| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
| |
* tests/011/patmatch.tl: New test case.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
All he typical uses of this are better served by the new
predicate match. If op is really needed, it can be used with
the DWIM form of the predicate, as in @[(op ...) ...].
* share/txr/stdlib/match.tl (compile-op-match): Function
removed.
(compile-match): Remove op case.
* tests/011/patmatch.tl: Keep op test cases by converting them
to predicate test cases.
* txr.1: Documentation removed.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* share/txr/stdlib/match.tl (compile-dwim-predicate-match):
Function removed. There is no more special @(dwim ...)
or @[...] pattern.
(compile-predicate-match): Function rewritten, providing
different syntax and semantics.
(compile-match): dwim dispatch removed.
(non-triv-pat-p): Replaced @(op ...) calls with new-style
predicate syntax.
(var-pat-p): Likewise, and upgraded one instance of old-style
predicate syntax to new.
* share/txr/stdlib/compiler.tl (reduce-or): Adjust predicate
pattern to new style.
* share/txr/stdlib/optimize.tl (dedup-labels): Likewise.
* tests/011/patmatch.tl: All test cases with predicate syntax
are updated to new style. One test case removed; some added.
* txr.1: Predicate patterns re-documented. All examples
involving predicate patterns updated.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* share/txr/stdlib/match.tl (struct var-list): New slot, menv.
(var-list exists): Method now falls back on lexical scope and
dynamic variables.
(get-var-list): New function.
(when-match, if-match, match-case, when-exprs-match): Capture
macro environment and use get-vars-list to convert to a vars
object which carries it as the menv slot. With this, the
compiler framework has access to the lexical environment.
* tests/011/patmatch.tl: Test cases of back-referencing with
Lisp lexicals.
* txr.1: Documented.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The @(with side-pat expr main-pat) syntax becomes
@(with main-pat side-pat expr), which is more useful.
Also, the main-pat can be omitted.
* share/txr/stdlib/match.tl (compile-with-match): Recognize
two forms of the syntax: two argument form with main-pat
omitted and the full form. In the full form, main-pat is
on the left now and processed first, so we have to rearrange
the compilation and integration order.
* tests/011/patmatch.tl: Existing tests updated. Two-argument
test added.
* txr.1: Updated.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* share/txr/stdlib/match.tl (expand-lambda-match): In a case
that takes the maximum number of fixed args and no dotted
pattern, in a function that is variadic, we must assert that
the rest parameter is nil: there are no additional arguments.
In the lambda args, we must generate the colon that separates
the optional arguments.
* tests/011/patmatch.tl: basic test cases for lambda-match
and defun-match.
* txr.1: lambda-match and defun-match redocumented, with
examples.
|
|
|
|
|
|
|
|
|
|
| |
* tests/011/patmatch.tl: New test cases that break. The (copy
var-list) logic in the handling of and and or is incomplete.
The bifurcated vars must be merged together into the original
vars. Without this, it looks as if the operator didn't bind
any variables, and they can be repeated again without
backreferencing. In the broken examples, variable a is taking
on the value 2 instead of mismatching the previous value of 1.
|
|
|
|
|
|
|
|
|
|
|
|
| |
* lisplib.c (match_instantiate): Ensure usr:with is interned.
* share/txr/stdlib/match.tl (compile-with-match): New
function.
(compile-match): Wire in with operator.
* tests/011/patmatch.tl: Test cases.
* txr.1: Documented.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* lisplib.c (match_instantiate): Ensure usr:as is interned.
* share/txr/stdlib/match.tl (compile-let-match): Rename to
compile-as-match.
(compile-match): Remove handling of let symbol; route as
symbol to compile-as-match.
* tests/011/patmatch.tl: Update all uses of let to as.
* txr.1: Updated.
|
|
|
|
|
|
|
| |
* tests/011/patmatch.tl: New test case showing that @(or)
no longer nulls out the variables from previous clauses like
it used to. (2 2 nil) is returned, showing a is not set to
nil when b matches.
|
|
|
|
|
|
|
|
|
|
| |
* share/txr/stdlib/match.tl (compile-dwim-predicate-match): In
he one-argument case, there is stray code referencing
var-match.test-expr, which blows up. This is hit by exactly
the one example in the documentation that was not added
as a test case.
* tests/011/patmatch.tl: Add test case from doc.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* share/txr/stdlib/match.tl (non-triv-pat-p): Extend
sys:var match so (sys:var nil) is identified as trivial.
* tests/011/patmatch.tl: Add broken test case fixed by this.
This doesn't show up when @nil is used as the only match.
It also doesn't show up if @nil is used in a vector or list
in a mixture with other operators, because those other ones
identify the overall list pattern as non-trivial. None
of the occurrences of @nil in the existing test suite,
like (@nil @nil @x) tickle the bug.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This one test case requires restructuring. The handling for
the @(or ...) operator is now very different. To support @(or
...), there is now a new variant of the match-guard object
called guard disjunction, which contains multiple match-guard
chains. Furthermore, the separation between both guard-chain
lists and compiled-match having a test expression and
variables is being obliterated. For now, what we do is in a
:postinit handler on compiled-match, we immediately convert
the test-expr, vars and var-exprs slots into a match-guard
object, which is placed into the guard-chain, and then we
clear these slots. They are now vestigial only and will be
removed.
* tests/011/patmatch.tl: New test case which shows
that (@(or foo bar) ...) does not short immediately short
circuit to a failure when the corresponding element is
neither foo nor bar. Matching proceeds to the right,
wasting cycles and possibly causing errors.
* share/txr/stdlib/match.tl (*match-var*): Move to top, above
structs. There are some methods which refer to this variable
now for throwing internal errors.
(guard-disjunction): New object that is compatible with a
match-guard, and placed into guard-lists as if it were a
match-guard. This handles the bifurcation logic of an
OR match.
(compiled-match): New :postinit handler converts local vars,
var-exprs and test-expr into a match-guard placed into the
chain, and then clears these values. The compilation of code
is done purely from the guard-chain.
(compiled-match get-vars): This method is now complicated due
to the guard-disjunction objects, and so uses a helper
function called get-guard-values.
(compiled-match get-var-exprs): New method accompanying
get-vars to get the accompanying init expressions.
(compiled-match wrap-guards): Two changes are going on here.
One is that the funccion takes on more of the responsibility
which was previously carried out by the callers. The callers
were interpolating the test-expr and vars from a
compiled-match into a piece of code, which was then passed to
wrap-guards. Hence the naming: the job was just to wrap some
guards. Now, wrap-guards is called just with the body forms,
and does all of the work. Secondly, wrap-guards is complicated
due to the handling of the guard-disjunction items.
Also, there is some case handling to generate better code;
we avoid generating an empty (let () ...) and (alet () ...).
(compiled-match add-guard-pre, compiled-match add-guards-pre,
compiled-match add-guards-post): New methods for adding guards
after construction. These interfaces replace hacks of pushing
new variables, tweaking the test-expr, or explicitly pushing
guards onto the list.
(get-guard-values): New function for iterating over a
guard-chain, including match-guard and guard-disjunction
items, retrieving a particular list-valued slot from each one
using the fun argument, and returning a list of all those
lists catenated together.
(compile-struct-match, compile-vec-match,
compile-range-match): Eliminate test-expr, replacing it with
the harmless t.
(compile-op-match): We don't try to extend the test-expr of
the compiled var. Rather we add our guard expressin using the
add-guard-pre interface.
(compile-dwim-predicate-match): Likewise, and also, we
do not calculate the test-expr for the output compiled-match
from the constituent match test-exprs. We ignore those and
just set the test-expr pat-match.obj-var. The constituent
test-exprs have been converted to guard-chain items already,
so there is no point in referring to them.
(compile-predicate-match): Use add-guard-pre method to add
guard instead of pushing it on list.
(compile-cons-structure): Eliminate test-expr being calculated
from constituent test-exprs, and just stub it out to t.
(compile-require-match): Use add-guards-post to push
match-guard onto compiled child mach, instead of tweaking its
test-expr.
(compile-let-match): Oblierate calculation of test-expr from
child test-exprs, replacing with t stub.
(compile-loop-match): Call wrap-guards in the new way,
without generating assignments or test-expr.
(compile-parallel-match): This method is removed; there are
now separate compile-or-match and compile-and-match methods.
(compile-or-match): New method: compiles consitituent
expressions, and converts them into multiple guard-chains
for a guard-disjunction object. Then wrap-guards will finish
the job of emitting the or logic out of those chains.
(compile-and-match): This shares some common logic with
compile-or-match, but is substantially simpler. Pattern
matching is implicitly AND-based: in a pattern, all the
sub-patterns have to match. So there isn't much to do beyond
just evaluating all the patterns against the same object.
They can all be thrown into one combined flat guard chain.
(compile-not-match): Adjust to new wrap-guards interface.
Nothing left to do here but pass the expression t to it.
(copmile-hash-mach): The post-constructon manipulations of
the child compiled matches are done with the appropriate
add-guards-pre. The test-expr is eliminated, replaced with t.
(compile-match): Wire or and and to the new separate methods
compile-or-match and compile-and-match.
(when-match, if-match, match-case): Simplified due to
when-match interface change. The macros depend on a lot less
implementation detail now: they bind the required vars and
generate the code.
|
|
|
|
|
| |
* tests/011/patmatch.tl: Predicates must also be tested
earlier, as guard conditions.
|
|
|
|
|
|
|
| |
* tests/011/patmatch.tl: Even though bar mismatches
foo, the second element @(all) is processed and
tries to collect the list. This results in an
error due to the list being improper.
|
|
|
|
|
|
| |
* tests/011/patmatch.tl: It looks like there is still
a problem with scoping. An inner x is assigned the correct
value, leaving the outer x nil.
|
|
|
|
|
| |
The matcher has a bug: the loop patterns are not collecting
the variables from enclosed parallel patterns.
|
|
|
|
|
|
|
|
|
|
|
|
| |
* share/txr/stdlib/match.tl (compile-dwim-predicate-match):
Drop redundant bindable check of sym, since compile-var-match
checks this. Support third argument which gives a pattern or
variable which captures the value from the predicate function,
which might be interesting (not just true/false).
* tests/011/patmatch.tl: New tests.
* txr.1: Documented.
|
|
|
|
|
|
|
| |
* txr.1: Add anote that a pattern a..b matches rcons syntax,
and add examples.
* tests/011/patmatch.tl: new examples from doc added as tests.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is no longer any way to write a @(rcons ...)
pattern using the range syntax, so there is no point in
supporting that operator. The silly syntax @@a..@b
which previously worked was actually due to a mistaken
requirement in the parser.
* share/txr/stdlib/match.tl (compile-range-match): Function
moved closer to compile-atom-match, below compile-vec-match.
The argument is now a range object containing patterns, so we
pull it apart with from and to.
(compile-atom-match): Pass range directly to
compile-range-match; no need to construct (rcons ...) syntax.
* tests/011/patmatch.tl: Add range tests from documentation
and a few others.
* txr.1: References to @(rcons ...) pattern scrubbed.
One wrong #R pattern example corrected.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change causes a key-value pattern like (@a @b)
to be treated specially when @a already has a binding from a
previous pattern. In this case, it behaves like the
trivial key case: the value of @a is looked up to try to find
a single value. If @a is not bound, then the exhaustive
search takes place, using equal equality.
* share/txr/stdlib/match.tl (compile-hash-match): Implement
special case.
(var-pat-p): New function.
* tests/011/patmatch.tl: Existing test case now changes
value. New test case added.
* txr.1: Documented.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* share/txr/stdlib/match.tl (compile-hash-match): Follow
rename of is-pattern function to non-triv-pat-p.
(is-pattern): Renamed to non-triv-pat-p, to follow terminology
in the reference manual. A bug is fixed here: we must
recognize cons patterns with operators and variables in the
dotted position as non-trivial.
* tests/011/patmatch.tl: New hash test case, from doc.
* txr.1: Documented hash pattern operator.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit fixes the inadequacy that all variables occurring
in a pattern under @(all ...) or @(coll ...) are blindly
collated into lists, ignoring the fact that they may be
previously bound variables that must back-reference and not be
colleced into lists (just like in the TXR Pattern language!)
* share/txr/stdlib/match.tl (compile-loop-match): Calculate
the subset of variables in the pattern that have been freshly
bound. Only generate the collection gensyms for those
variables and only collect and nreverse those variables.
* tests/011/patmatch.tl: Some test cases that backreference
into an @(all).
* txr.1: Documented.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* share/txr/stdlib/match.tl (compile-loop-match): Implement
coll semantics. coll fails if it collects nothing, which
uses common logic with all*. We just have to move the
flipping of the loop-iterated-var into the match, and not
do it unconditionally for every iteration.
(compile-match): Hook in the coll operator.
* tests/011/patmatch.tl: Test case copied from doc example.
* txr.1: Documented.
|
|
|
|
|
|
| |
* tests/011/patmatch.tl: Add test case matching with two
structures in circular relationship, and a loop around
match case for various cases involving backreference.
|
|
|
|
|
|
|
|
|
|
|
|
| |
* share/txr/stdlib/match.tl (compile-parallel-match): Just
like what was done in compile-loop-match in the prior commit,
we fix the situation here. guard1's guard-expr, in which the
matching logic actually happens, becomes the main test-expr.
Thus guard1 disappears and guard0 is renamed to the one and
only guard.
* tests/011/patmatch.tl: Added test case which is fixed
by this.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is caused by the way the loop match compiler moves the
matching logic into a guard, which causes a re-ordering of the
variable assignments which interferes with backreferencing
when @(some) is embedded into a @(let), and probably other
situations. The issues is that the backreferencing equal
tests can be reordered to occur before the assignment which
sets the intial value of the backreferenced variable:
cart before the horse kind of thing.
* share/txr/stdlib/match.tl (compile-loop-match): Do not add
the submatch into the guard sequence. Thus guard1's vars and
var-exprs, move into into the main compiled-match,
and guard1's guard-expr moves into guard0. Thus guard1
disappears, guard0 becomes guard.
* tests/011/patmatch.tl: New test case that is also fixed,
and which was not fixed by a different approach to the problem
that I scrapped.
|
|
|
|
|
|
| |
* tests/011/patmatch.tl: New test showing breakage whereby
a variable inside the @(some ...) operator is not able
to unify against a surrounding let variable.
|
|
|
|
|
| |
* tests/011/patmatch.tl: Breaking test case added. The @(some)
pattern match has the same vars misalignment problem.
|
|
|
|
|
|
| |
* tests/011/patmatch.tl: New weirdly failing test case. The
@(and @a @b) is important; if that term is replaced by a
simple @a, then the correct datum is bound to c.
|
|
|
|
|
|
| |
* tests/011/patmatch.tl: Add match-case test.
* txr.1: Document when-match, if-match and match-case.
|
|
* tests/011/patmatch.tl: New file.
* tests/011/patmatch.expected: Likewise.
|