ID to that of the owner of the setuid
script. This will succeed if it has sufficient permissions to do so.
To rephrase: in order for \*(TX to execute a file which is setuid root,
it has to be running with a root effective user ID somehow. In order
to execute a file which is setuid to a non-root user, \*(TX has to be
running effectively as root or else as that user. It doesn't matter whether
these privileges are achieved effectively using the setuid mechanism, or
whether \*(TX is running with the required user ID as its real ID.
However, if \*(TX is running setuid, it takes special care to temporarily
drop the privileges as early as possible, and eventually to drop the
privileges permanently before executing any code, other that the setuid
script. If the setuid script cannot be executed with the privileges it
calls for, \*(TX also drops privileges and executes it anyway, strictly as the
real user who invoked the \*(TX executable.
What it means to drop privileges is to change the effective user ID
and the saved user ID to be equal to the real user ID. On platforms
where the
.code setresuid
function is available, \*(TX uses that function to drop privileges.
On platforms where
.code setresuid
is not available, \*(TX tries to drop privileges using the
C language function call
.codn "setuid(r)" ,
where
.code r
is the previously noted real user ID obtained from
.codn getuid() .
On some platforms, this only works for dropping root privileges: it
overwrites the real and saved ID only if the caller is effectively root.
On those platforms, this approach does not drop non-root privileges.
\*(TX tries to detect whether this approach worked by evaluating
the C language expression
.codn "seteuid(e)" ,
where
.code e
is the previously noted effective user ID. In other words, it
attempts to re-gain the dropped privilege by recovering the previous
effective ID. If this attempt succeeds, \*(TX immediately aborts.
Dropping setgid privileges is similar. Where
.code setresgid
is available it is used, otherwise an attempt is made with
.code "setegid(r)"
where
.code r
is the previously noted real group ID. Then a test using
.code "setegid(e)"
is performed using the original effective group ID as
.codn e .
This is done after dropping any setuid root user ID privilege
which would allow such a test to succeed.
If \*(TX is running both setuid and setgid, and execute a script
which is setuid only, it will still drop group privileges, and vice
versa: if it executed a setgid script, it will drop user privileges.
For instance, if a root-owned \*(TX runs a setgid script which is owned by
user
.code 10
and group-owned by group
.codn 20 ,
that script will run with an effective group ID of 20. The effective user ID
will be that of the user who invoked the script: \*(TX will drop the root
privilege to the original real ID of the user, and while for the setgid
operation, it will change to the group ID of the script.
The setuid/setgid privilege machinery in \*(TX does not manipulate
the list of supplementary ("ancillary", in the language of POSIX) group IDs.
It is unnecessary for security because the list does not change while
running with setuid privilege. No group IDs are added to the list which
need to be retracted when privileges are dropped. The supplementary
groups also persist across the execution of a setuid/setgid script.
.SH* STAND-ALONE APPLICATION SUPPORT
The \*(TX executable image supports a general mechanism by means of which
a custom program can be packaged as an apparent stand-alone executable.
.SS* The Internal Argument String
The \*(TX executable contains a 128 byte data area preceded by the
seven-byte ASCII character sequence
.strn @(txr): .
The 128 byte data area which follows this identifying prefix
represents a null-terminated UTF-8 string. In the stock executable,
this area is filled with null bytes.
If the \*(TX executable is edited such that this area is replaced
with a non-empty, null-terminated UTF-8 string, the program will,
for the purposes of command line argument processing, treat this string as if
it were the one and only command line argument. (The original command
line arguments are still retained in the
.code *args*
and
.code *args-full*
variables).
The function
.code save-exe
creates a copy of the \*(TX executable with a custom internal argument.
.TP* Example:
Suppose that \*(TX is copied to an executable in the same directory called
.code myapp
(or
.code myapp.exe
on an operating system which requires the
.code .exe
suffix). Also suppose that in the same directory, there exists a file
called
.codn myscript.tl .
This
.code myapp
executable can then be edited so that the data area which follows the
.code @(txr):
bytes contains the following string:
.verb
--args|-e|(load (path-cat (dir-name txr-exe-path) "main.tl"))
.brev
When the
.code myapp
executable is invoked, it will process the above string as a single
command line argument, causing the
.code main.tl
\*(TL source file to be loaded.
Any arguments passed to
.code myapp
are ignored and available to
.code main.tl
via the
.code *args*
variable.
.SS* Deployment Directory Structure
The \*(TX executable may require library files, depending on the
functionality invoked by the program code. Library files are located
relative to the installation directory, called the
.IR sysroot .
The executable tries to dynamically determine the sysroot from
its own location, according to this directory structure:
.verb
/path/to/sysroot/bin/txr
.../share/txr/stdlib/cadr.tl
.../stdlib/except.tl
...
.brev
The above structure is assumed if the executable finds itself
in a directory named
.strn bin .
Otherwise, if the executable finds itself in a directory not
named
.strn bin ,
the following structure is expected:
.verb
/path/to/installation/txr
.../share/txr/stdlib/cadr.tl
.../share/txr/stdlib/except.tl
...
.brev
When a custom application is deployed using a possibly renamed
.code txr
executable, one of the above structures should be observed:
either the sysroot with a
.code bin
subdirectory where the executable is located, on the
same level with the
.code share
directory, or else the second structure in which the
.code share
directory is a subdirectory of the executable directory.
If one of these structures is not observed, the application
may fail due to the failure of a library file to load.
.coSS Function @ save-exe
.synb
.mets (save-exe < path << arg-string )
.syne
.desc
The
.code save-exe
function produces an edited copy of the \*(TX executable at the specified
.metn path ,
inserting
.meta arg-string
as the internal argument string.
In order for the copied executable to be useful, the required installation
directory structure must be provided around it, as described in the
previous section, Deployment Directory Structure.
The return value of
.code save-exe
is unspecified.
The
.code arg-string
should encode to 127 bytes of UTF-8 or less, or else it will be abruptly
truncated, possibly in the middle of a UTF-8 sequence.
.TP* Example:
Create a copy of \*(TX called
.code myapp
which will load a file called
.code main.tl
that is located in the same directory.
.verb
(save-exe
"myapp"
"--args|-e|(load (path-cat (dir-name txr-exe-path) \e
\e \e"main.tl\e"))")
.brev
.SH* DEBUGGER
\*(TX had a simple, crude, built-in debugger, which was removed.
.SH* COMPATIBILITY
.SS* Overview
New \*(TX versions are usually intended to be backward-compatible with prior
releases in the sense that documented features will continue to work in
the same way. Due to new features, new versions of \*(TX will supply new
behaviors where old versions of \*(TX would have produced an error, such as a
syntax error. Though, strictly speaking, this means that something is working
differently in a new version, replacing an error situation with functionality
is usually not considered a deviation from backward-compatibility.
There is one notable deviation from this general requirement for backwards
compatibility: the handling of compiled files. For pragmatic reasons,
from time to time \*(TX may break backward compatibility, such that a newer
version of \*(TX will not load compiled files produced by an older version.
The files will have to be recompiled with the new \*(TX. More details
are given in the section
.B "Compiled File Compatibility"
under the major section
.BR "LISP COMPILATION" .
The rationale for not requiring backward compatibility support for older
compiled files is that older files require the older implementation of the
virtual machine which they target. In some cases the differences between
the older virtual machine and new is so great that \*(TX would have to carry a
whole separate virtual machine implementation for the sake of the older files,
which is a significant burden.
.coSS The @ -C compatibility option
When a change is introduced which is not backward compatible, \*(TX's
.code -C
option can be used to request emulation of old behavior.
The option was introduced in \*(TX 98, and so the oldest \*(TX version which
can be emulated is \*(TX 97.
Side effects occur in the processing of the option. If the option is specified
multiple times, the behavior is unspecified.
.coSS Environment variable @ TXR_COMPAT
If the
.code TXR_COMPAT
environment variable exists, and its value is not en empty string,
it must contain a decimal integer. Its value is taken by \*(TX as a request
to emulate old behaviors, just like the value of the
.code -C
option.
If the variable has incorrect contents or an out-of-range value,
\*(TX will print an error diagnostic and exit.
If both
.code -C
and the
.code TXR_COMPAT
environment variable are supplied, the behavior is unspecified.
.SS* Compatibility Version Values
The following version values which have a special meaning as arguments to the
.code -C
option, along with a description of what behaviors are affected. For each
of these version values, the described behaviors are provided if
.code -C
is given an argument which is equal or lower. For instance
.code "-C 103"
selects the behaviors described below for version 105, but not those for 102.
.IP 243
Two mistakes in the pseudo-random-number generator (PRNG) were discovered,
affecting \*(TX 243 and older. Using this compatibility value, or lower, will
restore the buggy behavior, allowing pseudo-random number sequences produced
by those older versions can be reproduced. The PRNG is intended to be an
implementation of the WELL512a PRNG described by Panneton and L'Ecuyer.
The coding mistakes, however, resulted in the PRNG being an implementation of
something other than WELL512a.
.IP 242
In \*(TX 242 and older, the instantiation of an object whose type inherits
from the same supertype more than once resulted in duplicate execution
of the supertype's initialization. This was a documented behavior.
After 242, duplicate initialization is suppressed. For more information, see
the section
.BR "Duplicate Supertypes" . A compatibility value of 242 or lower restores
the duplicate initialization behavior.
.IP 237
Compatibility values of 237 or lower restore the destructive behavior of the
.code sort
and
.code shuffle
functions.
.IP 234
In \*(TX 234 and older versions, the exception throwing functions
.code throw
and
.code throwf
did not return, regardless of the exception type. All unhandled exceptions
triggered internal handling leading to unwinding and termination.
The current behavior is that only
.code error
exceptions lead to termination. When a non-error exception isn't intercepted
by a catch or handler, the
.code throw
or
.code throwf
returns normally, yielding the value
.codn nil .
If a compatibility value equal to or lower than 234 is requested,
the old behavior occurs: all unhandled exceptions terminate.
.IP 227
In \*(TX 227 and older versions, the functions
.codn carray-uint ,
.codn carray-int ,
.code uint-carray
and
.code int-carray
had different names, namely
.codn carray-unum ,
.codn carray-num ,
.code unum-carray
and
.codn num-carray ,
respectively.
If 227 or lower compatibility is selected, these functions become
available under their old names in addition to their new names.
.IP 231
Versions of \*(TX until 231 contained an undocumented feature: some
library functions which are documented as having parameters that must be of
string type were allowing the arguments to be symbols. For such symbolic
arguments, the name of the symbol obtained from
.code symbol-name
was implicitly taken as the required string value. This behavior was removed:
passing symbolic arguments to library function parameters documented as
strings will cause an exception to the thrown. If a compatibility value
of 231 or lower is specified, however, the tolerant behavior is restored.
.IP 225
After \*(TX 225, the behavior of the
.code do
operator was adjusted. Previously, a form like
.code "(do set x)"
which contains no variable references like
.codn @1 ,
.code @2
or
.codn @rest ,
generated a function similar to
.codn "(lambda (. rest) (set x))" .
This was contrary to documentation, which states that
.code "(do set x)"
should produce a variadic function which has one required argument,
and which assigns that argument to the variable
.code x
when invoked. The current implementation is that
.code "(do set x)"
is equivalent to
.code "(do set x @1)"
which produces the documented behavior. If 225 or lower compatibility is
selected, then the old behavior of
.code do
takes effect.
.IP 224
After \*(TX 224, the treatment of certain special structure functions
has changed. Selecting 224 compatibility or lower restores that behavior.
The specification given in the
.B "Special Structure Functions"
paragraph has always stated that special functions must be static slots,
and that the behavior is unspecified if they are instance slots.
The behavior of \*(TX 224 and earlier was that these functions worked anyway
if they were instance slots; after \*(TX 224, they some special functions
will no longer be recognized if bound to instance slots.
.IP 222
After \*(TX 222, the behavior of
.code :vars
in
.code @(collect)
was subject to an adjustment. Previously, if the collect body
didn't bind any variables, and both required and optional variables
were specified in
.codn :vars ,
it would still bind all of the optional ones to their default values.
This was a poor behavior which violated the idea that
.code :vars
enforces an all-or-nothing binding discipline to keep the collected
lists consistent. Selecting 222 compatibility or lower restores this
behavior.
.IP 215
After \*(TX 215, the behavior of the
.code load
function changed with respect to its treatment of the
.code *load-path*
variable. In cases where
.code load
resolved the path by adding a suffix,
.code *load-path*
was bound to the unsuffixed name, which was a documented behavior.
The old behavior is restored if 215 or lower compatibility
is requested.
.IP 202
Up to \*(TX 202, the
.code logxor
function was incorrectly implemented, producing wrong results when both
arguments are the same fixnum integer, or the same bignum object.
The incorrect behavior is restored if 202 or earlier compatibility is
requested. After 202, the behavior of the
.code print
function changed with regard to symbols in the keyword package.
Regardless of the
.meta pretty-p
flag, keywords are printed with the leading colon. Compatibility with
202 or earlier restores the behavior that when the
.meta pretty-p
flag is true, symbols are printed without package prefixes.
.IP 199
After \*(TX 199, certain global variables that had been deprecated
for a long time, and no longer documented, were removed. Requesting 199 or
earlier compatibility restores those variables.
.IP 190
Until \*(TX 190, the
.code reset-struct
function neglected to perform
.code :postinit
initializations, and didn't invoke finalization on the structure object
if an exception was thrown during reinitialization. Thus, contrary
to documented requirements, reinitialization of a structure didn't behave
like fresh construction. Also, until \*(TX 190, macro parameter
lists implemented the requirement that a
.code :
(colon keyword symbol) argument to an optional
was treated as a missing argument, triggering argument-defaulting behavior.
That requirement was removed; the colon symbol behaves as an ordinary value
under destructuring with macro parameter lists.
Moreover, until \*(TX 190, the
.code pub
symbol package didn't exist; the
.code *package*
variable was initialized to the user package and so symbols introduced
by application code were interned in the same package as the \*(TL
library.
All these old behaviors are restored in compatibility
with version 190 or earlier.
Finally, one more change after \*(TX 190 that is controlled by the
compatibility mechanism was a critical redesign of the requirements
for the behavior of the
.code ldiff
function. Version 190 compatibility causes the
.code ldiff
symbol to refer to the old implementation of
.codn ldiff .
.IP 188
Until \*(TX 188,
.codn equal -based
hash tables printed using the notation
.code "#H((:equal-based ...) ...)"
whereas
.codn eql -based
hash tables simply omitted the
.code :equal-based
keyword. Changes were introduced in \*(TX 187 which gave rise to a read/print
inconsistency with printing behavior. In \*(TX 189, further changes were
introduced to fix this inconsistency:
.codn equal -based
hash tables print without any keyword indicating equality, and
.codn eql -based
hash tables print as
.codn "#H((:eql-based) ...)" .
If 188 or compatibility is selected, hash tables are printed
in the old way.
.IP 187
Until \*(TX 187, hash tables constructed by the
.code hash
function were based on
.code eql
equality by default; the
.code :equal-based
keyword argument had to be specified to override this default, and the
.code :eql-based
keyword didn't exist. Selecting 187 or lower compatibility restores the
behavior of
.code eql
equality being default, and the
.code :eql-based
keyword being unrecognized. This affects all functions which implicitly
rely on
.codn hash ,
those being :
.codn uniq ,
.codn unique ,
and
.codn group-by .
In spite of these changes, the printed representation of hash tables continues
to use the
.code :equal-based
keyword to indicate hash tables based on
.code equal
and its absence to indicate
.code eql
equality. The new
.code :eql-based
keyword may be used in hash literals (unless 187 compatibility is
in effect, in which case it is ignored).
.IP 184
A value of 184 or lower switches to the old implementation of the
.code op
and
.code do
macros which was replaced starting in \*(TX 185. Also, this has the
effect of disabling the special recognition of meta-expressions
and meta-variables in the dot position of function calls, and
the macro expansion of meta-variables in quasiliterals. This is
because the old
.code op
implementation implements these behaviors itself. The implication
is that user code which binds custom macros to
.code sys:var
or
.code sys:expr
may be affected by 184 or lower compatibility.
.IP 185
A value of 185 or lower restores the old precedence of the
double dot notation for expressing ranges, relative to the
referencing dot. Until \*(TX 185, the expression
.code a.b..c.d
parsed as
.codn "(qref a (rcons b c) d)" .
What is worse, it parsed this way even if written as
.codn "a.b .. c.d" .
Starting in \*(TX 186,
.code ..
has a lower precedence, producing the more useful and intuitive parse
.codn "(rcons (qref a b) (qref c d))" :
in other words, the range with endpoints given by
.code a.b
and
.codn c.d .
.IP 183
A value of 183 or lower restores an inconsistent behavior in the
.code "@(bind)"
directive and other places in the \*(TX pattern language where binding
takes place. Prior to version 184, a string tree match was only tried in
both directions when the left hand side of a binding (the "pattern") was a
variable. For non-variable pattern terms, such as Lisp expressions or atoms,
the string tree match was tried in one direction only: a string tree arising
out of the pattern could match a string atom value on the right side.
A string tree is a nested list structure whose leaves are strings: a list
of strings, a list of lists of strings, and so on, in any mixture.
Concretely, before \*(TX 184,
.mono
@(bind "a" ("a" "b" "c"))
.onom
didn't match, but
.mono
@(bind ("a" "b" "c") "a")
.onom
did. However, if the variable
.code a
contained
.strn a
then
.mono
@(bind a ("a" "b" "c"))
.onom
did match: an inconsistency.
.IP 177
A value of 177 or lower causes the emulation of a bug which was present in the
.code rng
awk macro. A range whose start and end condition matched on the same record failed
to activate for that record, even though
.code rng
is inclusive. The behavior is incompatible with POSIX Awk.
.IP 174
A value of 174 or lower restores a previous behavior of variable substitution
in the
.code output
directive and in quasiliterals in both the \*(TX pattern language and \*(TL.
The behavior in question is the evaluation of the element indexing or
range selection modifier, exemplified by
.codn "@{a [2]}" .
The previous behavior was that if the variable is of any type other
than list, it is converted to a string (unless it already is one).
The indexing then applies to the string. If it is a list then the
indexing or range selection applies to the original list value,
prior to conversion to text. The current behavior is that indexing
and range selection is applied to the original value if that value
is any sequence type which satisfies the
.code seqp
function, otherwise to the string representation.
.IP 172
A value of 172 or lower restores a behavior of the \*(TX pattern
matching language when matching a variable followed by a directive, such as
.codn "@a@(fun b)" .
The old behavior is that the scan for a match for the directive
takes place in an environment in which a binding for
.code a
has not yet been established. The new behavior is that the variable
is always bound prior to the processing of the directive. During
the search, it is bound to the range of text spanning between the
starting position and the position being tried.
.IP 170
A value of 170 or lower disables the behavior that \*(TX scans standard input
when no input sources are specified on the command line. Standard input must
be requested explicitly using the
.code -
argument. This is how it was in all versions of \*(TX up to 170.
Some programs may behave differently because of this. Specifically, programs
which do not take any arguments, and do not select an input source using the
.code @(next)
directive, or suppress the use of an input source using
.codn "@(next nil)" ,
may now accidentally read from standard input.
Until version 170, the functions
.codn split ,
.codn split* ,
.code partition
and
.code partition*
ignored negative indices in their
.meta index-list
argument. The new behavior is that the length of the input sequence
is added to any negative index values. The resulting values are then
ignored if they are still negative.
.IP 165
A value of 165 restores the following behaviors, which changed starting in 166.
There was a change in Lisp evaluation support of the \*(TX pattern language.
Specifically, Lisp argument forms were not subject to expansion prior to
evaluation in these directives:
.codn output ,
.codn mod ,
.codn modlast ,
.codn skip ,
.codn fuzz ,
.codn load ,
.codn close ,
.codn call ,
.code cat
and
.codn next .
.IP 161
Version 161 was the last version in which a bug existed in the
.code handle
macro. In spite of the documentation claiming that
.code handle
has the same syntax as
.codn catch ,
the clauses of
.code handle
were being passed the exception symbol as the leftmost argument, followed
by the exception arguments. This convention is different from
.code catch
clauses which do not receive the exception symbol, only the arguments.
The discrepancy was corrected by making
.code handle
behave like
.codn catch ,
as documented. Requesting compatibility with 161 or earlier restores
the previous behavior of the
.code handle
macro.
.IP 156
After version 156, two behaviors changed in the in the macro expander for
.codn caseq ,
.code caseql
and
.codn casequal :
one outright bug was fixed, and one hitherto undocumented behavior
was changed and specified in the documentation at the same time.
Selecting a compatibility value of 156 or less restores the previous
behaviors. The bug was that single-atom case keys were undergoing
evaluation. For instance
.code "(caseql x (a 0))"
would arrange for the evaluation of
.code a
as a variable, rather than treating it as the symbol
.code a
itself. Though the compatibility mechanism restores the behavior,
applications depending on the evaluating behavior should be changed to
instead use
.codn caseq* ,
.code caseql*
or
.codn casequal .
A workaround for this bug for \*(TX versions 156 or older is to replace
simple keys with a key list of length one, exemplified by a rewrite of the
foregoing expression to
.codn "(caseql x ((a) 0))" .
Here
.code a
is not evaluated.
The undocumented behavior was that a matching clause which has no forms
to be evaluated was producing a result value of
.codn t .
For example
.code "(case 1 (1))"
previously yielded
.codn t ,
but now yields
.codn nil ,
and this behavior is documented.
.IP 155
After version 155, the
.code tok-str
and
.code tok-where
functions changed semantics. Previously, these functions exhibited the
flaw that under some conditions they extracted an empty token immediately
following a non-empty token. This behavior was working as designed and
documented, but the design was flawed, creating a major difficulty in simple
tokenizing tasks when tokens may be empty strings. Requesting compatibility
with version 155 or earlier restores the behavior.
.IP 154
After version 154, changes were introduced in the semantics of struct
literals. Previously, the syntax
.code "#S(abc x a y b)"
denoted the construction of an instance of
.code abc
with
.code "x a y b"
as the constructor parameters, similarly to
.codn "(new abc x 'a y 'b)" .
The new behavior is that
.code abc
is constructed using no parameters, as if by
.code "(new abc)"
and then the slot values are assigned. This means that the values
specified in the literal override any manipulations of those slots by
the type's user-defined
.code :postinit
handlers. Also, after 154,
.code print
methods are expected to take three arguments and are invoked for both
pretty printing and regular machine-readable printing. Until 154, a struct's
.code print
methods was called only when that struct was being pretty-printed, and
only with two arguments; ordinary printing side-stepped the method and rendered
the standard
.code #S
syntax featuring all instance slots.
.IP 151
After version 151, changes were implemented to the way static slots work
in \*(TL structs. Selecting compatibility with 151 restores most of the behaviors.
Until 151, each structure type had its own instance of static slots whether
they were newly defined or inherited. Under the new scheme, a derived struct
shares one instance of each inherited static slot with its base type.
Under the old scheme, a struct inherits the static
initialization functions of its bases (the
.meta static-initfun
argument passed in
.codn make-struct-type ).
These are invoked because they are relied upon by the
.code defstruct
macro to perform the initializations of all the inherited static slots.
Under the new scheme, the static initialization functions are not inherited.
Only the type's own
.meta static-initfun
is invoked to initialize its newly defined static slots that it doesn't
share with the parent. The inherited static slots simply preserve their
current values they have in the base type; their values are untouched by
the introduction of a derived type. The
.code static-slot-ensure
also changed semantics after version 151. The old behavior was problematic
because it affected all static slots throughout the inheritance hierarchy
matching the name passed in by argument. Since this function is the basis
for redefining methods, its behavior broke the semantics of overriding.
Selecting 151 compatibility only restores the behavior of this
function and macros based on it like
.codn defmeth :
in the situation when it introduces a new static slot into one or more
struct types, in compatibility mode it introduces the slot separately into each
type without sharing, and it recurses over the entire type hierarchy,
storing
.meta new-val
into all static slots which match
.metn name .
.IP 150
Until version 150, the
.code match-regex
function behaved in a different way from what was documented. Rather
than returning the length of the match, it returned the index one
past the last matching character. In the case when the starting position
is zero, these values coincide; they are different if the match begins
at some position inside the string. Compatibility with 150 restores
the behavior. The
.code match-regst
function was also affected by this issue; however, since it returned nonsense
result not corresponding to the matching text, it was repaired without
backward compatibility.
Also affected by version 150 compatibility are the
.code match-regex-right
and
.code match-regst-right
functions. These functions worked as documented; however, their
specification changes after version 150 to a semantics which is
more useful and less surprising to the programmer.
.IP 148
Up until version 148, the
.code :postinit
handlers specified in a
.code defstruct
were executed in derived-to-base order, opposite to the
order of execution of
.code :init
handlers. Though described in terms of
.code defstruct
syntax and concepts, this is actually a change in how
.code make-struct-type
treats its
.meta postinitfun
argument.
Specifying 148 or earlier compatibility provides this
old behavior. Also, until version 148, the
.code trim-str
function stripped leading and trailing whitespace from a string
consisting of not only spaces, tabs and newlines, but also carriage
returns, vertical tabs and form feeds.
.IP 145
In versions 144 and 145, \*(TX opened files in text mode on Cygwin,
enabling conversion between CR-LF line endings and abstract newline
characters. This behavior change was retracted, so that files on Cygwin are
opened without specifying text mode, causing the streams to be effectively
binary. The intended "Windows native" behavior of streams being text mode is
instead provided in the Windows version of \*(TX by the Cygnal library.
.IP 143
Until version 143, the
.code stdlib
variable didn't include the trailing slash. The
.code makunbound
function semantics changed after version 143 to be more
compatible with ANSI Common Lisp. Until 143, that function removed
only the global binding, leaving the dynamic rebinding of a variable
intact. The
.code defsymacro
operator neglected to remove the symbol's special variable
mark, if the symbol was previously defined as a special variable.
Also, until version 143 many more places in the \*(TX pattern language used
bind expressions rather than Lisp expressions. The compatibility
option restores these behaviors.
.IP 142
Until version 142, the \*(TX pattern language supported a prefix
convention on data sources. Data sources beginning with the character
.code !
were treated as system command pipes, and data sources beginning with
.code $
indicated that a directory is to be scanned. This convention was recognized
both for command line arguments, the arguments of the
.code @(next)
directive, and of the
.code @(output)
directive, whether or not the argument was a literal or a computed
value. This feature was dropped from the language after version 142.
Also, until version 142, the
.code @(next)
directive recognized the name
.str -
as denoting standard input, and
.code @(output)
recognized it as standard output. These behaviors were also removed;
versions after 142 recognize this convention only when it appears
as a command line argument. Lastly, until version 142, the
.code @(output)
directive evaluated the
.meta destination
argument as an expression of the \*(TX pattern language, requiring
.code @
to be used to denote a Lisp expression. This is no longer required.
All these old behaviors are provided
if compatibility with 142 or earlier is requested.
.IP 139
After \*(TX 139, changes were implemented in the area of pseudo-random
number generation. Compatibility with 139 brings back the previous
seeding algorithm used by
.codn make-random-state ,
allowing the old pseudo-random sequences to be reproduced. This is only
the case if the default value of 8 is used for the
.meta warmup-period
argument of that function (which didn't exist in 139 or earlier versions).
.IP 138
After \*(TX 138, the variable name lookup rules in the \*(TX pattern language
changed for greater utility and consistency. Compatibility with 138 or later
restores the previous rules under which most accesses to a \*(TL variable from
\*(TL require the
.code @
prefix denoting Lisp evaluation, but some do not.
.IP 137
Compatibility with \*(TX 137 restores the behavior of not expanding
symbol macros in the dot position of a function call form. For instance
if
.code x
is a symbol macro, in this compatibility mode it is not recognized
in a form like
.codn "(list 1 2 . x)" .
This preserves the behavior of code which depends on
.code x
in such a form to refer to a variable that is being otherwise shadowed by the
symbol macro. \*(TX 137 compatibility also restores a particular behavior
of the global and local macro defining operators
.code defsymacro
and
.codn symacrolet :
in compatibility mode, these operators macro-expand the replacement forms
of symbol macros at expansion time, and then bind the resulting expanded
forms to their respective macro symbols. The forms are then potentially
expanded again when the symbol macros are substituted. This wrong behavior was
never implied by the documentation. The
.code with-slots
macro is also affected by this, because it is implemented in terms of
.codn symacrolet .
Lastly, \*(TX 137 compatibility mode also restores another behavior
of the dot position in function call forms: if the dot position of a
function call form produces a sequence that is not a list, that sequence
is converted to a list so that
.mono
(list . "abc")
.onom
produces
.codn "(#\ea #\eb #\ec)" .
After 137, no such treatment is applied to the value and the same form now
yields
.strn abc .
.IP 136
A request for compatibility with \*(TX 136 or earlier restores the old behavior
of the
.code if
directive, which in used to be a syntactic sugar for a
.code cases
directive with
.code require
at the top of each block. Though semantically well-defined and working as
documented, the behavior was confusing, since failed matching caused potential
evaluation of multiple clauses, whereas programmers expect an if/elif/else
ladder to select exactly one clause.
.IP 128
Compatibility with \*(TX 128 or earlier brings back the behavior that
expressions in quasiliterals are evaluated according to \*(TX evaluation
rules for quasiliterals which occur in the \*(TX pattern language.
Similarly, expressions in
.code @(output)
blocks are treated \*(TX pattern language expressions.
.IP 127
In versions of \*(TX until 127, the functions
.codn symbol-function ,
.code fboundp
and
.code fmakunbound
behaved similarly to their Common Lisp counterparts. See the Dialect Notes
under these functions.
.IP 124
In \*(TX 124 and earlier versions, the
.code @(next)
directive didn't evaluate the
.meta source
argument as a Lisp expression, but as a \*(TX pattern language
expression. Lisp expressions thus had to be delimited by
.codn @ .
The current behavior is that the argument is treated as Lisp.
If the compatibility option is set to 124 or lower, the old behavior
is restored. However, even without the presence of the compatibility option,
if the
.meta source
argument is a meta-expression or meta-variable (denotes by the
.code @
prefix in front of a compound expression or symbol, respectively)
it is also treated in the old way. This latter behavior is obsolescent
and will eventually disappear, and the compatibility option will be
the only way to get the old behavior.
.IP 123
In \*(TX 123 and earlier, the variable initialization forms of a
.code for
or
.code for*
loop were evaluated outside of the scope of the implicit
.code nil
block. They are now inside the block. The compatibility option will
restore the old behavior.
.IP 121
In \*(TX 121 and earlier versions, \*(TL expressions evaluated in the
pattern language were placed in a lexical environment in which the
pattern variables were visible as lexical variables. The meant that
these variables could be directly captured in lexical closures. On the other
hand, it meant that a Lisp function defined in a
.code @(do)
block could not access a variable established by a later
.codn @(bind) .
It doesn't make sense for dynamically captured variables to be lexical,
so the rule was changed. The backward compatibility switch will enable
the old scoping behavior. Capturing the values of pattern variables in
closures is possible indirectly under the new rule: simply bind new lexical
variables with their values.
.IP 118
The
.code slot-p
function's name changed to
.code slotp
after 118. The compatibility option causes
.code slot-p
to be defined also.
.IP 117
The arguments of the
.code make-struct-type
acquired changed after version 117. 117 compatibility brings back the old
interface.
.IP 114
\*(TX until version 114 reported parse errors in this format:
.verb
./txr: (file.txr:123): syntax error
.brev
The new format omits the program name prefix and parentheses.
Also, the
.code kill
function returned an integer, obtained from the return
value of the underlying C function, rather than converting
that value to a Boolean. The old behavior was not documented,
and 114 compatibility restores it.
Lastly, prior to 115, random state objects were of type
.code *random-state*
(the same symbol as the special variable name)
rather than of type
.codn random-state .
This is a bug whose behavior is simulated by 114 compatibility.
.IP 113
Version 113 is the last version in which the
.codn stat ,
.codn lstat ,
and
.code fstat
functions returned a property list rather than a structure.
Requesting 113 compatibility restores the behavior of returning
a property list. However, the filesystem testing functions like
.code path-exists-p
will not work, because they rely on these functions returning
a structure.
.IP 109
The optional trailing semicolon on hex and octal codes in the \*(TX
pattern language was introduced in 110. The feature is disabled
with 109 or lower compatibility, so that
.code @\ex21;a
encodes
.code !;a
rather than the current behavior of encoding
.codn !a .
Also, in 109 and earlier, newlines were allowed in word list literals and
word list quasiliterals. They were treated as a word-separating space.
A backslash-escaped newline, and all whitespace around it, was deleted
just like in ordinary literals, and did not separate words. The old
behavior is emulated.
.IP 107
Up through \*(TX 107, by accident, there was a function called
.code flip
as well as an operator by the same name. The function was renamed to
.codn flipargs .
Version 107 compatibility or earlier provides the
function under the original name also. Also, up until this version,
\*(TX allowed functions and macros to be defined with the same names
as built-in operators, and macros. Newer versions reject this as an error.
Requesting compatibility to 107 or earlier suppresses the rejection,
though without introducing any requirement that redefinition will work as
expected.
.IP 105
Provides the behavior that the
.code open-file
function automatically marks a stream open on a TTY devices as a real-time stream
(subject to the availability of the POSIX
.code isatty
function).
Also allows unrecognized backslash escape sequences in regular
expression syntax to simply denote the escaped character literally,
as was historically the case prior to \*(TX 106, so that
.code \ez
for instance denotes
.codn z .
As of \*(TX 106, these are diagnosed as errors.
.IP 102
Up to \*(TX 102, the
.code get-string
function did not close the stream. This old behavior is emulated.
.IP 101
Up to \*(TX 101, the
.code make-like
function incorrectly returned
.code nil
when converting the empty list
.code nil
to string type. This affects numerous generic sequence functions,
causing their result to be
.code nil
instead of an empty string.
.IP 100
Up to \*(TX 100, the
.code split-str
function had an undocumented behavior. When the
.code sep
argument was an empty string, it split the string into
individual characters as if by calling
.codn list-str .
This behavior changed to the currently
documented behavior starting in \*(TX 101.
Also, the arguments of the
.code where
function, which introduced in \*(TX 91, were reversed starting
in \*(TX 101.
.IP 99
Up to \*(TX 99, the substitution of TXR Lisp expressions in
.code @(output)
directives and in the quasistrings of the pattern language
exhibited the buggy behavior that if the TXR Lisp expression
produced a list, the list was rendered as a parenthesized
representation, or the text
.code nil
in the empty list case. Moreover, in the
.code @(output)
case, the value of TXR Lisp expressions was not subject to filtering.
Starting with \*(TX 100, these issues
are fixed, making the the behavior is consistent with
the behavior of TXR Lisp quasiliterals.
.IP 97
Up to \*(TX 97, the error exception symbols such as
.code file-error
were named with underscores, as in
.codn file_error .
These error symbols existed:
.codn type_error ,
.codn internal_error ,
.codn numeric_error ,
.codn range_error ,
.codn query_error ,
.code file_error
and
.codn process_error .
.coSS Variables @ txr-version and @ lib-version
.desc
The
.code txr-version
variable gives the version of the \*(TX executable. Programs can express
conditional variable based on detecting the version.
The
.code lib-version
variable gives the version of the installed library of \*(TX code accompanying
the executable.
It is expected that these two variables have an identical value. Any
discrepancy in their value indicates an installation whose library or \*(TX
executable were upgraded independently. Should such a situation arise in any
system and cause a problem, \*(TX programs can be defensively coded against it
with the help of these variables.
Some features of the \*(TX library are built into the executable, whereas
others are in the library directory. This aspect of library symbols isn't
specified in this manual; knowing which of these two variables is relevant
to a library feature requires familiarity with the implementation.
.SH* APPENDIX
.SS* A. NOTES ON EXOTIC REGULAR EXPRESSIONS
Users familiar with regular expressions may not be familiar with the complement
and intersection operators, which are often absent from text processing tools
that support regular expressions. The following remarks are offered in hope
that they are of some use.
.TP* "Equivalence to Sets"
Regexp intersection is not essential; it may be obtained from complement and
union as follows, since De Morgan's law applies to regular expression algebra:
.code (R1)&(R2)
=
.codn ~(~(R1)|~(R2)) .
(The complement of the union of the complements of
R1 and R2 constitutes the intersection.) This law works because the regular
expression operators denote set operations in a straightforward way. A regular
expression denotes a set of strings (a potentially infinite one) in a condensed
way. The union of two regular expressions
.code R1|R2
denotes the union of the set
of texts denoted by
.code R1
and that denoted by
.codn R2 .
Similarly
.code R1&R2
denotes a set intersection, and
.code ~R
denotes a set complement. Thus algebraic laws
that apply to set operations apply to regular expressions. It's useful to keep
in mind this relationship between regular expressions and sets in understanding
intersection and complement.
Given a finite set of strings, like the set
.mono
{ "abc", "def" }
.onom
which corresponds to the regular expression
.codn (abc|def) ,
the complement is the set which contains
an infinite number of strings: it consists of all possible strings except
.str abc
and
.strn def .
It includes the empty string, all strings of length 1, all strings
of length 2, all strings of length 3 other than
.str abc
and
.strn def ,
all strings of
length 4, etc. This means that a "harmless looking" expression like
.code ~(abc|def)
can actually match arbitrarily long inputs.
.TP* "Set Difference"
How about matching only three-character-long strings other than
.str abc
or
.strn def ?
To express this, regex intersection can be used: these strings are the
intersection of the set of all three-character strings, and the set of all
strings which are not
.str abc
or
.strn def .
The straightforward set-based reasoning
leads us to this:
.codn ...&~(abc|def) .
This
.code A&~B
idiom is also called set
difference, sometimes notated with a minus sign:
.code A-B
(which is not supported in \*(TX regular expression syntax). Elements which
are in the set
.codn A ,
but not
.codn B ,
are those elements which are in the intersection of
.code A
with the complement of
.codn B .
This is similar to the arithmetic rule
.codn "A - B = A + -B" :
subtraction is
equivalent to addition of the additive inverse. Set difference is a useful
tool: it enables us to write a positive match which captures a more general set
than what is intended (but one whose regular expression is far simpler
than a positive match for the exact set we want), then we can
intersect this over-generalized set with the complemented set of
another regular expression which matches the particulars that we wish excluded.
.TP* "Expressiveness versus Power"
It turns out that regular expressions which do not make use of the
complement or intersection operators are just as powerful as expressions
that do. That is to say, with or without these operators, regular expressions
can match the same sets of strings (all regular languages). This means that
for a given regular expression which uses intersection and complement, it is
possible to find a regular expression which doesn't use these operators, yet
matches the same set of strings. But, though they exist, such equivalent
regular expressions are often much more complicated, which makes them difficult
to design. Such expressions do not necessarily
. B express
what it is they match; they merely capture the equivalent set. They
perform a job, without making it obvious what it is they do. The use of
complement and intersection leads to natural ways of expressing many kinds of
matching sets, which not only demonstrate the power to carry out an operation,
but also easily express the concept.
.TP* "Example: Matching C Language Comments"
For instance, using complement, we can write a straightforward regular
expression which matches C language comments. A C language
comment is the digraph
.codn /* ,
followed by any string which does not contain the
closing sequence
.codn */ ,
followed by that closing sequence.
Examples of valid comments are
.codn /**/ ,
.code "/* abc */"
or
.codn /***/ .
But C
comments do not nest (cannot contain comments), so that
.code "/* /* nested */ */"
actually consists of the comment
.codn "/* /* nested */" ,
which is followed by the trailing junk
.codn */ .
Our simple characterization of interior part of a C comment as a string
which does not contain the terminating digraph makes use of the
complement, and can be expressed using the complemented regular expression like
this:
.codn (~.*[*][/].*) .
That is to say, strings which contain
.code */
are matched by
the expression
.codn .*[*][/].* :
zero or more arbitrary characters, followed by
.codn */ ,
followed by zero or more arbitrary characters. Therefore, the complement of
this expression matches all other strings: those which do not contain
.codn */ .
These strings make up the inside of a C comment between the
.code /*
and
.codn */ .
The equivalent simple regex is quite a bit more complicated.
Without complement, we must somehow write a positive match for all strings such
that we avoid matching
.codn */ .
Obviously, sequences of characters other than
.code *
are included:
.codn [^*]* .
Occurrences of
.code *
are also allowed, but only if followed
by something other than a slash, so let's include this via union:
.verb
([^*]|[*][^/])*.
.brev
Alas, already, we have a bug in this expression. The
subexpression
.code [*][^/]
can match
.codn ** ,
since a
.code *
is not a
.codn / .
If the next character in the input is
.codn / ,
we missed a comment close. To fix the problem we
revise to this:
.verb
([^*]|[*][^*/])*
.brev
(The interior of a C language comment is any
mixture of zero or more non-asterisks, or digraphs consisting of an asterisk
followed by something other than a slash or another asterisk). Oops, now we
have a problem again. What if two asterisks occur in a comment? They are not
matched by
.codn [^*] ,
and they are not matched by
.codn [*][^*/] .
Actually, our regex must not simply match asterisk-non-asterisk digraphs, but
rather sequences of one or more asterisks followed by a non-asterisk:
.verb
([^*]|[*]*[^*/])*
.brev
This is still not right, because, for instance, it fails to match the interior
of a comment which is terminated by asterisks, including the simple test cases
where the comment interior is nothing but asterisks. We have no provision in
our expression for this case; the expression requires all runs of asterisks to
be followed by something which is not a slash or asterisk. The way to fix this
is to add on a subexpression which optionally matches a run of zero or more
interior asterisks before the comment close:
.verb
([^*]|[*]*[^*/])*[*]*
.brev
Thus our the semi-final regular expression is
.verb
[/][*]([^*]|[*]*[^*/])*[*]*[*][/]
.brev
(Interpretation: a C comment is an interior string enclosed in
.codn "/* */" ,
where this interior part
consists of a mixture of non-asterisk characters, as well as runs of asterisk
characters which are terminated by a character other than a slash, except for
possibly one rightmost run of asterisks which extends to the end of the
interior, touching the comment close. Phew!) One final simplification is
possible: the tail part
.code [*]*[*][/]
can be reduced to
.code [*]+[/]
such that the
final run of asterisks is regarded as part of an extended comment terminator
which consists of one or more asterisks followed by a slash. The regular
expression works, but it's cryptic; to someone who has not developed it, it
isn't obvious what it is intended to match. Working out complemented matching
without complement support from the language is not impossible, but it may be
difficult and error-prone, possibly requiring multiple iterations of
trial-and-error development involving numerous test cases, resulting in an
expression that doesn't have a straightforward relationship to the original
idea.
.TP* "The Non-Greedy Operator"
The non-greedy operator
.code %
is actually defined in terms of a set difference,
which is in turn based on intersection and complement. The uninteresting case
.code (R%)
where the right operand is empty reduces to
.codn (R*) :
if there is no trailing
context, the non-greedy operator matches
.code R
as far as possible, possibly to the
end of the input, exactly like the greedy operator. The interesting case
.code (R%T)
is defined as a "syntactic sugar" which expands to the expression
.code ((R*)&(~.*(T&.+).*))T
which means: match the longest string which is matched
by
.codn R* ,
but which does not contain a non-empty match for
.codn T ;
then, match
.codn T .
This is a useful and expressive notation. With it, we can write the regular
expression for matching C language comments simply like this:
.code [/][*].%[*][/]
(match the opening sequence
.codn /* ,
then match a sequence of zero or more
characters non-greedily, and then the closing sequence
.codn */ .
With the non-greedy
operator, we don't have to think about the interior of the comment as set of
strings which excludes
.codn */ .
Though the non-greedy operator appears expressive,
its apparent simplicity may be deceptive. It looks as if it works "magically"
by itself; "somehow" this
.code .%
part "knows" only to consume enough characters so that
it doesn't swallow an occurrence of the trailing context. Care must be taken
that the trailing context passed to the operator really is the correct text
that should be excluded by the non-greedy match. For instance, take the
expression
.codn .%abc .
If you intend the trailing context to be merely
.codn a ,
you must be careful to write
.codn (.%a)bc .
Otherwise, the trailing context is
.codn abc ,
and this means that the
.code .%
match will consume the longest string that does not contain
.codn abc ,
when in fact what was intended was to consume the longest string that
does not contain
.codn a .
The change in behavior of the
.code %
operator upon modifying the
trailing context is not as intuitive as that of the * operator, because the
trailing context is deeply involved in its logic.
On a related note, for single-character trailing contexts, it may be a good
idea to use a complemented character class instead. That is to say, rather than
.codn (.%a)bc ,
consider
.codn [^a]*abc .
The set of strings which don't contain the
character a is adequately expressed by
.codn [^a]* .
|