summaryrefslogtreecommitdiffstats
path: root/newlib/libm/mathfp/er_lgamma.c
diff options
context:
space:
mode:
Diffstat (limited to 'newlib/libm/mathfp/er_lgamma.c')
-rw-r--r--newlib/libm/mathfp/er_lgamma.c8
1 files changed, 4 insertions, 4 deletions
diff --git a/newlib/libm/mathfp/er_lgamma.c b/newlib/libm/mathfp/er_lgamma.c
index 8b754764d..65d60026e 100644
--- a/newlib/libm/mathfp/er_lgamma.c
+++ b/newlib/libm/mathfp/er_lgamma.c
@@ -76,9 +76,9 @@ $\mit ln\bigl(\Gamma(x)\bigr)$,
the natural logarithm of the gamma function of <[x]>. The gamma function
(<<exp(gamma(<[x]>))>>) is a generalization of factorial, and retains
the property that
-@ifinfo
+@ifnottex
<<exp(gamma(N))>> is equivalent to <<N*exp(gamma(N-1))>>.
-@end ifinfo
+@end ifnottex
@tex
$\mit \Gamma(N)\equiv N\times\Gamma(N-1)$.
@end tex
@@ -87,10 +87,10 @@ quickly. <<gamma>> is defined as
@tex
$\mit ln\bigl(\Gamma(x)\bigr)$ rather than simply $\mit \Gamma(x)$
@end tex
-@ifinfo
+@ifnottex
the natural log of the gamma function, rather than the gamma function
itself,
-@end ifinfo
+@end ifnottex
to extend the useful range of results representable.
The sign of the result is returned in the global variable <<signgam>>,