1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
|
/* Copyright 2009
* Kaz Kylheku <kkylheku@gmail.com>
* Vancouver, Canada
* All rights reserved.
*
* BSD License:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <dirent.h>
#include <setjmp.h>
#include <dirent.h>
#include "lib.h"
#include "unwind.h"
#include "regex.h"
#define NFA_SET_SIZE 512
#define CHAR_SET_INDEX(CH) ((CH) / (sizeof (bitcell_t) * CHAR_BIT))
#define CHAR_SET_BIT(CH) ((CH) % (sizeof (bitcell_t) * CHAR_BIT))
void char_set_clear(char_set_t *set)
{
static const char_set_t blank = { { 0 } };
*set = blank;
}
void char_set_compl(char_set_t *set)
{
int i;
for (i = 0; i < CHAR_SET_SIZE; i++)
set->bitcell[i] ^= BITCELL_ALL1;
}
void char_set_add(char_set_t *set, int ch)
{
set->bitcell[CHAR_SET_INDEX(ch)] |= (1 << CHAR_SET_BIT(ch));
}
void char_set_add_range(char_set_t *set, int ch0, int ch1)
{
if (ch0 <= ch1) {
int i;
int bt0 = CHAR_SET_BIT(ch0);
int bc0 = CHAR_SET_INDEX(ch0);
bitcell_t mask0 = ~((BITCELL_LIT(1) << bt0) - 1);
int bt1 = CHAR_SET_BIT(ch1);
int bc1 = CHAR_SET_INDEX(ch1);
bitcell_t mask1 = ((BITCELL_LIT(1) << (bt1 + 1) % 32) - 1);
switch (bc1 - bc0) {
case 0:
set->bitcell[bc0] |= (mask0 & mask1);
break;
default:
set->bitcell[bc0] |= mask0;
set->bitcell[bc1] |= mask1;
case 1:
for (i = bc0 + 1; i < bc1; i++)
set->bitcell[i] = BITCELL_ALL1;
break;
}
}
}
int char_set_contains(char_set_t *set, int ch)
{
return (set->bitcell[CHAR_SET_INDEX(ch)] & (1 << CHAR_SET_BIT(ch))) != 0;
}
nfa_state_t *nfa_state_accept(void)
{
nfa_state_t *st = (nfa_state_t *) chk_malloc(sizeof *st);
st->a.kind = nfa_accept;
st->a.visited = 0;
return st;
}
nfa_state_t *nfa_state_empty(nfa_state_t *t0, nfa_state_t *t1)
{
nfa_state_t *st = (nfa_state_t *) chk_malloc(sizeof *st);
st->e.kind = nfa_empty;
st->e.visited = 0;
st->e.trans0 = t0;
st->e.trans1 = t1;
return st;
}
nfa_state_t *nfa_state_single(nfa_state_t *t, int ch)
{
nfa_state_t *st = (nfa_state_t *) chk_malloc(sizeof *st);
st->o.kind = nfa_single;
st->o.visited = 0;
st->o.trans = t;
st->o.ch = ch;
return st;
}
nfa_state_t *nfa_state_wild(nfa_state_t *t)
{
nfa_state_t *st = (nfa_state_t *) chk_malloc(sizeof *st);
st->o.kind = nfa_wild;
st->o.visited = 0;
st->o.trans = t;
st->o.ch = 0;
return st;
}
void nfa_state_free(nfa_state_t *st)
{
if (st->a.kind == nfa_set)
free(st->s.set);
free(st);
}
void nfa_state_shallow_free(nfa_state_t *st)
{
free(st);
}
nfa_state_t *nfa_state_set(nfa_state_t *t)
{
nfa_state_t *st = (nfa_state_t *) chk_malloc(sizeof *st);
char_set_t *cs = (char_set_t *) chk_malloc(sizeof *cs);
char_set_clear(cs);
st->s.kind = nfa_set;
st->s.visited = 0;
st->s.trans = t;
st->s.set = cs;
return st;
}
/*
* An acceptance state is converted to an empty transition
* state with specified transitions. It thereby loses
* its acceptance state status. This is used during
* compilation to hook new output paths into an inner NFA,
* either back to itself, or to a new state in the
* surrounding new NFA.
*/
void nfa_state_empty_convert(nfa_state_t *acc, nfa_state_t *t0, nfa_state_t *t1)
{
assert (acc->a.kind == nfa_accept);
acc->e.kind = nfa_empty;
acc->e.trans0 = t0;
acc->e.trans1 = t1;
}
/*
* Acceptance state takes on the kind of st, and all associated
* data. I.e. we merge the identity of accept,
* with the contents of st, such that the new state has
* all of the outgoing arrows of st, and
* all of the incoming arrows of acc.
* This is easily done with an assignment, provided
* that st doesn't have any incoming arrows.
* We ensure that start states don't have any incoming
* arrows in the compiler, by ensuring that repetition
* operators terminate their backwards arrows on an
* existing start state, and allocate a new start
* state in front of it.
*/
void nfa_state_merge(nfa_state_t *acc, nfa_state_t *st)
{
assert (acc->a.kind == nfa_accept);
*acc = *st;
}
nfa_t nfa_make(nfa_state_t *s, nfa_state_t *acc)
{
nfa_t ret;
ret.start = s;
ret.accept = acc;
return ret;
}
/*
* Combine two NFA's representing regexps that are catenated.
* The acceptance state of the predecessor is merged with the start state of
* the successor.
*/
nfa_t nfa_combine(nfa_t pred, nfa_t succ)
{
nfa_t ret;
ret.start = pred.start;
ret.accept = succ.accept;
nfa_state_merge(pred.accept, succ.start);
nfa_state_shallow_free(succ.start); /* No longer needed. */
return ret;
}
nfa_t nfa_compile_set(obj_t *args, int compl)
{
nfa_state_t *acc = nfa_state_accept();
nfa_state_t *s = nfa_state_set(acc);
char_set_t *set = s->s.set;
nfa_t ret = nfa_make(s, acc);
for (; args; args = rest(args)) {
obj_t *item = first(args);
if (consp(item)) {
obj_t *from = car(item);
obj_t *to = cdr(item);
assert (typeof(from) == chr_t && typeof(to) == chr_t);
char_set_add_range(set, c_chr(from), c_chr(to));
} else if (typeof(item) == chr_t) {
char_set_add(set, c_chr(item));
} else {
assert(0 && "bad regex set");
}
}
if (compl)
char_set_compl(set);
return ret;
}
/*
* Input is the items from a regex form,
* not including the regex symbol.
* I.e. (rest '(regex ...)) not '(regex ...).
*/
nfa_t nfa_compile_regex(obj_t *items)
{
if (nullp(items)) {
nfa_state_t *acc = nfa_state_accept();
nfa_state_t *s = nfa_state_empty(acc, 0);
nfa_t nfa = nfa_make(s, acc);
return nfa;
} else {
obj_t *item = first(items), *others = rest(items);
nfa_t nfa;
if (typeof(item) == chr_t) {
nfa_state_t *acc = nfa_state_accept();
nfa_state_t *s = nfa_state_single(acc, c_chr(item));
nfa = nfa_make(s, acc);
} else if (item == wild) {
nfa_state_t *acc = nfa_state_accept();
nfa_state_t *s = nfa_state_wild(acc);
nfa = nfa_make(s, acc);
} else if (consp(item)) {
obj_t *sym = first(item);
obj_t *args = rest(item);
if (sym == set) {
nfa = nfa_compile_set(args, 0);
} else if (sym == cset) {
nfa = nfa_compile_set(args, 1);
} else if (sym == compound) {
nfa = nfa_compile_regex(args);
} else if (sym == zeroplus) {
nfa_t nfa_args = nfa_compile_regex(args);
nfa_state_t *acc = nfa_state_accept();
/* New start state has empty transitions going through
the inner NFA, or skipping it right to the new acceptance state. */
nfa_state_t *s = nfa_state_empty(nfa_args.start, acc);
/* Convert acceptance state of inner NFA to one which has
an empty transition back to the start state, and
an empty transition to the new acceptance state. */
nfa_state_empty_convert(nfa_args.accept, nfa_args.start, acc);
nfa = nfa_make(s, acc);
} else if (sym == oneplus) {
/* One-plus case differs from zero-plus in that the new start state
does not have an empty transition to the acceptance state.
So the inner NFA must be traversed once. */
nfa_t nfa_args = nfa_compile_regex(args);
nfa_state_t *acc = nfa_state_accept();
nfa_state_t *s = nfa_state_empty(nfa_args.start, 0); /* <-- diff */
nfa_state_empty_convert(nfa_args.accept, nfa_args.start, acc);
nfa = nfa_make(s, acc);
} else if (sym == optional) {
/* In this case, we can keep the acceptance state of the inner
NFA as the acceptance state of the new NFA. We simply add
a new start state which can short-circuit to it via an empty
transition. */
nfa_t nfa_args = nfa_compile_regex(args);
nfa_state_t *s = nfa_state_empty(nfa_args.start, nfa_args.accept);
nfa = nfa_make(s, nfa_args.accept);
} else if (sym == or) {
/* Simple: make a new start and acceptance state, which form
the ends of a spindle that goes through two branches. */
nfa_t nfa_first = nfa_compile_regex(first(args));
nfa_t nfa_second = nfa_compile_regex(second(args));
nfa_state_t *acc = nfa_state_accept();
/* New state s has empty transitions into each inner NFA. */
nfa_state_t *s = nfa_state_empty(nfa_first.start, nfa_second.start);
/* Acceptance state of each inner NFA converted to empty
transition to new combined acceptance state. */
nfa_state_empty_convert(nfa_first.accept, acc, 0);
nfa_state_empty_convert(nfa_second.accept, acc, 0);
nfa = nfa_make(s, acc);
} else {
assert (0 && "internal error: bad operator in regex");
}
} else {
assert (0 && "internal error: bad regex item");
}
/* We made an NFA for the first item, but others follow.
Compile the others to an NFA recursively, then
stick it with this NFA. */
if (others) {
nfa_t nfa_others = nfa_compile_regex(others);
nfa = nfa_combine(nfa, nfa_others);
}
return nfa;
}
}
int nfa_all_states(nfa_state_t **inout, int num, int visited)
{
int i;
for (i = 0; i < num; i++)
inout[i]->a.visited = visited;
for (i = 0; i < num; i++) {
nfa_state_t *s = inout[i];
if (num >= NFA_SET_SIZE)
internal_error("NFA set size exceeded");
switch (s->a.kind) {
case nfa_accept:
break;
case nfa_empty:
{
nfa_state_t *e0 = s->e.trans0;
nfa_state_t *e1 = s->e.trans1;
if (e0 && e0->a.visited != visited) {
e0->a.visited = visited;
inout[num++] = e0;
}
if (e1 && e1->a.visited != visited) {
e1->a.visited = visited;
inout[num++] = e1;
}
}
break;
case nfa_wild:
case nfa_single:
case nfa_set:
if (s->o.trans->a.visited != visited) {
s->o.trans->a.visited = visited;
inout[num++] = s->o.trans;
}
break;
}
}
if (num > NFA_SET_SIZE)
internal_error("NFA set size exceeded");
return num;
}
void nfa_free(nfa_t nfa)
{
nfa_state_t **all = chk_malloc(NFA_SET_SIZE * sizeof *all);
int nstates, i;
all[0] = nfa.start;
all[1] = nfa.accept;
nstates = nfa_all_states(all, 2, nfa.start->a.visited);
for (i = 0; i < nstates; i++)
nfa_state_free(all[i]);
free(all);
}
/*
* Compute the epsilon-closure of the NFA states stored in the set in, whose
* size is given by nin. The results are stored in the set out, the size of
* which is returned. The stack parameter provides storage used by the
* algorithm, so it doesn't have to be allocated and freed repeatedly.
* The visited parameter is a stamp used for marking states which are added
* to the epsilon-closure set, so that sets are not added twice.
* If any of the states added to the closure are acceptance states,
* the accept parameter is used to store the flag 1.
*
* An epsilon-closure is the set of all input states, plus all additional
* states which are reachable from that set with empty (epsilon) transitions.
* (Transitions that don't do not consume and match an input character).
*/
int nfa_closure(nfa_state_t **stack, nfa_state_t **in, int nin,
nfa_state_t **out, int visited, int *accept)
{
int i, nout = 0;
int stackp = 0;
/* First, add all states in the input state to the closure,
push them on the stack, and mark them as visited. */
for (i = 0; i < nin; i++) {
if (stackp >= NFA_SET_SIZE)
internal_error("NFA set size exceeded");
in[i]->a.visited = visited;
stack[stackp++] = in[i];
out[nout++] = in[i];
if (in[i]->a.kind == nfa_accept)
*accept = 1;
}
while (stackp) {
nfa_state_t *top = stack[--stackp];
if (nout >= NFA_SET_SIZE)
internal_error("NFA set size exceeded");
/* Only states of type nfa_empty are interesting.
Each such state at most two epsilon transitions. */
if (top->a.kind == nfa_empty) {
nfa_state_t *e0 = top->e.trans0;
nfa_state_t *e1 = top->e.trans1;
if (e0 && e0->a.visited != visited) {
e0->a.visited = visited;
stack[stackp++] = e0;
out[nout++] = e0;
if (e0->a.kind == nfa_accept)
*accept = 1;
}
if (e1 && e1->a.visited != visited) {
e1->a.visited = visited;
stack[stackp++] = e1;
out[nout++] = e1;
if (e1->a.kind == nfa_accept)
*accept = 1;
}
}
}
if (nout > NFA_SET_SIZE)
internal_error("NFA set size exceeded");
return nout;
}
/*
* Compute the move set from a given set of NFA states. The move
* set is the set of states which are reachable from the set of
* input states on the consumpion of the input character given by ch.
*/
int nfa_move(nfa_state_t **in, int nin, nfa_state_t **out, int ch)
{
int i, nmove;
for (nmove = 0, i = 0; i < nin; i++) {
nfa_state_t *s = in[i];
switch (s->a.kind) {
case nfa_wild:
/* Unconditional match; don't have to look at ch. */
break;
case nfa_single:
if (s->o.ch == ch) /* Character match. */
break;
continue; /* no match */
case nfa_set:
if (char_set_contains(s->s.set, ch)) /* Set match. */
break;
continue; /* no match */
default:
/* Epsilon-transition and acceptance states have no character moves. */
continue;
}
/* The state matches the character, so add it to the move set.
C trick: all character-transitioning state types have the
pointer to the next state in the same position,
among a common set of leading struct members in the union. */
if (nmove >= NFA_SET_SIZE)
internal_error("NFA set size exceeded");
out[nmove++] = s->o.trans;
}
return nmove;
}
/*
* Match regex against the string in. The match is
* anchored to the front of the string; to search
* within the string, a .* must be added to the front
* of the regex.
*
* Returns the length of the prefix of the string
* which matches the regex. Or, if you will,
* the position of the first mismatching
* character.
*
* If the regex does not match at all, zero is
* returned.
*
* Matching stops when a state is reached from which
* there are no transitions on the next input character,
* or when the string runs out of characters.
* The most recently visited acceptance state then
* determines the match length (defaulting to zero
* if no acceptance states were encountered).
*/
long nfa_run(nfa_t nfa, const char *str)
{
const char *last_accept_pos = 0, *ptr = str;
unsigned visited = nfa.start->a.visited + 1;
nfa_state_t **move = chk_malloc(NFA_SET_SIZE * sizeof *move);
nfa_state_t **clos = chk_malloc(NFA_SET_SIZE * sizeof *clos);
nfa_state_t **stack = chk_malloc(NFA_SET_SIZE * sizeof *stack);
int nmove = 1, nclos;
int accept = 0;
move[0] = nfa.start;
nclos = nfa_closure(stack, move, nmove, clos, visited++, &accept);
if (accept)
last_accept_pos = ptr;
for (; *ptr != 0; ptr++) {
int ch = *ptr;
accept = 0;
nmove = nfa_move(clos, nclos, move, ch);
nclos = nfa_closure(stack, move, nmove, clos, visited++, &accept);
if (accept)
last_accept_pos = ptr + 1;
if (nclos == 0) /* dead end; no match */
break;
}
nfa.start->a.visited = visited;
free(stack);
free(clos);
free(move);
return last_accept_pos ? last_accept_pos - str : -1;
}
long nfa_machine_match_span(nfa_machine_t *nfam)
{
return nfam->last_accept_pos;
}
/*
* NFA machine: represents the logic of the nfa_run function as state machine
* object which can be fed one character at a time.
*/
void nfa_machine_reset(nfa_machine_t *nfam)
{
int accept = 0;
nfam->last_accept_pos = -1;
nfam->visited = nfam->nfa.start->a.visited + 1;
nfam->nmove = 1;
nfam->count = 0;
nfam->move[0] = nfam->nfa.start;
nfam->nclos = nfa_closure(nfam->stack, nfam->move, nfam->nmove,
nfam->clos, nfam->visited++, &accept);
if (accept)
nfam->last_accept_pos = nfam->count;
}
void nfa_machine_init(nfa_machine_t *nfam, nfa_t nfa)
{
nfam->nfa = nfa;
nfam->move = chk_malloc(NFA_SET_SIZE * sizeof *nfam->move);
nfam->clos = chk_malloc(NFA_SET_SIZE * sizeof *nfam->clos);
nfam->stack = chk_malloc(NFA_SET_SIZE * sizeof *nfam->stack);
nfa_machine_reset(nfam);
}
void nfa_machine_cleanup(nfa_machine_t *nfam)
{
free(nfam->stack);
free(nfam->clos);
free(nfam->move);
nfam->stack = 0;
nfam->clos = 0;
nfam->move = 0;
nfam->nfa.start = 0;
nfam->nfa.accept = 0;
}
nfam_result_t nfa_machine_feed(nfa_machine_t *nfam, int ch)
{
int accept = 0;
if (ch != 0) {
nfam->count++;
nfam->nmove = nfa_move(nfam->clos, nfam->nclos, nfam->move, ch);
nfam->nclos = nfa_closure(nfam->stack, nfam->move, nfam->nmove, nfam->clos,
nfam->visited++, &accept);
if (accept)
nfam->last_accept_pos = nfam->count;
}
nfam->nfa.start->a.visited = nfam->visited;
if (ch && nfam->nclos != 0) {
if (accept)
return NFAM_MATCH;
return NFAM_INCOMPLETE;
}
/* Reached if the null character is
consumed, or NFA hit a transition dead end. */
if (nfam->last_accept_pos == nfam->count)
return NFAM_MATCH;
if (nfam->last_accept_pos == -1)
return NFAM_FAIL;
return NFAM_INCOMPLETE;
}
static obj_t *regex_equal(obj_t *self, obj_t *other)
{
return self == other ? t : nil; /* eq equality only */
}
static void regex_destroy(obj_t *regex)
{
nfa_t *pnfa = (nfa_t *) regex->co.handle;
nfa_free(*pnfa);
free(pnfa);
regex->co.handle = 0;
}
static struct cobj_ops regex_obj_ops = {
regex_equal, cobj_print_op, regex_destroy, 0,
};
obj_t *regex_compile(obj_t *regex_sexp)
{
nfa_t *pnfa = chk_malloc(sizeof *pnfa);
*pnfa = nfa_compile_regex(regex_sexp);
return cobj(pnfa, regex, ®ex_obj_ops);
}
obj_t *regexp(obj_t *obj)
{
return (obj->co.type == COBJ && obj->co.cls == regex) ? t : nil;
}
nfa_t *regex_nfa(obj_t *reg)
{
assert (reg->co.type == COBJ && reg->co.cls == regex);
return (nfa_t *) reg->co.handle;
}
obj_t *search_regex(obj_t *haystack, obj_t *needle_regex, obj_t *start,
obj_t *from_end)
{
nfa_t *pnfa = regex_nfa(needle_regex);
if (length_str_lt(haystack, start)) {
return nil;
} else {
if (from_end) {
long i;
long s = c_num(start);
const char *h = c_str(haystack);
for (i = c_num(length_str(haystack)) - 1; i >= s; i--) {
long span = nfa_run(*pnfa, h + i);
if (span >= 0)
return cons(num(i), num(span));
}
} else {
nfa_machine_t nfam;
obj_t *i, *pos = start, *retval;
nfam_result_t last_res = NFAM_INCOMPLETE;
nfa_machine_init(&nfam, *pnfa);
again:
for (i = pos; length_str_gt(haystack, i); i = plus(i, one)) {
last_res = nfa_machine_feed(&nfam, c_chr(chr_str(haystack, i)));
if (last_res == NFAM_FAIL) {
nfa_machine_reset(&nfam);
pos = plus(pos, one);
goto again;
}
}
last_res = nfa_machine_feed(&nfam, 0);
switch (last_res) {
case NFAM_INCOMPLETE:
case NFAM_MATCH:
retval = cons(pos, num(nfa_machine_match_span(&nfam)));
nfa_machine_cleanup(&nfam);
return retval;
case NFAM_FAIL:
nfa_machine_cleanup(&nfam);
return nil;
}
}
return nil;
}
}
obj_t *match_regex(obj_t *str, obj_t *reg, obj_t *pos)
{
nfa_machine_t nfam;
obj_t *i, *retval;
nfam_result_t last_res = NFAM_INCOMPLETE;
nfa_t *pnfa = regex_nfa(reg);
nfa_machine_init(&nfam, *pnfa);
for (i = pos; length_str_gt(str, i); i = plus(i, one)) {
last_res = nfa_machine_feed(&nfam, c_chr(chr_str(str, i)));
if (last_res == NFAM_FAIL)
break;
}
last_res = nfa_machine_feed(&nfam, 0);
switch (last_res) {
case NFAM_INCOMPLETE:
case NFAM_MATCH:
retval = plus(pos, num(nfa_machine_match_span(&nfam)));
nfa_machine_cleanup(&nfam);
return retval;
case NFAM_FAIL:
nfa_machine_cleanup(&nfam);
return nil;
}
return nil;
}
|